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ABSTRACT

Flash memory is becoming an increasingly important stor-
age component among non-volatile storage devices. Its cost
is decreasing dramatically, which makes it a serious competi-
tor of disks and a candidate for being the storage device of
the future. Consequently, there is an urgent need for models
and tools to analyse its behaviour and evaluate its effects on
a system’s performance. We propose a fluid model with pri-
ority to investigate the response time characteristics of Flash
memory accesses. This model can represent well the Flash
access operations, respecting the erase/write/read relative
priorities.

Keywords
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1. INTRODUCTION
Storage devices based on Flash memory are becoming

more and more prevalent in our daily life. This recent tech-
nology presents a panoply of devices, subject to continu-
ous and intensive evolution – as commonly observed in the
semiconductor manufacturing industry but especially promi-
nent here in response to the market demand of mp3 players,
mobile phones, digital cameras, solid state disks and other
products.

However, the technology suffers from a lack of tools ca-
pable of analysing its behaviour and its effect on the whole
system of which it forms a part. Moreover, there are no
methodologies available to evaluate the performance it can
deliver and the associated cost of its very specific character-
istics. Such tools and methodologies must be representative
of the real system, accurate on the scale of the semiconduc-
tor and quick to develop and use, in order to be in step with
the wide variety of devices and their manufacturing speed.
The mathematical modelling techniques we present address
these requirements with respect to both their accuracy and
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representativeness. This requires both careful parameterisa-
tion and appropriate choice of modelling techniques to use.

Fluid models are well suited to representing the behaviour
of Flash memory and its different access operations, namely
erase, write and read, because they can take into account
correlation between access streams as well as their relative
priorities, and can handle different execution modes: pre-
emptive or non-preemptive. We consider, as in [2], the three
different sources of requests and a Flash component with an
intermediate (fluid) buffer. Then, a Markov chain is used to
describe the state of the access operations’ sources, including
their input and output rates. Although the tools support-
ing fluid models are not yet as well developed as those for
discrete state Markov models [4], there is a wide range of
applications which can be effectively modelled using them;
Flash memory access is one such.

In the rest of the paper, the second section describes the
Flash technology background – its physical characteristics,
its access operations and its impact in the entreprise storage
system domain. Section 3 is dedicated to the fluid model and
how it is applied to represent our particular Flash memory
system. We analyse both the no-priority and the high prior-
ity classes in terms of their respective response times, using
busy period analysis. As a case study, we consider an online
transaction processing (OLTP) system in section 4, which
clarifies how the proposed, generic fluid model can be cus-
tomised to represent a Flash storage system supporting this
specific type of input. Numerical results are given in sec-
tion 5. Finally, we conclude in section 6, suggesting further
ideas for analysis that might be pursued and designs that
may emerge in response to the predictions made efficiently
by the models of this recent technology.

2. BACKGROUND ON FLASH MEMORY
Flash memory is becoming an increasingly important stor-

age component among non-volatile storage devices because
of its shock resistance, vibration tolerance, light weight and
low energy consumption. It already has a wide range of
applications, from its use in personal computers as a solid-
state disk (SSD) [7] to critical environments such as satellite
systems [14].

There are two types of Flash memory based on its man-
ufacturing: NOR and NAND. The former has lower den-
sity and higher cost but provides fast random access and
can be easily re-programmed, making it most suitable for
storing codes. The second type has a large storage capacity
and provides high performance for large read/write requests,
making it more suitable for storing data [8]. In fact the den-
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sity is about 8 times more for NAND [11], at a cost that
is 4 to 8 times cheaper than NOR. Further, sequential read
and write accesses are faster for NAND, although NOR is
significantly better for erasure times. However, erasures are
typically pre-scheduled in NAND, essentially running in a
garbage collector. Finally, NOR’s corruption immunity is
superior to NAND, partly because of bad blocks that exist
from the time of manufacture.

All of these factors make NAND the technology of choice
for many data centres and this is what we model here using
fluid methods. Further, MLCn (Multi Level Cell) technol-
ogy multiplies the storage capacity of the Flash memory chip
by having n-bit information per cell, where n = 2 or 4 in
contemporary devices. We model essentially the basic SLC
(Single Level Cell) technology with only one bit per cell,
i.e. effectively MLC1, but it is straightforward to adapt the
techniques used to arbitrary n in the mapping from discrete
storage requests onto volumes of fluid – see section 4.

2.1 NAND Flash memory access
A NAND Flash memory chip is composed of a fixed num-

ber of blocks, each of which is partitioned into a fixed num-
ber of pages. Every page consists of two areas: a data area
for native (user) data and a spare area for data status (fig-
ure 1). A block is the erase operation’s unit, whilst a page

.

.

Data area Spare area

One Block 

One page

Figure 1: A NAND Flash block structure

is the read and write operation’s unit. No ‘in-place’ updates
are allowed on a NAND Flash and pages have to be written
in order within a block. So, when data is modified, the new
version must be written to an available page, then called the
live page. The page containing the old version is considered a
dead page and is invalidated. As time passes, the number of
dead pages increases and the system reclaims them, in order
to perform further write operations, by running a garbage
collection process. This is possible only when these pages are
erased. However, this erase/write unit mismatch generates
additional copying of live pages from a block, when eras-
ing it, to another one. Another serious constraint of NAND
Flash technology is that the number of erase operations is
limited to 105 [1] for SLC (Single Level Cell) and to 104 for
MLC2 (Multiple Level Cell) [13]. As any recycling of dead
pages introduces block erasing, an even erase-count distri-
bution over the Flash memory blocks cannot be achieved,
which results in the “wear-levelling” problem. This has a
significant negative impact on the longevity of the memory
chip.

2.2 Flash management systems
Several file systems have been developed to manage data

on Flash memories. JFFS (Journal Flash File System) is a
log structured file system for the NOR Flash device [12]. Its
second version (JFFS2) supports NAND devices with a se-
quential I/O interface and a more efficient garbage collection
process, using a relatively reduced mounting time. YAFFS
(Yet Another Flash File System) is the first file system de-
signed specifically for NAND devices, considering data in-
tegrity as a priority [9], and its second version (YAFFS 2)
accommodates a newer chip with larger pages. More re-
cently, LogFS [10] supports snapshots and is more specific
to large devices due to its reduced mounting time.

All of these Flash file systems have an FTL (Flash Trans-
lation Layer) composed essentially of two parts: an alloca-
tor process for the logical to physical space mapping and
a cleaner process for the garbage collection. The mapping
between the logical location and the physical location is per-
formed using metadata on the pages’ spare areas, mounted
at the initialisation phase before any I/O operation. Garbage
collection is performed in the background to make free space
for write operations. The block size is an important design
parameter which has a significant impact on the amount of
metadata and so mounting time. The flash controller there-
fore has many design choices, which affect the output stream
of storage requests it delivers to the Flash devices. Hence
we consider a fairly general input stream using a Markov
Modulated Poisson Process (MMPP) to model the input to
a Flash memory array. Higher level models based on specific
flash controller designs could then be developed by appro-
priately parameterising the base model we describe here.

2.3 Flash for enterprise storage
As more consumer devices incorporate Flash and new pro-

cess technology is implemented, the cost of Flash is expected
to decrease rapidly in the coming years. This trend may al-
low Flash to compete with high-speed enterprise disks in
the future. Most enterprise storage systems already provide
fast writes using Non-Volatile RAM but random read oper-
ations from disk incur long latencies (typically 5 to 10 mil-
liseconds). On the other hand, sequential read operations
from disk are very fast and so the randomness of the ac-
cess pattern significantly impacts the observed performance.
The key advantage of Flash is that the random reads and
sequential reads have the same low latency per block. On
the downside, Flash implementations have to deal with the
complexities of the write constraints outlined above.

While 4KB page read operations from Flash have fairly
low average latency (say 25 microseconds for access and 105
microseconds for channel transfer), the distribution of the la-
tency may have a long tail because of contention with write
and erase operations. Page write operations take about 105
microseconds on the channel and 200 to 700 microseconds for
access (often an increasing function of erase count). Erasing
a block (say 256 KB, or 64 pages) can take more than 1.5
milliseconds. These numbers vary considerably among the
Flash device manufacturers, but often the latency concern
stems from the possibility that small read operations have
to wait behind relatively long write and erase operations.
Hence we would like to model the distribution of latency
for read operations (in particular) under various workloads.
Fluid modelling techniques provide a promising way of im-
proving our intuition about response time distributions for
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given Flash device characteristics.

3. FLUID MODEL
We use a fluid queue, with input defined by a four-phase

continuous time semi-Markov chain (CTSMC), to model the
behaviour of a Flash device. Such a queue is appropriate to
model correlated streams of incoming data requests of dif-
ferent types, especially (but not exclusively) at moderate to
high utilisation. In fact, in high utilisation scenarios, the
erase operations and their related page copying can be gen-
erated frequently due to the high rate of native write/update
operations. The four phases (or states), numbered 0 to 3,
correspond to off (no input), read requests, write requests
and erases. Class 1 fluid ‘particles’ (i.e. those arriving in
phase 1) have priority over phases 2 and 3 to account for
the priority actually given to reads, which are usually more
critical in allowing a process to continue.

The queue is parameterised, for an n-state CTSMC so as
to allow for model extensions with more than four phases,
as follows:

• The CTSMC has probability transition matrix P =
(pij | 0 ≤ i, j ≤ n − 1), defined at state transition
instants;

• the state holding time in state i, given that the next
state is j, has probability distribution Hij(t), for 0 ≤
i, j ≤ n − 1.

• the fluid arrival rate in phase i is the constant λi

volume-units of fluid per unit time, for 0 ≤ i ≤ n − 1,
so λ0 = 0;

• the rate at which the server outputs fluid when its
buffer is non-empty is the constant µ volume-units of
fluid per unit time;

• the net input rate matrix R = diag(r0, . . . , rn−1), where
ri = λi − µ for 0 ≤ i ≤ n − 1, and the rate vector
"r = (r0, . . . , rn−1);

• the vector e = (1, 1, . . . , 1) ).

In fact we will require that all states other than the high-
prority state 1 have exponential holding times with parame-
ter that does not depend on the next state transited to; these
are characterised by a rate γi for state i = 0, 2, 3, so that
Hij(t) = 1− e−γit for all states j #= i. In this paper, we fur-
ther assume that state 1 has exponential holding time, so we
have a modulating continuous time Markov chain (CTMC),
specified by a generator matrix, Q say1.

The response time distribution (or, rather, its Laplace-
Stieltjes transform (LST)) of each class in this fluid queue
can be calculated using the following observations:

1. high priority fluid (arriving in phase 1) is processed
as if the other classes had fluid arrival rates 0, which
effectively constitute additional off-phases.

2. response time for a phase 1 particle is therefore the
time taken to serve the phase-1 fluid in the buffer

1This assumption is not necessary, however, since it is only
used to determine the equilibrium fluid level distribution,
which can be derived fairly simply as a functional equation
for an on-off process in which the off-period is exponential.

present at the arrival instant of that particle – that
is, simply the volume of phase-1 fluid present divided
by µ, given by the reduced model described in the pre-
vious point.

3. response time for particles of other lower priority phases
is the sum of the time to serve all fluid already present
on arrival – of volume F say – added to all additional
fluid of class 1 that arrives during that time period.
The amount of this additional fluid is the sum of the
busy periods generated by each of these phase 1 ar-
rivals, the number of which, when conditioned on the
time period F/µ, is a Poisson random variable. Note
that the fluid queue model for the period considered is
that described in the first point since lower class fluid
waits behind class 2 and so can be ignored here. How-
ever, F is the steady state fluid level in the original
4-phase fluid queue with no priority classes, because
of the service rate being the same for all classes. The
probability distribution of this fluid level is well known
for any number of phases with any fluid input rates.

We therefore have to calculate:

• the steady state probability distribution of the fluid
level F in the no-priority queue – a routine task;

• the busy period for a class 1 fluid arrival in the reduced
model – this is determined in section 3.2 using results
from [5];

• the Laplace transform of the response time distribu-
tions – this is done in section 3.4 in terms of con-
ditional expectations on the number of high priority
arrivals during the processing of the F units of fluid.

3.1 Non-priority fluid queue results
Here we restate relevant results for a single fluid queue

with a Markov modulated arrival process of any number
of phases. Consider a single, Markovian fluid queue, with
generator matrix Q = (qij | 1 ≤ i, j ≤ n) for the input
process, which has equilibrium probabilities "π (so that πQ =
"0 and π"e T = 1).

Using the notation defined in the previous section, it can
be shown that the vector density function of the fluid level at

equilibrium (when this exists), denoted by "f(x) = ∂ #F
∂x

where
"F (x) is the corresponding probability distribution function,
has Laplace transform:

"f∗ = "F (0)R(R − Q/θ)−1 (1)

The constant "F (0) is given by the boundary conditions that
the fluid level in phases with fluid arrival rate greater than
the service rate is positive with probability 1, and taking the
limit θ → 0. For a Markovian on-off process with off-to-on
rate a and on-to-off rate b, this gives

"f∗(θ) = (0, F2(0)) +
π1α

θ + α
(1, (λ1 − µ)/µ) (2)

where α = r1b+r2a
r1r2

so that, noting "f∗(0) = "π, F2(0) = αr1

a+b
.

Details can be found in [3], but note that this is not the only
solution method; see for example [2].

For the high priority class’s response time, we can consider
the queue as if the other classes had zero arrival rate. To get
the equilibrium probability density function of the volume of
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class 1 fluid in the queue, we simply solve the same problem
with λ2 = λ3 = 0. Let this density function have Laplace

transform denoted by "f1
∗
(θ), that for the non-priority fluid

level F being "f∗(θ), as above.

3.2 High priority class busy times
The model we solve here again has four phases, but three

of these have zero fluid arrival rate. We therefore make
a further simplification by aggregating the read and write
phases, 2 and 3, into a new phase 2, which we assume to
have exponential holding time. This is not as unreasonable
as it may appear – in fact probably no less unreasonable
than assuming read and write phases were exponential in the
first place. Actually, the problem can be solved without this
aggregation, but at greatly increased computational cost2.
The mean holding time of the new phase 2, equal to the
reciprocal of the parameter of its exponential distribution,
is determined as the mean time elapsed between entering
either state 2 or 3 and next entering either state 0 or 1.
This is a routine, first passage time calculation, which yields
a mean holding time of h23 = π2h2+π3h3

π2+π3
where

h2 =
q23 − q33

q22q33 − q23q32
and h3 =

q32 − q22

q22q33 − q23q32

and the qij are the generators of the 4-phase process.
Consistent with [5], the set of off-states is denoted by E =

{0, 2} and the set of all states by S = {0, 1, 2}. The number
of off-states is ne = |E| and the total number of states is
n = |S|; thus in our example, ne = 2 and n = 3.

We now define the following matrices:

• the n × n matrix Γ = (γij), the generator matrix of
the 3-phase Markov process, where we write γi = −γii

for the positive total transition rate out of state i ∈ S .

• the 1×ne matrix (vector) V = (V ∗
2j(α)), the j element

of which is the required Laplace transform, with real
parameter α ≥ 0, of the probability density function
of the busy period – i.e. of the time elapsed between
entering into the on-phase 1 when the queue is empty
(hence, coming from an off-state) and the queue next
becoming empty again in the off-phase j.

• the ne × n matrix U = (uij) by uij = −γij(1− δij)/ri

for i ∈ E and j ∈ S .

• the ne × ne diagonal matrix D = (dij) by dij = [β −
(α + γi)/ri]δij for i, j ∈ E , where β ∈ CI .

• the n×ne matrix W = (wij) by w1j = V ∗
1j(α), wii = 1

for i ∈ E and wij = 0 otherwise, for j #= i ∈ E .

The ne × ne matrix M = D − UW has determinant,

∆
def

= |M| say, which is a polynomial of degree ne in β and
whose cofactors are polynomials of degree ne − 1. Therefore
each element in the inverse matrix (D−UW)−1 (assuming
this exists, i.e. that the determinant |M| is non-zero) is a
rational function of β which we may write in partial fractions
as

L = (D − UW)−1 =

 

ne
X

s=1

as;ij(α)

β − bs(α)
| i, j ∈ E

!

2As we will see below, we would need to solve a cubic for a
parameter β, rather than a quadratic, and then three simul-
taneous quadratic equations, rather than two.

assuming no degeneracies, so that {bs(α) | 1 ≤ s ≤ ne}
are the distinct roots of the equation ∆ = 0 (in β) and
the as;ij(α) are independent of β, defined by (dropping the
parameter α when the meaning is clear):

as;ij =

»

cji

∆s

–

β=bs

(3)

where C = (cij | i, j ∈ E) is the cofactor matrix of M and
∆s = ∆/(β − bs) ≡

Q

1≤i$=s≤ne
(β − bi). Our special case of

only a single on-phase [5] now gives a simplified result for
the Laplace transform of the high priority class busy time
distribution, V ∗(θ):

Theorem 1. For i ∈ F , j ∈ E ,

V ∗
1j(α) =

X

k∈E

ne
X

s=1

as;kjp1kH∗
1k(α − bsr1)

for general holding times in the high priority phase 1. In
the Markovian case (when the holding time in phase 1 is
exponential with parameter γ1)

V ∗
1j(α) =

X

k∈E

ne
X

s=1

as;kjq1k

γ1 + α − bsr1

Theorem 1 has been implemented in Mathematica R© and
our numerical results are obtained using it, together with
the analysis of response times given in the next section. To
illustrate the theorem’s use, we first need the matrix M to
calculate the terms bs and as;kj , for j, k, s = 0, 2.

The matrix D = diag(β + (α + γ0)/µ, β + (α + γ2)/µ),
uij = γij/µ (i = 0, 2, j = 0, 1, 2) and

W =

0

@

1 0
V10(α) V12(α)

0 1

1

A

Hence

M = D − UW

=

0

B

@

β +
α+γ0−γ01V ∗

10
(α)

µ
−

γ02+γ01V ∗

12
(α)

µ

−
γ20+γ21V ∗

10
(α)

µ
β +

α+γ2−γ21V ∗

12
(α)

µ

1

C

A

b1(α), b2(α) are the roots (assumed distinct) of the equation

β2 +
2α + γ0 + γ2 − γ01V

∗
10(α) − γ21V

∗
12(α)

µ
β

+
(α + γ0 − γ01V

∗
10(α))(α + γ2 − γ21V

∗
12(α))

µ2

−
(γ02 + γ01V

∗
12(α))(γ20 + γ21V

∗
10(α))

µ2
= 0

and a1;ij , a2;ij are the i-jth elements of the matrices

A1 = 1
b1(α)−b2(α)

×

0

B

@

b1(α) +
α+γ2−γ21V ∗

12
(α)

µ

γ02+γ01V ∗

12
(α)

µ

γ20+γ21V ∗

10
(α)

µ
b1(α) +

α+γ0−γ01V ∗

10
(α)

µ

1

C

A

and
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A2 = − 1
b1(α)−b2(α)

×

0

B

@

b2(α) +
α+γ2−γ21V ∗

12
(α)

µ

γ02+γ01V ∗

12
(α)

µ

γ20+γ21V ∗

10
(α)

µ
b2(α) +

α+γ0−γ01V ∗

10
(α)

µ

1

C

A

Defining the vector V(α) = (V ∗
10(α), V ∗

12(α)), we finally have

V(α) = g1(α) · A1(α) + g2(α) · A2(α)

where the vectors gs = (γ10, γ12)/(γ1 + α − bs(α)r1) for
s = 1, 2.

3.3 Response time of high priority class
Let the queueing time of a high priority fluid particle –

representing the start of a read – be Q1. Then the LST of
the distribution function of Q1 is

Q∗
1(θ) = EI [e−θQ1 ] = EI [e−θL1/µ] = L∗

1(θ/µ) (4)

where L1 is the volume of high priority fluid in the queue
on arrival of the particle. This is simply the total volume
of fluid present at equilibrium in the same queue when the
arrival rates of fluid in all other phases than 1, that of the
high priority class, are zero. L∗

1(θ) is therefore given by
equation 1 for the four phase model, as L∗

1(θ) = f∗
1 (θ)/f∗

1 (0).

3.4 Response time of low priority class
Let the queueing time of a low priority fluid particle –

representing the start of a write or erase – be Q2. Then the
LST of the distribution function of Q2 is

Q∗
2(θ) = EI [ EI [e−θ(V1+...+VN+L2/µ|L2]]

where L2 is the volume of low priority fluid in the queue on
arrival of the particle and N is the number of high priority
(class 1) busy periods that punctuate the time period L2/µ.
The number of entries into a state of a Markov process over
a given period depends on the sequence of states entered
and the transition rates from those states to the state in
question. For example, there may be no transitions from
some states to the high priority case, so if the process spends
a long time in such a state, there will be fewer entries into it.
However, this is not the case we have and reads are almost
uncorrelated with the phase in practice. Assuming that the
transition rates from all (other) phases into the read phase,
1, are the same, i.e. that γ01 = γ21 here, N is a Poisson
random variable and we have:

Q∗
2(θ) = EI [e−θL2/µ EI [ EI [e−θV ]N |L2]]

= EI [e−L2(θ+γ01(1−V ∗(θ)))/µ]

= L∗
2((θ + γ01(1 − V ∗(θ)))/µ)

= f∗
2 ((θ + γ01(1 − V ∗(θ)))/µ)/f∗

2 (0) (5)

The expressions for Q∗
1(θ) and Q∗

2(θ) allow a direct compar-
ison to be made between the latencies of the priority classes.
It is straightforward to extract the moments of latency, by
differentiation at θ = 0, from which average performance
and its variability can be compared. However, it is also pos-
sible to invert the Laplace transforms numerically, allowing
information in the tails to be obtained and hence quantile-
based benchmarks to be assessed.

4. EXAMPLE USE CASE ANDMODEL PA-

RAMETERISATION
For a concrete example, we consider an OLTP workload

with read:write data ratio of 3:1. The random reads and ran-
dom writes are both 8KB, which is the native database block
size. However, we assume that the file system (such as Write
Anywhere File Layout-WAFL [6]) converts all the random
writes into sequential writes with negligible overhead. The
Flash controller (and associated Flash translation layer) will
take care of wear-levelling within Flash devices and WAFL
will ensure that all Flash devices in the array are uniformly
used. The OLTP application will generate traffic across the
entire Flash array, but for our purposes here we consider a
single Flash chip. Suppose this 32GB flash chip is servicing
1600 I/O’s per second (so that the Flash access density of
50 I/O’s per GB is an order of magnitude better than high-
speed disk drives). We also assume that the chip handles at
most a single command (read, write, or erase) at a time so
that power requirements for the chip are minimal. In prac-
tice, Flash chips can pipeline several commands to different
banks at the same time, though they will contend for the
channel interface for data transfer. Given the read:write ra-
tio of 3:1, and I/O size of 8KB, the Flash chip will see 2400
page read commands per second and 800 page write com-
mands per second. In order to stay ahead of the write rate,
the chip will have to execute 800/64=12.5 erase commands
per second (assuming 64 pages per erase block).

A concept of volume, viz. virtual bytes (“vbytes”), helps
transform real-world problems with multiple classes and fixed
service rates into fluid models. Essentially, we take one of
the classes and compute the bytes transferred in an opera-
tion and hence a volume service rate based on the average
service time for that class. Suppose we have a large buffer
for vbytes that get serviced at a fixed µ vbytes per µsec. For
Flash, a 4KB read takes 105+25µsec, so that implies µ =
31.5 vbytes/µsec. The classes of interest here are as follows.

• to establish a reference point for the vbyte-measure of
volume, when a 4KB read request is issued, we start a
flow that puts 4096 vbytes into the buffer. Recalling
that the buffer is drained at 31.5 vbytes/usec, this will
take 130 µsecs to complete under no contention, as
required;

• a 4KB write request takes 105+200µsec = 305µsecs.
Although we are writing 4096 bytes of user data, we
will need to put in 4(305/130) = 9610 virtual bytes on
average to simulate the actual service time of 305µsecs;

• similarly, an erase takes 1500µsecs of actual time, so we
have to feed the buffer a total of 4(1500/130) = 47, 262
vbytes on average to simulate this service time.

In this way we can map between the amount of virtual
bytes in the request buffer and the volume in the fluid queue
model. The constant service – or drain – rate is simply a
transfer rate in virtual bytes per µsec. During periods of
no contention, a command starts a flow rate that is greater
than the constant drain rate (31.5 vbytes/µsec) and the com-
pletion of the active period for that command-mode (read,
write or erase) indicates its completion with the specified
service time. Notice that the actual rate at which vbytes
enter the buffer is arbitrary to some degree: it must exceed
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the drain rate and higher rates reflect increased burstiness,
as discussed below.

For the modulating CTMC, we also have to estimate the
mean state holding times, along with the transition proba-
bilities between states. These parameters are necessary to
construct the generator matrix and can only be obtained
by monitoring workloads typical (in this use case) for Flash
devices with OLTP workloads. In particular, greater bursti-
ness can be represented by decreasing state holding times
(increasing their out-transition rates) and correlation in se-
quences of command-mode types can be accounted for by
the state transition probabilities.

5. NUMERICAL RESULTS
We used Mathematica R© 5.2 to implemented the model

described in section 3 and applied it to the use case of the
previous section, as a preliminary illustration of its capabil-
ity. The rates of fluid input in each command mode and
drain rate, measured in vbytes per microsecond, were set as
described in the previous section. The CTMC’s instanta-
neous transition rates were set, somewhat arbitrarily, to:

0

B

B

@

−0.2 0.148 0.05 0.002
0.37 −0.5 0.125 0.005
0.05 0.148 −0.2 0.002
0.1 0.148 0.752 −1.0

1

C

C

A

This choice reflects reasonable burstiness and plausible cor-
relations in a typical OLTP sequence of database accesses.
Moreover, it yields correctly the observed numbers of vbytes
issued by each command type in one microsecond, viz. 9.83,
7.69, 0.59 for reads, writes and erases, respectively. These
figures become 2400, 800, 12.5 when scaled by the vbyte-
factors 4096× the single command relative access times.
This is achieved by choosing instantaneous vbyte-arrival rates
of 0, 43.0, 27.9, 220.5 for each mode (rate 0 for idle mode) and
using the fact that the CTMC with the above generators has
equilibrium phase probabilities 0.4929, 0.2284, 0.276, 0.0027.
The component-wise product of these vectors gives the ob-
served average rates.

In this scenario, the flash unit is running at a moderate
utilisation of 57% (average total arrival rate, 18.1, divided
by the drain rate, 31.5) and so we can expect small fluid
levels and access times at equilibrium. In fact, differenti-
ating equation 2, we find that the mean fluid level is 23.6
and its standard deviation is 72.0 – suggesting fairly long
tails. For the high priority reads, from equation 4, we ob-
tain the queueing time probability density function shown
in figure 2, with mean queueing time 0.39µsecs. For the low
priority writes/erases, we get the density function shown in
figure 3, with mean queueing time 1.98µsecs. This is broadly
what we would expect at utilisations of around 50%.

To examine the effect of increased workload, we scaled
all the arrival rates up by a factor 1.6, giving a new total
average arrival rate of 28.97 vbytes/µsec and utilisation of
92%. The mean fluid level is now 853.3 and its standard
deviation is 962.3. Mean queueing times grow to 24.8 and
102.1 µsecs for the high and low priority classes respectively,
and the densities are shown in figures 4 and 5.

6. CONCLUSION AND FUTUREWORK
With some simplifiying assumptions, we have shown that

fluid modelling techniques can provide a promising tool for
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Figure 2: Queueing time density for high priority
reads: moderate utilisation
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Figure 3: Queueing time density for low priority
write/erases: moderate utilisation
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Figure 4: Queueing time density for high priority
reads: high utilisation

the performance evaluation of NAND Flash memory sys-
tems. This approach has a considerable advantage over tra-
ditional queueing models in that it can account for both
correlated input and priorities. Moreover, under heavy load,
fluid models are well known to be accurate, often a stochas-
tic limit of the analogous queue.

The preliminary numerical results are encouraging, show-
ing the right qualitative behaviour, but clearly testing against
first simulation and then experimental observations is crucial
in the short term. We also intend to extend the fluid model
developed here, which has a preemptive priority policy, to
handle non-preemptive policies that better match current
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Figure 5: Queueing time density for low priority
write/erases: high utilisation

Flash devices. Indeed a comparison of FCFS, premptive re-
sume, and non-preemptive policies would show the impact
of the long erase times. As Flash devices become denser,
erase times are expected to increase and even if erases are
done in the background, it is possible that a long sequence
of writes will use up all available free space and force erases
that could delay writes. This motivates the extension of our
model to investgate these effects. On the hardware side,
currently, Flash memory represents the lowest level in the
hierarchy. The shared channel interface and flash dye are
modelled as one resource, but in fact they are separate re-
sources that are simultaneously held during command and
data transfers. Another interesting extension would be to
handle command queueing inside the Flash device so that
more than one memory bank could be active at any one
time. We also intend to consider a set of Flash devices, just
like disk drives, and investigate data striping and parallel ac-
cess policies, using analytical modelling and validation with
respect to simulation.
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