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ABSTRACT

This paper considers importance sampling as a tool for rare-
event simulation. The focus is on estimating the probabil-
ity of overflow in the downstream queue of a Jackson two-
node tandem queue. It is known that in this setting ‘tradi-
tional’ state-independent importance-sampling distributions
perform poorly. We therefore concentrate on developing a
state-dependent change of measure that is provably asymp-
totically efficient.

More specific contributions are the following. (i) We con-
centrate on the probability of the second queue exceeding a
certain predefined threshold before the system empties. Im-
portantly, we identify an asymptotically efficient importance-
sampling distribution for any initial state of the system.
(ii) The choice of the importance-sampling distribution is
backed up by appealing heuristics that are rooted in large-
deviations theory. (iii) Our method for proving asymptotic
efficiency is substantially more straightforward than some
that have been used earlier.

Keywords

Rare event simulation, importance sampling, state-dependent
change of measure, asymptotic optimality, tandem queue

1. INTRODUCTION
Rare event analysis of queueing networks has been attract-

ing continuous and growing attention over the past decades.
As explicit expressions are hardly available, one usually re-
lies on asymptotic techniques to approximate small overflow
probabilities. These asymptotics, however, often lack error
bounds, and consequently it is not always clear whether their
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use is justified for given parameters. This explains why one
often opts for simulation methods instead.

The use of simulation for estimating rare event proba-
bilities has an inherent problem: the event under consid-
eration occurs so rarely during the simulation, that it is
extremely time consuming to obtain a reliable estimate; a
rule of thumb is that the number of occurrences needed to
obtain an estimate of a certain predefined accuracy is in-
versely proportional to the probability of interest. Perhaps
the most prominent remedy to this problem is importance
sampling (IS), i.e., simulating the system under a new prob-
ability measure, and correcting the simulation output by
means of likelihood ratios (which essentially capture the like-
lihood of the realization under the old measure with respect
to the new measure) to retain unbiasedness. Evidently, it
makes sense to choose an IS distribution which guarantees
frequent occurrence of the event of interest. The choice of a
‘good’ new measure is rather delicate though. It should be
chosen such that the above-mentioned likelihood ratio tends
to be small on the event of interest; choosing a ‘wrong’ new
measure, one may even end up with an estimator with in-
finite variance. We refer to, e.g., Heidelberger [8] for more
background on IS and its pitfalls.

‘Classical’ papers on the use of IS in queueing usually rely
on a so-called ‘state-independent’ change of measure, i.e., for
any state in the system the probabilistic law is changed in
the same manner. Usually, large deviations techniques are
used to motivate the choice of the new measure, and in many
cases it was possible to prove that the resulting estimator is
asymptotically efficient (or: asymptotically optimal), which
effectively means that its variance behaves roughly like the
square of its first moment. In a setting in which the over-
flow probability decays exponentially in the buffer size B,
asymptotic efficiency means that the number of replications
needed to obtain an estimator with fixed relative error grows
subexponentially fast with the ‘rarity parameter’ B.

Things complicate tremendously when looking at networks
rather than one-node systems. For the Jackson two-node
tandem queue (that is, Poisson arrivals, exponential service
times at both queues), aiming at estimating the probability
that the total network population exceeds a given threshold,
the seminal paper by Parekh and Walrand [13] proposed to
swap the arrival rate with the rate of the slowest server – this
makes, heuristically, sense, as the slowest server corresponds
to the bottleneck queue. In this case experimental results
were not so encouraging as in the case of a single queue, and
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the quality of the simulation results was strongly affected
by the specific values of the arrival and service rates. Later
it was proved that this method is asymptotically efficient
for some parameter values, but has unbounded variance for
other values, see [7] and [2]. In fact, it was proven that no
state-independent change of measure exists that is asymp-
totically efficient for all parameter values.

It was realized that the main problem of state-independent
IS schemes is that the transition rates are changed in a ‘uni-
form manner’, i.e., irrespective of whether one of the queues
is empty or not. As a result it cannot be guaranteed that
the likelihood ratio is bounded on the event of interest, and
therefore the IS scheme proposed in [13] performs poorly for
some parameter values. Some of the first attempts to solve
this problem can be found in [3] and [9], in which state-
dependent IS schemes were proposed, i.e., IS distributions
that are not uniform over the state space. Dupuis et al.
[6] were the first to prove asymptotic efficiency for a state-
dependent IS scheme for estimating overflow probabilities in
a d-node Jackson network.

Several important questions are, however, still open; let us
from now on concentrate on the two-node Jackson tandem
network. In the first place, the majority of papers on this
type of networks deals with the probability that, starting
in a situation with both queues empty, the total network
population exceeds a certain threshold. One may wonder,
though, what the impact of the starting state is on the IS
scheme. Also, it is not a priori clear how to change the
simulation procedures if one is interested in the event of
overflow in a specific queue (rather than the total queue).

The main topic of the present paper concerns the de-
velopment of an asymptotically efficient IS algorithm for
estimating the probability that the content of the down-
stream queue exceeds a certain threshold B before the sys-
tem becomes empty, starting in any initial state, say x ∈
N × {0, . . . , B − 1}.

The search for an appropriate change of measure greatly
benefits from powerful large-deviations based heuristics. We
express the decay rate of the probability of our interest in
terms of so-called ‘cost functions’, that assign cost to paths;
the ‘most likely path’ is then defined as the ‘cheapest’ path
from state x to the ‘overflow set’ N × {B, B + 1, . . .} (that
does not visit the origin). The intuition is that, conditional
on the event that the second queue indeed reaches B before
the system gets empty, the trajectory of the Markov process
will be typically close to this most likely path. Then the idea
is that knowledge of the most likely path helps in finding a
good change of measure. The shape of the most likely path
strongly depends on which of the two queues is the bottle-
neck (i.e., has the lowest service rate). When it comes to
proving asymptotic efficiency, the two cases have to be dealt
with differently. We remark that the most likely path can
have a rather unexpected shape; there are situations that,
starting in a state x in which the second queue is non-empty,
this path is such that first the second queue becomes empty
while the first queue fills (to end up in some state (y, 0)), and
then the first queue drains while the second queue builds up.
Another interesting observation is that the most likely path
is not continuous in the starting state x: two nearly identical
initial states can reach the ‘overflow set’ in an entirely dif-
ferent manner. We also mention that a non-trivial technical
issue we deal with is the infinite state space, in that the pro-

cess can attain any value in N × {0, . . . , B − 1}, cf. [9]; this
complication does not play a role when analyzing rare-event
probabilities related to the total network population.

We expect that the above-mentioned large-deviations heu-
ristic can be rather helpful when analyzing a broad class of
networks; see also earlier results in [11] for the model that
was introduced in [15], in which the service rate of the first
queue depends on the content of the second queue.

The proof technique is essentially based on that of Dupuis
et al. [6], but, as in De Boer and Scheinhardt [4], we have
managed to simplify the proofs considerably. The change of
measure is such that the most likely path is, roughly, fol-
lowed (that is, with high probability), with corrections for
the regions near the axes. The proof of asymptotic efficiency
then relies on bounding the likelihood on the event of inter-
est.

We end this section by detailing the structure of the paper.
Model and preliminaries, as well as a short overview on the
basics of IS, are presented in Section 2. In Section 3 we con-
struct a state-dependent IS scheme for estimating the prob-
ability of our interest; interesting corollary results are (i) the
most likely path, and (ii) the corresponding decay rate. Sec-
tion 4 shows that our IS scheme, after a minor adaptation
that deals with visits to the axes, is indeed asymptotically
efficient. Some details of the proofs are omitted but can be
found in an extended version of this paper, see [12]. We
conclude the paper with some discussion in Section 5, where
we also spend some words on issues of implementation; sup-
porting numerical results are presented in [12].

2. MODEL AND PRELIMINARIES
We consider a two-node tandem Jackson network with

Poisson arrivals at rate λ to the first station. Each job re-
ceives service at the first station, after which it is routed
to the second station. After receiving service at the second
station, the job leaves the system. Service times at station i
have an exponential distribution with parameter µi, i = 1, 2.
The waiting rooms at both stations are assumed to be in-
finitely large.

Let Q(t) = {(Q1(t), Q2(t)), t ≥ 0} be the joint queue-
length process, as in [6] and [4], from which we will bor-
row some more notation. Then it is clear that this is a
continuous-time Markov process, with possible jump direc-
tions v0 = (1, 0), v1 = (−1, 1) and v2 = (0,−1) with cor-
responding transition rates λ, µ1 and µ2 respectively. The
process Q(t) is regenerative if we impose the stability con-
dition λ < min(µ1, µ2), which we will do from now on.

The queue-length process can also be described by the em-
bedded discrete time Markov chain Qj = (Q1,j , Q2,j), where
Qi,j is the number of jobs in queue i after the j-th transi-
tion. Without loss of generality we will choose the parame-
ters such that λ + µ1 + µ2 = 1, so that they also represent
the transition probabilities of Qj in the interior of the state
space. To ensure that the same holds on the boundaries, we
shall introduce socalled self-transitions shortly, see below.

Our main interest is to estimate the probability that Q(t)
(or equivalently, Qj) reaches some high level B in the second
buffer before it returns to the origin, starting from any state.
Thereto, it will be convenient to also consider the scaled
processes X(t) = Q(Bt)/B (in continuous time) and Xj =
Qj/B (in discrete time). The advantage of these scalings is
that we can use the same (continuous) state space R∈

+ for
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Figure 1: State space and transition structure for
scaled process X(t).

any B (although the true, discrete state space varies with
the value of B as long as B is finite). In particular, our
target probability is equivalent to the probability that the
second component of either the scaled process Xj or the
scaled process X(t) reaches 1 before the process returns to
the origin.

We introduce the following subsets of the state space

D := {(x1, x2) : x1 > 0, 0 < x2 < 1},
∂1 := {(0, x2) : 0 < x2 < 1},
∂2 := {(x1, 0) : x1 > 0},
∂e := {(x1, 1) : x1 > 0},

and denote the state space by D̄ = D ∪ ∂e ∪ ∂1 ∪ ∂2 (realize
that we can exclude x2 > 1 from the state space). Note that
transition vk is impossible when queue k is empty, i.e., when
Xj ∈ ∂k. We modify the process Xj to deal with this by
allowing some self-transitions in the following way, see also
Figure 1:

P(Xj+1 = Xj |Xj ∈ ∂k) = µk, for k = 1, 2. (1)

Next, we introduce the stopping time τx
B , which is the

first time that the process Xj hits level 1, starting from
state x = (x1, x2), without visits to the origin:

τx
B = inf{k > 0 : Xk ∈ ∂e, Xj �= 0 for j = 1, . . . , k−1}, (2)

and we define τx
B = ∞ if Xj hits the origin before ∂e. It

will also be convenient to let IB(Ax) be the indicator of the
event τx

B < ∞ for the path Ax = (Xj , j = 0, . . . : X0 = x).
Thus we can write the probability of our interest as

px
B = EIB(Ax) = P(τx

B < ∞). (3)

It is clear that it is not efficient to estimate px
B via straight-

forward simulations when B is large, due to the rarity of the
event of interest. In order to reduce the simulation time
we will employ Importance Sampling (IS), i.e., we perform
simulations under a new measure Q, which replaces the tran-
sition rates corresponding to v0, v1, v2 by other values. In
particular, we will use a state-dependent IS scheme.

This means that the transition rates under the new mea-
sure Q may depend on the current state x of the process;
they will be denoted by λ̄(x), µ̄1(x) and µ̄2(x) respectively.

The probability px
B can now also be expressed as

px
B = E

Q[L(Ax)IB(Ax)], (4)

where L(Ax) is the likelihood ratio (also known as Radon-
Nikodym derivative) of the path Ax. It is given by

L(Ax) =

τx

B
−1

∏

j=0

P(Yj)

Q(Yj |Xj)
, (5)

where Yj = B(Xj+1 −Xj), unless Xj+1 = Xj in which case
Yj = vk, if Xj ∈ ∂k. Furthermore, P(Yj) is the stochastic
kernel of the scaled process Xj under the old measure, being
equal to λ, µ1 or µ2 if j = 0, 1, 2, respectively, and Q(Yj |Xj)
is the kernel under the new measure, given by λ̄(x), µ̄1(x)
or µ̄2(x) when the current state is Xj = x.

Definition 2.1. The IS scheme for px
B is called asymptoti-

cally efficient if

lim inf
B→∞

log EQ[L2(Ax)IB(Ax)]

log EQ[L(Ax)IB(Ax)]
≥ 2. (6)

In our case it is known that px
B decays exponentially in B,

so that the exponential decay rate is well defined, i.e.,

lim
B→∞

− 1

B
log px

B ∈ (0,∞).

As a result, (6) can be rewritten in the following form:

lim sup
B→∞

1

B
log E[L(Ax)IB(Ax)] ≤ 2 lim

B→∞

1

B
log px

B .

3. OPTIMAL PATH AND RELATED

CHANGE OF MEASURE
In order to find a good change of measure for IS simula-

tions, the first step is usually to find the most probable path
to overflow, i.e., the way in which overflow most probably oc-
curs, conditional on its occurrence. In Section 3.1 we explain
a method in which minimizing certain ‘cost-functions’ leads
to the most probable path and a good corresponding change
of measure, given by new (state-dependent) transition rates

λ̃(x), µ̃1(x) and µ̃2(x). Then, we split the problem, since
the minimization procedure gives different results in differ-
ent cases. In Section 3.2 we treat the case λ < µ2 < µ1, in
which the second server is the bottleneck, while Section 3.3
deals with the case λ < µ1 ≤ µ2, in which the first server
is the bottleneck. Beforehand, we would like to point out
that the change of measure mentioned above, denoted by
tildes, is not the same as the asymptotically efficient change
of measure that will be introduced in Section 4 (denoted by
bars), although it is closely related.

3.1 Cost and structure of path to overflow
The typical path to overflow in the particular case that the

origin is the starting point, has already been identified for
the d-node Jackson tandem network in [1], and hence also for
our tandem system. In that paper, the time-reversed pro-
cess is used to find the shape of the most probable path to
overflow. This path to overflow was also obtained as a corol-
lary result in [11], and in this section we present a method
similar to the one in [11] to find the optimal path starting
from any state x ∈ D̄. The advantage of this method is that
it also provides a ‘good’ change of measure, which ensures
that most simulation runs under this new measure will be
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close to the optimal path. This new measure will be the
basis for another change of measure, which is used in our
(state-dependent) IS scheme, as presented in Section 4. An-
other result of our method is the exponential decay rate of
px

B , which will play a crucial role in the proofs of asymptotic
efficiency of Section 4.

Before introducing our method we impose some restric-
tions on the path structures we consider. In [12] it is shown
that it is sufficient to only consider paths that satisfy the
following.

Property 3.1.

• Each path is a concatenation of subpaths, which are
straight lines on any of the subsets D, δ1 and δ2, and
the new measure stays constant along each subpath,
i.e., λ̃(x) = λ̃, µ̃1(x) = µ̃1 and µ̃2(x) = µ̃2, for any
state x on the same subpath;

• Each path does not have more than one subpath in
each subset if µ2 < µ1;

• Each path does not have more than two subpaths in
each subset if µ2 ≥ µ1.

With every path that satisfies Property 3.1 we associate
a ‘cost’, the main idea being that the minimal cost of the
path to overflow in the second buffer, starting from state
x, can be interpreted as the decay rate of the probability of
interest. Our method is based on the family of cost functions
I, defined by

I(λ̃ | λ) := λ − λ̃ + λ̃ log
λ̃

λ
, (7)

see also [14, pages 14 and 20]. Note that the function (7) is

convex and equals 0 at λ̃ = λ. Intuitively, we can think of
the value I(λ̃ | λ) as the cost we need to pay to let a Poisson
process with parameter λ behave like a Poisson process with
parameter λ̃, per time unit.

We will now explain our cost method in more detail in the
following two examples. More background can be found in
the Appendix of [11].

Example 3.2. As an example, consider a straight path
through the interior of the state space, staying away from
the boundaries, from some state x to another state y, where
x1 ≥ y1 and x2 < y2. We then need to construct a new mea-
sure (λ̃, µ̃1, µ̃2), such that µ̃1 > µ̃2 and λ̃ ≤ µ̃1. This mea-
sure ensures that our path has constant north-west drift, or
in other words, due to the scaling, our path has a constant
slope

α =
µ̃1 − µ̃2

λ̃ − µ̃1

. (8)

The total cost of such a path, per unit time is

I(λ̃, µ̃1, µ̃2) := I(λ̃ | λ) + I(µ̃1 | µ1) + I(µ̃2 | µ2). (9)

To find the cost per unit horizontal (vertical) distance, we

need to divide this by the horizontal speed λ̃ − µ̃1 (vertical
speed µ̃1 − µ̃2). Thus, minimizing the cost of any straight
path from x to y in this case boils down to minimizing

(y2 − x2)
I(λ̃, µ̃1, µ̃2)

µ̃1 − µ̃2
, (10)

over µ̃1 and µ̃2, such that λ̃ ≤ µ̃1 and µ̃1 > µ̃2 hold, as well
as

λ̃ = µ̃1 +
y1 − x1

y2 − x2
(µ̃1 − µ̃2);

in addition, we should have that

y2 − x2

µ̃1 − µ̃2
=

y1 − x1

λ̃ − µ̃1

to guarantee that y is indeed the ending state of the path
when it starts at x.

It is easily checked that the total cost (10) with ending

state y = (0, 1) attains its minimum when triplet (λ̃, µ̃1, µ̃2)
is a solution to























λ̃ = µ̃1 − x1

1−x2
(µ̃1 − µ̃2)

λ̃ + µ̃1 + µ̃2 = λ + µ1 + µ2

λ̃µ̃1µ̃2 = λµ1µ2

λ̃ ≤ µ̃1 and µ̃1 > µ̃2

λ̃, µ̃1, µ̃2 > 0.

(11)

The reason we have chosen the specific ending state (0, 1)
is that it is the most frequent ending state for our network.
Notice also that if (λ̃, µ̃1, µ̃2) is the solution to (11) for some
starting state x, it also minimizes this system if we replace
x by any state that belongs to the straight line between x
and y = (0, 1). ♦

Example 3.3. Let us now give an example for another type
of path with starting state x ∈ D and ending state (0, 1),
consisting of two (straight) subpaths. The first subpath be-
longs to the interior and has north-west drift. The second
part belongs to the vertical boundary and has north drift.
Thus, it may be denoted as (x1, x2) → (0, x2 + α−1x1) →
(0, 1), for same slope α. Property 3.1 tells us that the new
measure stays constant along each subpath, so the total cost
of such a path is

α−1x1
I(λ̃, µ̃1, µ̃2)

µ̃1 − µ̃2
+ (1 − x2 − α−1x1)

I(λ̂, µ̂1, µ̂2)

λ̂ − µ̂2

,

where α = (µ̃1 − µ̃2)/(λ̃ − µ̃1), see (8). The first term in
the sum is the cost of the first subpath under some new
measure (λ̃, µ̃1, µ̃2) and the second term is the cost of the

second (vertical) subpath under some measure (λ̂, µ̂1, µ̂2).

Optimizing this expression such that λ̃ < µ̃1, µ̃2 < µ̃1, λ̂ ≤
µ̂1 and µ̂2 < µ̂1, for the case µ2 < µ1, over all parameters
marked with tildes and hats, it is readily verified that the
minimal cost of this path type is obtained when the new
measure is given by

(λ̃, µ̃1, µ̃2) = (λ̂, µ̂1, µ̂2) = (µ2, µ1, λ),

i.e., by simply interchanging the arrival rate λ and the ser-
vice rate of the second station µ2 for both subpaths. ♦

By considering all possible path types we obtain the overal
minimum cost, corresponding to the most probable path,
and the corresponding (state-dependent) change of measure

λ̃, µ̃1 and µ̃2. Finally, we also have

γx := minimal cost over all paths x → δe,

at our disposal. The following theorem shows the relevance
of this function.
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Figure 2: Partition of D̄ and some optimal paths to
overflow when µ2 < µ1.

Theorem 3.4. The exponential decay rate of px
B equals the

minimal cost, i.e.,

lim
B→∞

1

B
log px

B = −γx.

The proof of this theorem is given in [12], and relies on
the fact that the process X(t) satisfies a large deviations
principle with a local rate function that is closely related to
(and on the interior essentially equal to) the cost function
in (9).

We now present the results of our minimum-cost-path
method for both cases of the tandem network.

3.2 Optimal path results for λ < µ2 < µ1

When µ2 < µ1, the cost minimization starting in state x as
outlined in the previous section (in particular Example 3.3;
see also the Appendix in [11] for more examples), yields the
following new measure after some calculations:

(λ̃, µ̃1, µ̃2) =







(µ2, µ1, λ), if x ∈ A1,
solution to (11), if x ∈ A2,
(λ, µ1, µ2), if x ∈ A3

(12)

Here Ai, i = 1, 2, 3, is the following partition of the state
space D̄, see also Figure 2:

A1 := {x ∈ D̄ : x2 ≤ −x1/α1 + 1},
A2 := {x ∈ D̄ : −x1/α1 + 1 < x2 < −α1x1 + 1},
A3 := {x ∈ D̄ : x2 ≥ −α1x1 + 1},

with α1 := (µ1 − µ2)/(µ1 − λ). Note that the path consid-
ered in Example 3.3 in the previous subsection is optimal for
any starting state x ∈ A1, and the corresponding new mea-
sure (exchanging λ and µ2) was earlier found by Parekh and
Walrand [13] for the problem of reaching a large total queue
population. Also, we point out that the change of measure
is continuous in the state x, as can be verified by solving
system (11) for x = (α1, 0) and x = (α−1

1 , 0), yielding the
solutions in the first and third lines of (12), respectively.

The corresponding path from starting state x = (x1, x2)
to some state on ∂e is given by

(x1, x2) → (0, x2 + α−1
1 x1) → (0, 1), if x ∈ A1,

(x1, x2) → (0, 1), if x ∈ A2,
(x1, x2) → (x1 − α−1

1 x2, 1), if x ∈ A3.
(13)
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Figure 3: Partition of D̄ and some optimal paths to
overflow when µ1 ≤ µ2.

The resulting cost γx of the optimal path starting from x =
(x1, x2) is given by:

γx =







(1 − x1 − x2)γ, if x ∈ A1,

−x1 log λ̃(x)
λ

− (1 − x2) log µ̃2(x)
µ2

, if x ∈ A2,

0, if x ∈ A3,
(14)

where

γ := − log
λ

µ2
,

is the minimal cost of the path (0, 0) → (0, 1).
It may be useful to note that for any state x the new mea-

sure defined in (12) ‘lies between’ the Parekh and Walrand
measure where λ and µ2 are interchanged, and the ‘normal’
measure, where the parameters retain their original values.
Moreover, the more jobs are present in the system at time
zero, either in queue 1 or in queue 2, the ‘less change of
measure’ we need.

3.3 Optimal path results for λ < µ1 ≤ µ2

In this case, the new measure under which the path to
overflow has minimal cost in terms of (7) is as follows:

(λ̃, µ̃1, µ̃2) =







(µ1, λ, µ2), if x ∈ B1,
solution to (11), if x ∈ B2,
(λ, µ2, µ1), if x ∈ B3.

(15)

Again we partitioned the state space into three subspaces
Bi, i = 1, 2, 3 as follows, see also Figure 3.

B1 := {x ∈ D̄ : f(x) ≤ 0},
B2 := {x ∈ D̄ : f(x) > 0 and x2 < −α2x1 + 1},
B3 := {x ∈ D̄ : x2 ≥ −α2x1 + 1},

where α2 := (µ2 − µ1)/(µ2 − λ) and

f(x) := γ + x1 log
λ̃(x)

µ1
+ (1 − x2) log

µ̃2(x)

µ2
,

with λ̃ ≡ λ̃(x) and µ̃2 ≡ µ̃2(x) being the solution to (11).
The zero level curve of the function f(x) represents the
boundary between subspaces B1 and B2, β is the unique
solution to f(0, x2) = 0. Interestingly, for the current case
the change of measure is not continuous in states x that
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lie on this boundary (i.e., f(x) = 0), and the behavior on
B1 and B2 is entirely different. In particular, the change
of measure on B2 has λ̃(x) < µ̃1(x) and µ̃2(x) < µ̃1(x), as
opposed to the first line of (15) where both inequalities are
reversed. This is also reflected in a different shape of the
typical path from x = (x1, x2) to ∂e:

(x1, x2) → (x1 + α3x2, 0) → (α2, 0) → (0, 1), if x ∈ B1,
(x1, x2) → (0, 1), if x ∈ B2,
(x1, x2) → (x1 − α−1

2 x2, 1), if x ∈ B3,
(16)

where α3 := (µ2 − λ)/(µ1 − λ). Note that the last part of
any path with starting state x ∈ B1 is just a special case of a
path starting in B2 (in this case starting in (α2, 0)), but the
corresponding new measure on this line (i.e. the solution
to system (11) for x = (α2, 0)) can be given explicitly as
(µ1, µ2, λ). This was already known from [11] for the path
starting in the origin.

The next result we give is γx, the cost of the optimal path
in terms of (7):

γx =











γ − x1 log µ1

λ
, if x ∈ B1,

−x1 log λ̃(x)
λ

− (1 − x2) log µ̃2(x)
µ2

, if x ∈ B2,

(1 − x2) log µ2

µ1
, if x ∈ B3.

(17)
Finally, we like to mention that for any x ∈ B2, the new

measure ‘lies between’ the normal measure and the measure
that corresponds to the optimal path along the vertical axis.
This latter measure follows from the value z as the unique
solution in the interval (0, 1) of the (essentially cubic) equa-
tion

ϕ(z) := λ + µ1 + µ2(1 − z) − 2

√

λµ1

z
= 0, (18)

which follows from system (11) by taking (x1, x2) = (0, 0).
(The fact that there is a unique solution immediately follows
from ϕ(0) = −∞, ϕ(1) = λ + µ1 − 2

√
λµ1 > 0, and the

fact that ϕ′(z) = 0 has just a single positive solution, viz.
3
√

λµ1/µ2
2.) In fact, − log z is the cost of the vertical path

(0, 0) → (0, 1) in the interior (i.e., in D), satisfying λ̃ = µ̃1

(as opposed to the vertical path following ∂1 in Example 3.3,

where λ̃ < µ̃1). See also [10, Eqns. (30) and (33)] and [11]
for more details.

4. ASYMPTOTIC EFFICIENCY
It is known from [11], where the starting state is the ori-

gin, that the new measures (12) and (15) are not always
asymptotically efficient. For example, when µ2 < µ1, mul-
tiple visits of the process Q(t) to the horizontal axis (∂2)
under the new measure (µ2, µ1, λ) may cause the likelihood
ratio to become very large. We will ‘protect’ the likelihood
ratio by using a specific measure around ∂2, under which
these visits become harmless. This approach is similar to
the one used in [6]. We will also introduce a protection strip
along the lower part of the vertical boundary ∂1 in the same
manner, in the case when µ1 ≤ µ2.

We again split the problem into two cases: in Section 4.1
we explain our method in detail for the situation in which
the second server is the bottleneck (λ < µ2 < µ1), and in
Section 4.2 we treat the case in which the first server is the
bottleneck (λ < µ1 ≤ µ2).

4.1 Asymptotically efficient scheme for µ2 < µ1

In order to construct an IS scheme that is provably asymp-
totically efficient we introduce a function W (x), defined for
any point x = (x1, x2) of the state space. This function will

give us an expression for a new measure (λ̃, µ̃1, µ̃2) in the
same manner as it was done in [6].

Let us first introduce three intermediate functions Wi(x),
i = 1, 2, 3, each with argument x = (x1, x2):

W1(x) := 2γx − δ,

W2(x) := W1(x1, δ/2γ) = 2γ(x1,δ/2γ) − δ, (19)

W3(x) := 2γ − 3δ,

where δ is some small positive number, and γx is given by
(14). In the next step we introduce the function which is
the minimum of these three functions, see also Figure 4:

W̄ (x) := W1(x) ∧ W2(x) ∧ W3(x).

Note that our particular choice of the functions Wi ensures
that the shapes of the areas around the origin and ∂2 on
which W̄ coincides with the functions Wi are the same as
they were in [6]. The last step in the construction is a molli-
fication procedure which makes the resulting function W (x)
smooth. We do this by defining:

W (x) := −ε log
3

∑

i=1

e−Wi(x)/ε, (20)

where ε is a ‘smoothness’ parameter; the larger ε is chosen,
the smoother the function W (x) is. On the other hand,
as ε → 0 we see that W (x) converges to the (non-smooth)
function W̄ (x).

The function W (x), and in particular its gradient, will
play a main role in the representation of the state-dependent,
asymptotically efficient new measure. However, before turn-
ing to this, we need some preliminaries, namely a relation
between the gradients of the functions Wi and the measure
from the previous sections, and some assumptions on the
parameters δ and ε.

Proposition 4.1. The gradients of the functions Wi(x),
i = 1, 2, 3 can be represented as follows:

DW1(x) = 2

(

log
λ

λ̃(x)
, log

µ̃2(x)

µ2

)

,

DW2(x) = 2

(

log
λ

λ̃(x1, δ/2γ)
, 0

)

,

DW3(x) = (0, 0).

The parameters δ and ε depend on B, and in the sequel
we will need the following conditions for their asymptotic
behavior as B grows large. Note that these are the same
conditions as in [6] and [4].

Assumption 4.2. The parameters δ ≡ δB and ε ≡ εB are
strictly positive and satisfy the following limit conditions as
B → ∞ : (i) εB → 0, (ii) δB → 0, (iii) BεB → ∞,
(iv) εB/δB → 0.

We will now show how the new measure is constructed
from the function W . We inherit the following expression
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Figure 4: The function W̄ (x) and the areas on which W̄ (x) = Wi, i = 1, 2, 3 (case µ2 < µ1).

from [6, Prop. 3.2]:

λ̄(p) = N(p)λe−〈p,v0〉/2,

µ̄1(p) = N(p)µ1e
−〈p,v1〉/2, (21)

µ̄2(p) = N(p)µ2e
−〈p,v2〉/2,

where

N(p) :=
[

λe−〈p,v0〉/2 + µ1e
−〈p,v1〉/2 + µ2e

−〈p,v2〉/2
]−1

= eH(p)/2. (22)

Here H(p) is a function known as the Hamiltonian, which
we use to simplify the notation and to enable the compari-
son with [6] and [4]. The vector p strongly depends on the
current state of the process and is in fact taken to be the
gradient DW (x). We thus rewrite (21) as

λ̄(x) = λe−〈DW (x),v0〉/2eH(DW (x))/2, (23)

µ̄i(x) = µie
−〈DW (x),vi〉/2eH(DW (x))/2, i = 1, 2.

We like to mention that we can express the gradient DW (x)
as a weighted sum of vectors DWk(x) at point x:

DW (x) =

3
∑

k=1

ρk(x)DWk(x), with ρk(x) =
e−Wk(x)/ε

∑3
i=1 e−Wi(x)/ε

(24)
Clearly there is a difference between the new measures

defined in Section 3 (indicated by tildes) and in this section
(indicated by bars). In fact it is not difficult to see that the
first one also follows from (21) if we replace W by W1. How-
ever, this change of measure is not asymptotically efficient,
while the other one is, due to the protection strips along the
boundaries, as we will prove in the remainder of this sub-
section. We start with some lemmas that are similar to the
ones in [4]; proofs can be found in [12].

Lemma 4.3. The likelihood L(A) of a path A = (Xj , j =
0, . . . , σ) under the new measure (23) satisfies

log L(A) =
B

2

σ−1
∑

j=0

〈DW (Xj), Xj+1 − Xj〉

+

2
∑

k=1

1

2

σ−1
∑

j=0

〈DW (Xj), vk〉I{Xj = Xj+1 ∈ ∂k}

− 1

2

σ−1
∑

j=0

H(DW (Xj)). (25)

Lemma 4.4. Consider the case µ2 < µ1. For any path
A = (Xj , j = 0, ..., σ) under the new measure (23), the first
term in (25) satisfies
∣

∣

∣

∣

∣

B

2

σ−1
∑

j=0

〈DW (Xj), Xj+1 − Xj〉 −
B

2
(W (Xσ) − W (X0))

∣

∣

∣

∣

∣

≤ C

Bε
σ,

for sufficiently large Bε, where C is some positive constant.

Lemma 4.5. For any x, H(DW (x)) ≥ 0.

Lemma 4.6. Consider a two-node tandem Jackson net-
work. For any sequence θB such that θB → 0 (B → ∞),
and τx

B defined by (2), the following limit holds:

lim
B→∞

1

B
log E(eθBτx

B |IB(Ax) = 1) = 0.

Theorem 4.7. When µ2 < µ1 and Assumption 4.2 holds,
the new measure in (23), with function W based on (14), is
asymptotically efficient.

Proof. We will sketch the proof, roughly following the
proof of [4, Thm. 1]; some omitted details may be found in
[12]. First we note that an upperbound on the first term
of the log-likelihood expression in Lemma 4.3 can be found,
using Lemma 4.4, as

B

2

τx

B
−1

∑

j=0

〈DW (Xj), Xj+1 −Xj〉 ≤
B

2
(−2γx + η(B)) +

C

Bε
τx

B ,

(26)
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Figure 5: The function V̄ (x) and the areas on which V̄ (x) = Vi, i = 1, 2, 3 (case µ1 ≤ µ2).

where η(B) is such that limB→∞ η(B) = 0.
For the second term in Lemma 4.3 we can find a result

similar to the third statement of [6, Lemma B.1], namely
the same as in [4]:

2
∑

k=1

1

2

τx

B
−1

∑

j=0

〈DW (Xj), vk〉I{Xj = Xj+1 ∈ ∂k} ≤ γe−δ/ετx
B .

(27)
The last term in Lemma 4.3 can also be bounded, using

Lemma 4.5:

−1

2

τx

B
−1

∑

j=0

H(DW (Xj)) ≤ 0. (28)

Combining (26), (27) and (28) we can rewrite (25) in the
following way

log(L(A)) ≤ −Bγx + Bη(B) + χ(B)τx
B ,

where

χ(B) := γe−δ/ε +
C

Bε
.

Now for any path Ax we have:

1

B
log E [L(Ax)IB(Ax)]

=
1

B
log

(

E [L(Ax)|IB(Ax) = 1] P [IB(Ax) = 1]
)

≤ 1

B
log

(

E

[

e−Bγx+Bη(B)+χ(B)τx

B |IB(Ax) = 1
]

px
B

)

= −γx + η(B) +
1

B
log E

[

eχ(B)τx

B |IB(Ax) = 1
]

+
1

B
log px

B .

Using the fact that limB→∞ χ(B) = 0 (see Assumption 4.2),
Lemma 4.6 and Theorem 3.4 we conclude that:

lim sup
B→∞

1

B
log E [L(Ax)IB(Ax)] ≤ −2γx = 2 lim

B→∞

1

B
log px

B ,

which completes the proof.

4.2 Asymptotically efficient scheme for µ1 ≤ µ2

We define a function based on the total cost function γx

in (17), analogous to the function W in the previous section,
see (20), as follows.

V1(x) = −2x1 log
λ̃(x)

λ
− 2(1 − x2) log

µ̃2(x)

µ2
− δ,

where

(λ̃(x), µ̃1(x), µ̃2(x)) =

{

solution to (11) if x ∈ B1 ∪ B2,
(λ, µ2, µ1) if x ∈ B3.

V2(x) = 2γ(x1,δ/2γ) − δ,

V3(x) = 2γ − 3δ,

where γx is given in (17). See also Figure 5 for the function
V̄ (x) := V1(x) ∧ V2(x) ∧ V3(x).

We note that V1 is not defined entirely analogous to the
way we defined W1 in the previous section, the reason being
that this ensures smoothness around the boundary between
B1 and B2. We omit the details which can be found in [12].
The same holds for the proof of the following theorem, which
is essentially the same as that of Theorem 4.7.

Theorem 4.8. When µ1 ≤ µ2 and Assumption 4.2 holds,
the new measure in (23) with function V based on (17), is
asymptotically efficient.

5. DISCUSSION
In this paper we focused on the event that, starting from

an arbitrary state, the second queue in a two-node Jackson
tandem network reaches overflow before the system becomes
empty. The main focus is on the development of efficient
simulation techniques for estimating this probability. We
have proposed a particular change of measure, motivated by
large-deviations arguments, and we have proved asymptotic
efficiency of a subtly modified version (that differs close to
the axes, and thus nicely controls the likelihood).

One of the reasons we did not include numerical results
in this paper, is that it is still a nontrivial step to move
from the asymptotically optimal algorithm presented here
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to an actual, useful implementation. The main point here
is that the simulation time is not only determined by the
number of runs needed, but also by the simulation time per
run (and hence it matters how much time the computation
of the change of measure ”on the fly” takes. As an alterna-
tive we could compute the new transition rates in all states
of the state space beforehand, and store them. Numeri-
cal results based on this approach are presented in [12] and
indeed show a considerable speedup. Clearly, the disadvan-
tage is that we need to precompute more and more as B
grows large, and in fact we developed and compared sev-
eral approximate algorithms in [12] that reduce this burden.
A perhaps more promising approach is to compute and use
only the change(s) of measure that correspond(s) to the op-
timal path from the initial point, even when the sample path
deviates from the optimal path. Clearly, such an approach
will also rely heavily on the results in the current paper.

We strongly feel that the methods for constructing the
change of measure and proving its efficiency as presented in
the current paper are also applicable to other, more com-
plex queueing networks. For example, we expect that it can
be applied to a so-called ‘slow-down network’, i.e., a tandem
network with Poisson arrivals and exponential service times,
in which the first server decreases its speed as soon as the
second buffer reaches some prescribed utilization, see [15].
Such an analysis has recently been published in [5] for a spe-
cific parameter setting, with the origin as starting state, but
several issues remain open (general parameter settings, gen-
eral initial point, simplification of the asymptotic efficiency
proof).
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