
Performance evaluation and trade-offs of optimal back-off
misbehavior detection schemes in wireless networks in

the presence of interference
∗

Svetlana Radosavac

DoCoMo Communications Laboratories USA
†

3240 Hillview Ave
Palo Alto, CA

sradosavac@docomolabs-usa.com

John S. Baras
Electrical and Computer Engineering Dep.

and the Institute for Systems Research
The University of Maryland, College Park, MD

baras@umd.edu

ABSTRACT

In this work we evaluate the impact of interference caused
by concurrent transmissions of neighboring stations on the
performance of quickest detection schemes for detection of
back-off misbehavior in the IEEE 802.11 MAC. We evalu-
ate the trade-offs that both the adversary and the detector
face under such conditions using a game theoretic frame-
work. Furthermore, we evaluate the worst-case scenarios
under which the given detector can efficiently operate under
the predetermined conditions and show by both mathemat-
ical analysis and simulation how the presence of uncertainty
affects the performance of the detector. Finally, we conclude
that in the presence of (i) adaptive intelligent adversaries
and (ii) variable environment conditions, the adoption of a
static detection system is not advisable and propose employ-
ment of an adaptive detection system in order to maintain
satisfying performance under a wide range of conditions.

1. INTRODUCTION
In recent years, information has become a resource of

strategic importance and wireless networks have become the
primary means for ensuring availability, offering access to
and enabling transfer of data. At the same time, the strate-
gic significance of timely dissemination of information in
the network offers strong incentives for malicious entities to
launch attacks against critical operations and network func-
tionality. Due to the mentioned issues, the problem of devia-
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tion from legitimate protocol operation in wireless networks
and efficient detection of such behavior has been studied
in great detail and many different solutions to the problem
have been offered.

The underlying design principle of every system is to achieve
robustness not only against a specific disruption, but also to
maintain an acceptable performance level when such disrup-
tion occurs. This is not possible to achieve without careful
design planning. In order to construct a detection system
that ensures robustness of a given system, goal and capa-
bilities of both the detector and the adversary need to be
defined. As it is not possible to predict the attacker’s be-
havior, an essential design component is prediction of the
worst-case scenario for the system and estimation of error
margin and performance bounds. Only then it is possible
to realistically evaluate the performance of the system by
deriving an optimal detection strategy for various scenar-
ios and determining whether the critical system parameters
remain within acceptable boundaries for each scenario.

The problem of back-off misbehavior detection has re-
ceived considerable attention from the research community
in recent years. The authors in [10] focus on MAC layer mis-
behavior in wireless hot-spot communities. They propose a
sequence of conditions on available observations for testing
the extent to which MAC protocol parameters have been
manipulated. The advantage of the scheme is its simplic-
ity and easiness of implementation, although in some cases
the method can be deceived by cheating peers, as the au-
thors point out. A different line of thought is followed by
the authors in [7], where a modification to the IEEE 802.11
MAC protocol is proposed to facilitate the detection of self-
ish and misbehaving nodes. The approach presupposes a
trustworthy receiver, since the latter assigns to the sender
the back-off value to be used. The receiver can readily detect
potential misbehavior of the sender and accordingly penal-
ize it by providing less favorable access conditions through
higher back-off values for subsequent transmissions. A deci-
sion about protocol deviation is reached if the observed num-
ber of idle slots of the sender is smaller than a pre-specified
fraction of the allocated back-off. The sender is labeled as
misbehaving if it turns out to deviate continuously based
on a cumulative metric over a sliding window. In [8, 9] the
authors address detection of an adaptive intelligent attacker
by casting the problem of misbehavior detection within the
min-max robust detection framework. The key idea is to
optimize the performance of the detection algorithm for the
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worst-case instance of uncertainty. This process is charac-
terized by identifying the least favorable operating point of
the detection algorithm, and by deriving the strategy that
optimizes the performance of the detection algorithm when
operating in that point. The detection performance is mea-
sured in terms of number of required observation samples
to derive a decision (detection delay) subject to a constant
rate of false alarms.

The problem setup in [7, 8, 9, 10] assumes operation of the
observer nodes under perfect conditions. Consequently, the
proposed detection mechanism assumes that each RTS/CTS
signal is observed and registered and the detector perfor-
mance specifications are obtained under that assumption.
However, in wireless networks instances of inaccurate in-
formation are encountered frequently: measurement errors,
network discrepancies and intense interference cause proto-
cols to operate with imperfect and distorted information. If
we consider the scenario where two customers, A and B,
want to purchase a detector it is essential to provide them
with complete and accurate information about detector per-
formance under a wide range of conditions (i.e. customer A
might be operating under suboptimal conditions and is not
interested how the detector performs under perfect condi-
tions as he will never be operating in such settings). When
a customer is presented with a realistic overview of detector
performance, he can then decide whether to purchase offered
detection system, invest in his own system (that will result
in lower number of lossy observations) or invest in a more
sensitive detection system.

In this work, we revisit the problem of back-off misbehav-
ior detection [7, 8, 10] and extend the analysis presented
in [8, 9] by evaluating the performance of both the intel-
ligent adversary and the quickest detection system in the
presence of interference (which results in lossy observations
at the detector side). We attempt to obtain the least fa-
vorable distribution of an adaptive intelligent adversary in
the IEEE 802.11 MAC in the presence of interference. Fol-
lowing that, we perform a detailed analysis of the proposed
misbehavior detection system performance in the presence
of interference in terms of probability of detection and num-
ber of false alarms. Furthermore, motivated by findings from
[1], we adopt a more realistic approach towards constructing
an optimal detector. More specifically, [1] and [3] claim that
in real anomaly detection systems, the Probability of False
Alarm (Pfa) needs to be lower than the one used in theoreti-
cal analysis presented in current literature. In this work, we
follow the proposed approach and adopt significantly lower
Pfa rates than in any other existing back-off misbehavior
detection system [7, 10, 8].

We are not aware of any existing literature that addresses
impact of interference on the performance of adversaries and
the quickest back-off misbehavior detection system in wire-
less networks (the importance of taking interference into ac-
count while evaluating the performance of detection schemes
was briefly mentioned in [8] and [9]). Although the extreme
instance of the optimal attack derived in this work is equiv-
alent to Denial of Service attack and has effects similar to
jamming attacks, it is important to mention that this work
does not address the performance of detection schemes in
the presence of jamming attacks. Our work contributes to
the current literature in the area of MAC layer misbehavior
detection by: (i) providing a detailed mathematical analysis
of performance of the quickest detection schemes [9] in the

presence of interference, which results in lossy observations
of back-off sequences; (ii) providing detailed numerical anal-
ysis of performance of optimal adaptive adversaries in such
settings and (iii) considering significantly lower False Alarm
rates, which enables customers to obtain realistic perfor-
mance overview of given detection system (previous detec-
tion systems considered Pfa=0.01, which results in roughly
700 false alarms per minute, which is unacceptable for any
customer).

The remainder of the paper is organized as follows. In
Sect. 2 we present a general outline of the problem and state
the assumptions that will be used throughout the paper.
Sect. 3 provides a description of an adversary model fol-
lowed by the attack detection model in Sect. 4. In Sect. 5
we present a detailed overview of the min-max robust ap-
proach in the presence of interference followed by a Markov
Chain representation of the system in Sect. 6. We conclude
our work with a detailed evaluation of the proposed quick-
est detection system in the presence of interference in terms
of False Alarm rate and detection delay and provide some
directions for future work in Sect. 8. In subsequent sections,
the terms “misbehavior” and “attack”, “misbehaving node”
and “attacker”, “optimal detector” and “quickest detection
system” will be used interchangeably with the same mean-
ing.

2. PROBLEM DESCRIPTION AND

ASSUMPTIONS
Throughout this work we assume the existence of an intel-

ligent adaptive adversary that is aware of the environment
and its changes over a given period of time. Consequently,
the adversary is able to adjust its access strategy depend-
ing on the level of congestion in its environment. For now
we assume that, in order to minimize the probability of de-
tection, the attacker chooses legitimate over selfish behavior
when the level of congestion in the network is low. Similarly,
the attacker chooses an adaptive selfish strategy in congested
environments. This issue will be discussed in more detail in
Sect. 5. Due to the previously mentioned reasons, we as-
sume a benchmark scenario where all the participants are
backlogged, i.e., have packets to send at any given time in
both theoretical and experimental evaluations. We assume
that the attacker employs the worst-case misbehavior strat-
egy in this setting, which enables the detection system to
estimate the maximal detection delay. It is important to
mention that this setting represents the worst-case scenario
with regard to the number of false alarms per unit of time
due to the fact that the detection system is forced to make
maximum number of decisions per time unit.

In order to characterize the strategy of an intelligent at-
tacker, we assume that both misbehaving and legitimate
node attempt to access the channel simultaneously. We as-
sume that when no interference is present, each station gen-
erates a sequence of random back-offs X1, X2, . . . , Xi,which
are correctly observed at the detector side, over a fixed pe-
riod of time. According to the IEEE 802.11 specifications
[6], the back-off values of each legitimate protocol partic-
ipant are distributed according to the uniform probability
distribution function (pdf) f0(x1, x2, . . . , xi). The pdf of
the misbehaving participants is unknown to the system and
is denoted with f1(x1, x2, . . . , xi), where X1, X2, . . . , Xi rep-
resent the sequence of back-off values generated by the mis-
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behaving node over the same period of time.
Throughout this work we assume that a detection agent

(e.g., the access point) monitors and collects the back-off
values of a given station. It is important to note that obser-
vations are not perfect and can be hindered by concurrent
transmissions or external sources of noise. It is impossible
for a passive monitoring agent to know the back-off stage
of a given monitored station due to collisions and to the
fact that in practice, nodes might not be constantly back-
logged. This issue will be addressed in more detail in the re-
mainder of the paper. Furthermore, in practical applications
the number of false alarms in anomaly detection schemes is
very high. Consequently, instead of building a “normal”pro-
file of network operation with anomaly detection schemes,
we utilize specification based detection. In our setup we
identify “normal” (i.e., a behavior consistent with the 802.11
specification) profile of a backlogged station in the IEEE
802.11 without any competing nodes, and notice that its
back-off process X1, X2, . . . , Xi can be characterized with
pdf f0(xi) = 1/(W + 1), where W represents the size of the
back-off window, for xi ∈ {0, 1, . . . , W } and zero otherwise.
We claim that this assumption minimizes the probability
of false alarms due to imperfect observations. At the same
time, a safe upper bound on the amount of damaging effects
a misbehaving station can cause to the network is main-
tained. However, in the presence of interference, the setting
presented in [4] is no longer valid. Namely, the perceived
back-off values of both legitimate and malicious participants
change in the presence of interference and the resulting pdf
at the observers’ side differs from the actual one.

Before proceeding towards a formal analysis of the inter-
ference problem at the observers’ side, we first address the
issue at the attackers’ side. In this work we assume that the
goal of the adversary is to deny medium access to legitimate
protocol participants. The adversary achieves this by adopt-
ing strategies that provide him with higher access probabil-
ity and consequently increase his own gain. Due to the fact
that this strategy corresponds to zero-sum games (i.e. strat-
egy where one participant’s loss results in the other partici-
pant’s gain), this results in decreased gain for legitimate pro-
tocol participants. We assume the attacker in the presence
of interference attempts to access the medium with the same
strategy that was presented in [9], i.e. attempts to maximize
his gain while minimizing the probability of detection. How-
ever, due to interference, it may miss one or more control
messages. We now note that, although the adversary does
not gain access to the medium, his main goal is achieved:
(i) the adversary transmits Request-to-Send (RTS) message
and silences his neighborhood for the duration of the poten-
tial data transmission and (ii) the receiver sends Clear-to-
Send (CTS) message which silences his own neighborhood,
just as if the whole exchange of data were successful and
(iii) the back-off window of legitimate nodes exponentially
increases (due to the failed transmission attempt), following
the specification of the IEEE 802.11 [6], resulting in more
significant advantage of misbehaving node who does not fol-
low the protocol and constantly chooses back-off values from
the interval [0, W ]. Hence, the adversary, whose goal is to
deny access to legitimate participants, still achieves his goal
in the presence of interference and need not change his own
strategy.

Before proceeding towards a more detailed interference
model in Sect. 5.1 and performance evaluation of optimal de-

tector in such setting, we first present and adversary model
and the corresponding quickest detection test for such ad-
versary in Sect. 3 and Sect. 4 respectively.

3. ADVERSARY MODEL
The lack of a proper adversarial model can lead to miscon-

figuration of the employed detector and significant decrease
in system performance due to missed detection, detection
delay or large number of false alarms. In order to properly
evaluate the defense strategies, obtain performance bounds
of the detector and potential damage caused by an adver-
sary, a more stringent definition of adversary capabilities and
goals as well as specifications of the corresponding detection
system are provided.

3.1 Desired Properties of a Detection System
In this work we assume that an optimal detection system

is designed so that it can detect misbehaving nodes as soon
as possible with an acceptable false alarm rate and accept-
able delay.

3.2 Feasible Design Space
The feasible design space, S , is defined to be any sequen-

tial test that satisfies a given false alarm and detection rates.
A sequential test is an algorithm which with every new ob-
tained sample xi, either decides to classify the observed be-
havior based on x1, . . . , xi or waits for the next sample.

3.3 Capabilities of the Adversary
We assume the adversary has full control over his actions.

More specifically, in this setting, we assume the adversary
has complete control over its back-off distribution. In or-
der to describe the capabilities of the adversary we define a
feasible class of attacks F that describes his probable set of
actions.

3.4 Information Available to the Adversary
Throughout our work we adopt the strict assumption that

an adversary is intelligent, i.e. knows everything the detec-
tion agent knows and can infer the same conclusions as the
detection agent. This assumption enables the detector to
obtain the upper bound on the detection delay (lower per-
formance bound of the detection system).

3.5 Goal of the Adversary
We assume the objective of the adversary is to design

an access policy which maximizes his gain over the defined
period of time, while minimizing the probability of detection,
Pd. If the adversary is malicious, his goal is to minimize
the gain of the other participants. On the other hand, a
greedy adversary attempts to maximize his own gain, which
may or may not result in minimizing the gain of the other
participants.

If we denote the expected back-off values of legitimate and
misbehaving nodes by E0[Y ] and E1[X] respectively and the
attacker’s probability of accessing the channel with P1, the
following theorem holds:

Theorem 1. The probability that the adversary accesses
the channel before any other terminal when competing with
n neighboring (honest) terminals for channel access in sat-
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uration condition is:

P1 =
1

1 + nE1[X]
E0[Y ]

= η
1

n + 1
>

1

n + 1
. (1)

where η ∈ (1, n + 1) and n represents the number of legit-
imate protocol participants and η represents a parameter
that gives us an insight into the level of aggressiveness of
the adversary. In other words, his probability of accessing
the channel is greater than the corresponding probability of
any legitimate node by a factor η > 1. We omit the proof of
this theorem and refer the reader to [9] for the proof.

Using the simple modeling introduced in [9] we are now
able to quantify the notion of an “attack”. Let η be a quan-
tity that satisfies 1 < η < n + 1 and consider the class Fη

of all pdf’s that induce a probability P1 of accessing the
channel that is no less than η/(n + 1). Using the reasoning
presented in [8, 9], the class Fη can be explicitly defined as

Fη =

{

f1(x) :

∫ W

0

xf1(x) dx ≤
1 − η

n+1

n η

n+1

W

2

}

. (2)

This class includes all possible attacks for which the incurred
relative gain exceeds the legitimate one by (η − 1) × 100%.
The class Fη is the uncertainty class of the robust approach
and η is a tunable parameter. Notice from (1) that since
P1 is a probability the gain factor η must not exceed n + 1
in order for the previous inequality to produce a nonempty
class Fη.

By defining the class Fη, we imply that the detection
scheme should focus on attacks with larger impact to system
performance and not on small-scale or short-term attacks.
We define the severity of the attack by changing the gain
factor η. Values of η larger but close to 1 are equivalent to
low-impact attacks whereas values significantly larger than
1 are equivalent to DoS attacks.

4. ATTACK DETECTION MODEL:

SEQUENTIAL PROBABILITY RATIO

TEST (SPRT)
We assume the network employs a monitoring mechanism

for detection of potential malicious activities. The monitor-
ing mechanism consists of: (i) determination of the subset of
monitoring nodes M that act as network monitors and (ii)
employment of a detection algorithm at each detector node.
In this work we assume that an efficient mechanism for de-
termination of the subset of monitoring nodes already exists
and put emphasis on the detection part of the monitoring
mechanism.

Due to the nature of the IEEE 802.11 MAC, the back-off
measurements are enhanced by an additional sample each
time a node attempts to access the channel. Intuitively, this
gives rise to the employment of a sequential detection scheme
in the observed problem. The objective of the detection test
is to derive a decision as to whether or not misbehavior
occurs with the least number of observations. A sequential
detection test is therefore a procedure which decides whether
or not to receive more samples with every new information
it obtains. If sufficient information for deriving a decision
has been made (i.e. the desired levels of the probability of
false alarm and probability of miss are satisfied), the test
proceeds to the phase of making a decision.

It is now clear that two quantities are involved in decision
making: a stopping time N and a decision rule dN which at

the time of stopping decides between hypotheses H0 (legiti-
mate behavior) and H1 (misbehavior). We denote the above
combination with D=(N, dN).

In order to proceed with our analysis we first define the
properties of an efficient detector. Intuitively, the starting
point in defining a detector should be minimization of the
probability of false alarms P0[dN = 1]. Additionally, each
detector should be able to derive the decision as soon as
possible (minimize the number of samples it collects from
a misbehaving station) before calling the decision function
E1[N ]. Finally, it is also necessary to minimize the prob-
ability of deciding that a misbehaving node is acting nor-
mally P1[dN = 0]. It is now easy to observe that E1[N ],
P0[dN = 1], P1[dN = 0] form a multi-criteria optimization
problem. However, not all of the above quantities can be op-
timized at the same time. Therefore, a natural approach is
to define the accuracy of each decision a priori and minimize
the number of samples collected:

inf
D∈Ta,b

E1[N ] (3)

where

Ta,b = {(N, dN) : P0[dN = 1] ≤ a and P1[dN = 0] ≤ b}

The solution D∗ (optimality is assured when the data is i.i.d.
in both classes) to the above problem is the SPRT [11]. The
SPRT test is defined in terms of the log-likelihood ratio Sn

Sn = ln
f1(x1, . . . , xn)

f0(x1, . . . , xn)
, (4)

of the two joint probability density functions fi(x1, . . . , xn)
of the data {x1, . . . , xn} under hypothesis Hi, i = 0, 1. The
corresponding stopping time N and decision rule dN are then
given by

N = inf
n
{n : Sn /∈ [L, U ]} (5)

dN =

{
1 if SN ≥ U
0 if SN ≤ L,

(6)

where L ≈ ln b
1−a

and U ≈ ln 1−b
a

. We can see that the
SPRT test continues sampling as long as the log-likelihood
ratio takes values within the interval (L, U) and stops taking
more samples the first time it exceeds it. Once stopped, the
decision function dN decides in favor of hypothesis H1 when
SN exceeds the largest threshold and in favor of H0 when
SN is below the smallest threshold. If in particular the data
are independent and identically distributed (i.i.d.) under
both hypotheses then the log-likelihood ratio Sn takes the
following simple form

Sn =
n∑

k=1

ln
f1(xk)

f0(xk)
= Sn−1 + ln

f1(xn)

f0(xn)
, S0 = 0. (7)

Here fi(x) is the common probability density function (pdf)
of the samples under hypothesis Hi, i = 0, 1. Notice that
the recurrent relation in the right hand side of (7) allows for
an efficient computation of the statistics Sn which requires
only constant number of operations per time step and finite
memory (we only need to store Sn as opposed to the whole
sequence {xn, . . . , x1}).
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Furthermore, by Wald’s identity:

Ej [N ] =
Ej [SN ]

Ej

[

ln f1(x)
f0(x)

] =
Ej [SN ]

∫ W

0
fj(x) ln f1(x)

f0(x)

(8)

with E1[SN ] = Lb + U(1 − b) and E0[SN ] = L(1 − a) + Ua.
The coefficients j = 0, 1 in Eq.(8) correspond to legitimate
and adversarial behavior respectively.

Before proceeding towards further analysis, we note that
the denominator in Eq. 8 represents the denotes the Kullback-
Leibler divergence between two distributions.

5. DERIVATION OF THE WORST-CASE

ATTACK IN THE PRESENCE OF

INTERFERENCE
As it has already been mentioned in Sect. 2, it is of essen-

tial importance to investigate how interference affects the
performance of the quickest detection system. In this work
we assume that interference arises due to concurrent trans-
missions of nodes that are not in each other’s range, but are
in the range of the observer node. Consequently, this results
in lossy observations at the detector side. We now present
the assumed interference model and derive the worst-case
attack in the presence of interference.

5.1 Interference model
In this work, we assume that interference at the detec-

tor side results in lossy observations. As a consequence, the
detector fails to detect new control messages sent by an at-
tacker with probability p2. Due to the inability to observe
the actual back-off sequence, the detector is no longer able
to derive the original attacker’s strategy f?

1 (x). Instead, it

will observe the new back-off distribution, f̃?
1 (x) which is

generated according to the following set of rules:

1. the real back-off x1 is observed with probability 1−p2;

2. back-off x1 +x2 is observed with probability p2(1−p2)
(one transmission of the attacker is not observed);

3. back-off x1+x2+x3 is observed with probability p2
2(1−

p2) (2 transmissions of the attacker are not observed);

4. . . .

5. back-off x1+. . .+xi is observed with probability pi−1
2 (1−

p2) (i-1 transmissions of the attacker are not observed);

where each back-off xi is generated according to the original
pdf f?

1 (x). For example, the new pdf generated by miss-
ing one transmission, can be calculated as P (X1 + X2 ≤
Y ), which is nothing else but the convolution of f?

1 (x) ∗
f?
1 (x)(since each Xi is generated according to f?

1 (x)). In or-
der to illustrate this, we present a simple scenario in Fig. 1.
We assume the malicious node M attempts to access the
channel using the optimal pdf f?

1 (x), generating correspond-
ing back-off values bi. When no interference is present,
an observer (detector) that is measuring back-off values of
neighboring stations measures time periods between suc-
cessive RTS messages Ti, and calculates the corresponding
back-off values bi (an example of such calculation is provided
in [9]). However, if the observer misses the second control
message, it measures back-off b1 + b2 at a time instance t2
instead of registering two successive back-off values b1 and

b2 at time instances t1 and t2 respectively. Depending on the
strength and duration of interference, the observer retrieves
a corrupted back-off sequence, which results in detection de-
lay.

Before proceeding towards derivation of the worst-case at-
tack in the presence of interference we first briefly present
the proposed detection scheme that minimizes detection de-
lay.

5.2 Worst-case attack
We now derive the expression for the least favorable dis-

tribution of an adversary in the presence of interference fol-
lowing the framework from [9] and evaluate the performance
loss of the detector in such scenarios. We assume that the
adversary generates the back-off sequence using an optimal
pdf f?

1 (x), which results in achieving maximal detection de-
lay. We mentioned in Sect. 2 that as a consequence of inter-
ference, the detector observes a different back-off sequence
and a different pdf of both the adversary and legitimate
participant: f̃?

1 (x) and f̃0(x) respectively. Following the ap-
proach from [9], we know that the detection delay is inversely

proportional to
∫

f̃?
1 (x) log

f̃?
1
(x)

f̃0(x)
dx. However, f̃0(x) is no

longer uniform and now the problem of finding the attack
that maximizes the required number of observations needed
for detection reduces to the problem:

min
f̃?
1

∫

f̃?
1 (x) log

f̃?
1 (x)

f̃0(x)
dx (9)

subject to the constraints,
∫

xf?
1 (x)dx ≤ η and

∫

xf?
1 (x) dx = 1 (10)

where η has the same meaning as in Sect. 3. We now ob-
serve that the constraints from Eq. 10 are with respect to
f?
1 (x) and the original expression in Eq. 9 that needs to be

minimized is with respect to f̃?
1 (x). In order to derive an

expression for the optimal pdf we first prove the following
claim:

Claim 2. Imposing constraints on f?
1 (x) is equivalent to

imposing constraints on f̃?
1 (x), i.e. there exists a linear re-

lation between the constraints with a known factor.

Proof. Assuming that the probability of missing a con-
trol message sent by an attacker is p2, the expression for
f̃?
1 (x) can be written as:

f̃?
1 (x) = (1 − p2)f

?
1 (x) + p2(1 − p2)f

?
1 ∗ f?

1 (x) + (11)

+ p2
2(1 − p2)f

?
1 ∗ f?

1 ∗ f?
1 (x) + . . .

where “*” denotes convolution. By applying the Laplace
transform to Eq.(12) the following expression is obtained:

F̃ ?
1 (s) =

∞∑

i=1

pi−1
2 (1 − p2)

i(F ?
1 )i(s) =

(1 − p2)F
?
1 (s)

1 − p2F ?
1 (s)

(12)

After applying the well known properties of the Laplace

transform: F(0)=1 and ∂F (s)
∂s |s=0

=−
∫

xf(x)dx to Eq. (12),

the following expression is obtained:

∂F̃ ?
1 (s)

∂s |s=0
= (1− p2)[1+ 2p2 + 3p2

2 + . . .]
∂F ?

1 (s)

∂s |s=0
(13)
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Figure 1: Noise diagram.

By using ∂F (s)
∂s |s=0

=−
∫

xf(x) dx it is now easy to derive

from Eq.(13) that
∫

xf̃?
1 (x) dx =

1

1 − p2

∫

xf?
1 (x) dx

which concludes the proof.

We now transfer the constraints from f?
1 (x) to f̃?

1 (x) and
form the following Lagrangian:

L(f̃?
1 , λ, µ) =

∫

f̃?
1 (x) log

f̃?
1 (x)

f̃0(x)
dx (14)

+ λ

∫

xf̃?
1 (x) dx

+ µ

∫

f̃?
1 (x) dx

where µ is the Lagrange multiplier corresponding to equality
constraints and λ is the Karush-Kuhn-Tucker (KKT) multi-
plier corresponding to the inequality constraint. The KKT
conditions can be expressed as follows:

1. ∂L

∂f̃?
1
(x)

= 0

2. λ ≥ 0

3. λ(
∫

xf̃?
1 (x) dx − η) = 0

4.
∫

f̃?
1 (x) dx = 1

5.
∫

xf̃?
1 (x) dx ≤ η

In order to derive a result using the condition (1), we apply
the method of variations to Eq.(15). In order to proceed
further, we assume that

f̃?
ε (x) = (1 − ε)f̃?

1 (x) + εδ(x)

which corresponds to perturbation around f̃?
1 (x). By re-

placing f̃?
1 (x) with f̃?

1ε(x) in Eq. (15), the criterion becomes

a function of ε. Consequently, if f̃?
1 (x) is optimum, then the

derivative with respect to ε at ε = 0 must be 0. If we take
the derivative and set ε = 0, we obtain

∫

(δ(x) log
f̃?
1 (x)

f̃0(x)
+ δ(x) + λxδ(x) + µδ(x))dx = (15a)

=

∫

δ(x)(log
f̃?
1 (x)

f̃0(x)
+ 1 + λx + µ)dx = 0

Since Eq.(15) must be valid for any density δ(x), the fol-

lowing expression for f̃?
1 (x) is obtained:

log
f̃?
1 (x)

f̃0(x)
+ 1 + λx + µ = 0

and consequently

f̃?
1 (x) = f̃0(x)e−1−µe−λx (16)

By analyzing the second KKT condition, λ ≥ 0, for (i) λ =
0 and (ii) λ > 0, we conclude that λ > 0 at all times,

i.e. all constraints are active. We now observe that f̃?
1 (x)

from Eq. (16) is of exponential nature only if f̃0(x) is either
exponential nature or constant. Due to the fact that f0(x) ∼
Unif [0, W ]

F0(s) =
1 − e−Ws

Ws

By applying the same reasoning as in Eq. (12) the following

relation between F̃0(s) and F0(s) is obtained:

F̃0(s) =
(1 − p2)F0(s)

1 − p2F0(s)
(17)

Obviously, f̃0(x) is neither constant nor exponential, which

results in f̃?
1 (x) not being of exponential nature any more.

Consequently, the analysis from [8, 4] is no longer valid.
Although the adversary still accesses the channel using the
pdf f?

1 (x) (and denies channel access to the legitimate par-
ticipants for the same amount of time) and the legitimate
participants access the channel using the uniform pdf f0(x),
the detector observes different access distributions for both
the adversary and legitimate participants, which results in
different detection delay.

The question that arises at this point is how observing
back-off sequences generated with f̃?

1 (x) instead of f?
1 (x)

and f̃0(x) instead of f0(x) affects the performance of both
the adversary and the detection system. We answer this
question in the following section by representing our system
in the form of a Markov Chain.

6. MARKOV CHAIN REPRESENTATION
As it has previously been pointed out, the detector will

miss an observation with certain probability, which conse-
quently results in erroneous back-off observations. In this
analysis we adopt the approach from [12] and apply it to
the case of the IEEE 802.11 noisy environment.

6.1 System model
Let S = s1, s2, . . . , sK denote the state space of a Markov

chain with K states. Each of the observed K states cor-
responds to a certain interference level. We assume that
each interference level results in a corresponding observation
error at the detector’s side. More specifically, we assume
that each interference level i results in observing back-off
x̃i = x1 + . . . + xi, i = 2, . . . , K, instead of observing sepa-
rate back-off values x1, x2, . . . , xi. Consequently, we assume
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Figure 2: Markov Chain representation of the sys-
tem. Each state corresponds to a different interfer-
ence level.

that the detector observes an erroneous back-off generation
pdf in each state i 6= 1, equal to f̃?

i (x) = f?
1 (x) ∗ . . . ∗ f?

1 (x)
︸ ︷︷ ︸

i

,

where “*” denotes convolution. A system is said to be in the
state si if the corresponding SINR values are in the range
[Γk, Γk+1). Consequently, the system can be characterized

with the following set of thresholds: ~Γ = [Γ1, . . . , ΓK+1].
Furthermore, let Pij and πi represent the state transition
probability and the steady state probability respectively. We
assume the transitions happen between the adjacent states,
resulting in Pk,i = 0 for |k− i| > 1. The actual values of the
thresholds and transition probabilities can be obtained by
simulation (i.e. in [12]) and the analysis of methods used for
such performance evaluation is beyond scope of this paper.

6.2 Performance analysis
In order to evaluate the performance of the proposed de-

tection system in the presence of interference we first return
to Fig. 2. It has already been mentioned that in each state
of the Markov chain the detector observes a different back-
off sequence, i.e. in state i, the observed back-off will be
x1 + . . . + xi and the detector will register a single (large)
back-off value instead of registering i separate (small) back-
off values. We now observe the worst-case scenario, when
i → ∞. Since x1, x2, . . . is a sequence of random variables
which are defined on the same probability space, they share
the same probability distribution and are independent, the
distribution of their sum Si = x1 + . . . + xi approaches the
normal distribution N (iµ, σ2i). Hence, for K (from Fig. 2)
sufficiently large, the distance between the observed distri-
butions becomes the distance between N (Kµ1, σ

2
1K) and

N (Kµ0, σ
2
0K), where µi, σi, i = 0, 1 represent the mean

and variance of legitimate and adversarial distributions.
Due to the fact that the detection delay E[N ] is inversely

proportional to the KL-distance between the original and
adversarial distributions, the only fact we are interested in
at this point is how this distance changes as the interfer-
ence level increases. For this analysis we again return to
the Markov chain in Fig. 2. We now observe states i and
i + 1 of the Markov chain. We observe that the correspond-
ing distributions in states i and i + 1 are f̃?

i , f̃0i and f̃?
i+1,

f̃0(i+1) respectively. Using the approach from [5], we form
the following theorem:

Theorem 3. If the distributions at states i and i + 1 of
the Markov chain are f̃?

i , f̃0i and f̃?
i+1, f̃0(i+1) respectively,

then D(f̃?
i ||f̃0i) > D(f̃?

i+1||f̃0(i+1)) for all i ≥ 1.

Proof.

D(f̃?(xi, xi+1)||f̃0(xi, xi+1)) = (18)

D(f̃?(xi)||f̃0(xi)) + D(f̃?(xi+1|xi)||f̃0(xi+1|xi)) =

D(f̃?(xi+1)||f̃0(xi+1)) + D(f̃?(xi|xi+1)||f̃0(xi|xi+1)).

The above theorem states that the Kullback-Leibler diver-
gence D(∗||∗) between the original and the adversarial dis-
tributions decreases as i increases. Knowing that i increases
with increase of interference level, we conclude that the KL-
distance between the observed distributions decreases with
the increase of interference. Since the detection delay E[N ]
is inversely proportional to the KL-distance (Eq. 8), it is easy
to see that the detection delay increases with increase of in-
terference level in the system. This result was expected even
by intuitive analysis, since the detector observes larger back-
off sequences than the actual ones, which logically leads to
delay in detection (i.e. the detector believes that the ad-
versary is accessing the channel using legitimate back-off
function). We now provide experimental evaluation of the
result proved in Theorem 3.

7. PERFORMANCE EVALUATION OF THE

OPTIMAL DETECTOR
The goal of the simulations is to assess the efficiency of the

proposed detection system by identifying the relative impact
of uncertain system parameters on it. In this specific sce-
nario we perform detailed analysis of impact of interference
on the efficiency of the quickest detection system presented
in [8, 9]. In Sect. 6.2 we proved that detection delay in-
creases in the presence of multi-user interference. In this
section we extend this analysis and show how interference
affects the performance of a detector that was optimized for
detection under conditions with no interference. In partic-
ular, we evaluate the performance with respect to the False
Alarm and Detection Rates for the original scenario from
[8] and compare it with the performance in the presence of
interference.

In order to illustrate the impact of interference on the per-
formance of a detection scheme, we simulate the interference
scenario where the detector observes back-off x1+x2 instead
of two separate back-off values for the value of absolute gain

η

n+1
= 0.8 in the Network Simulator Opnet. It is important

to note that, just like in the scenario where no interference
is present, the analysis we provide represents the worst-case
scenario. The assumed scenario with constant interference
levels provides us with the guarantees that the detector will
perform either the same or better than this. The results are
presented in Fig. 3. We observe that even low, but constant,
interference level has significant impact on the performance
of the detector and that the detection delay increases up to
3 times. In order to better understand the impact of inter-
ference on the performance of the detector, we note that the
detection delay in the presence of interference corresponds
to the adversarial strategy where the adversary attempts to
access the channel for approximately 50% of time (when 33%
is legitimate behavior). Assuming that we are dealing with
an intelligent attacker, this setting enables him to deploy
even more aggressive strategies with larger detection delay.
Naturally, this setting favors the adversary. Another inter-
esting, but expected, result can be observed from Fig. 3. We
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Figure 3: Performance comparison of the detection
scheme with and without interference for η

n+1
= 0.8.

The resulting detection delay for η

n+1
= 0.8 in the

presence of interference corresponds to the adver-
sarial strategy with η

n+1
≈ 0.5.
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Figure 4: Average number of samples needed for at-
tack detection (NAV ) with and without interference.

observe that for high values of Pfa, i.e. low sensitivity of the
system, there are no detections. This points out that in the
presence of interference we need to either adjust the param-
eters od our detection system or employ a better detection
system with higher sensitivity if we want to maintain the
same (or similar) detection rate.

To further illustrate the effects of interference on the per-
formance of the proposed quickest detection system, we re-
view the results presented in Fig. 4, which depicts the av-
erage number of samples needed for detection as a function
of Pfa. It is easy to observe that for any sensitivity of a
detector (i.e. any value of Pfa), the average number of sam-
ples needed for detection of an adversary is almost constant
and up to 3 times higher than in the setting when no in-
terference is present. Consequently, this result forces us to
think whether it is efficient to deploy such detector after a
certain interference level is reached. Namely, even when the
False Alarm rate is low (no system resources are wasted on
issuing alarms for non-existing intrusions), the system still
wastes resources for collecting back-off samples, performing
the SPRT test at every time instance and issuing alerts when
an intrusion is detected. However, in some cases if the time
instance when an intrusion is detected happens much later
than the time instance of an actual attack, the adversary
might have already achieved his goal and left the area or has
already caused too much damage to the system, increasing
the losses above the acceptable levels.

7.1 Effect of interference on False Alarm Rate
We start our assessment of the performance of the pro-

posed detection system in the presence of interference by
analyzing its impact on the number of false alarms (or equiv-
alently False Alarm Rate). We deploy a setting in which
the detection system produces 27 False Alarms in the time
period of 90s in the setting when no interference is present.
This is a sub-optimal setting, which results in approximately
2 False Alarms per second. However, we adopt this setting
in order to illustrate the impact of interference. In the pres-
ence of interference the number of False Alarms decreases
to 0. By observing only the number of False Alarms within
the given time period, one could conclude that the deployed
detector is optimal under the given conditions. However,
knowing that due to the presence of interference the detec-
tor’s perception of both legitimate and malicious back-offs is
distorted, it is easy to conclude that the low number of False
Alarms is not due to the efficiency of the detection system,
but due to the fact that it operates at a sub-optimal point.
At this point, we defer further discussion related to the False
Alarm rate until Sect. 7.3 and first analyze the performance
of the detection system with respect to the detection rate.

7.2 Effect of interference on Detection Rate
In order to obtain a better insight at the impact of in-

terference on the overall performance of the proposed de-
tection system, let us take a closer look at the impact of
interference at the detection rate. One could argue that the
most important feature of a detector is the number of False
Alarms and if that number is low, the detection system is
sufficiently efficient. However, it is important to note that in
the wireless environment detection of adversaries is a time-
critical activity and if an attack is not detected within a
certain time frame, the resulting losses in terms of lost traf-
fic, number of dropped packets etc. become significant and
the detection system becomes obsolete since its main pur-
pose has already been defeated. For that reason, we first
review Fig. 5 and analyze the impact of interference on av-
erage detection delay for a wide range of adversarial strate-
gies, i.e. we vary η

n+1
∈ [0.6, 0.9]. We now observe that

the detector optimized for functioning in the environment
with no (or very low) amount of interference, exhibits sub-
optimal performance for all attack strengths, except for DoS
attacks, when legitimate participants are not allowed to ac-
cess channel at all. Hence, although such system has zero
False Alarms, its performance with respect to the detection
delay is unacceptable for most adversarial strategies.

To further illustrate the effects of interference, we review
the results in Fig. 6. We observe that the detection rate sig-
nificantly decreases and the proposed detection system is not
usable in such settings. Looking at Theorem 3, the above re-
sults can be easily explained (a more detailed analysis of this
issue from a different perspective is provided in [2], where
the author proves that Pd decreases as the distance between
the observed distribution decreases). Due to the fact that
the distance among the observed distributions decreases as
interference increases, the detection delay increases.

7.3 Receiver Operating Characteristic (ROC)
interpretation

The usual practice in performance evaluation of detection
systems is to observe the tradeoff between the False Alarm
rate and the detection rate (ROC curve). In this section we
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Figure 6: Average detection rate with and without
interference.

attempt to interpret the results presented in the previous
sections using ROC curves. The results in Sect. 7.1 and 7.2
provide useful insights about the response of the system with
respect to attacks of various strengths in the presence of
interference. In this section, with the help of Fig. 7, we ex-
plain how interference affects efficiency of a detection system
optimized for functioning in the scenarios where no or low
interference is present. We assume that the parameters of
a detection system (i.e. the (Pfa, Pd) pair) were chosen to
minimize the detection delay with a low False Alarm rate.
In this section, using the results from Sect. 7.1 and 7.2, we
explain how interference forces a non-adaptive detection sys-
tem to function using sub-optimal parameter configuration.
We will also further illustrate our claim from Sect. 7.1 that
low number of False Alarms does not always correspond to
an efficient detector.

The performance evaluation metrics usually assume the
knowledge of some uncertain parameters such as the likeli-
hood of an attack, interference levels, costs of False Alarms
and missed detections. However, the uncertain parameters
frequently change in a wireless environment and can signifi-
cantly hinder the expected performance of a given detection
system. Consequently, the evaluation of a detection system
configured with erroneous parameters might not be of sig-
nificant value.

We now observe that the presence of interference can severely
affect the detector’s performance. The solution to this prob-
lem is to have multiple detectors with different sensitivity
levels available and depending on the requirements of the
detector and environment conditions, decide which ones to
use. For example, in systems where timely decision making
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Figure 7: Typical ROC curve. With the increase of
interference, the operating point is forced towards
the lower values (Pfa, Pd). Consequently the ob-
served detection system becomes unusable after a
certain level of interference is reached.

is of crucial importance, the deployed detectors need to be
more robust to interference (and thus more expensive [3])
and it is also advisable to deploy multiple detectors in or-
der to minimize the probability of error in decision making.
However, this strategy significantly increases the overall cost
and may not be applicable in most scenarios.

Finally, as we have seen, it is important not only to de-
tect misbehavior with a quickest detection system, but the
crucial step in designing a precise and robust detector is to
evaluate the environment in which it will be operating and
be able to provide certain performance guarantees, such as
that in environments with interference levels higher than a
pre-specified threshold, the system will be able to to guar-
antee detection delay TDi

with certain PF Ai
and PDi

. If the
guarantees do not satisfy the needs of the system, either a
more expensive detection system needs to be purchased or
alternative detection methods need to be deployed.

To illustrate this claim we now look at a typical ROC
curve in Fig. 7 (detailed analysis of ROC curves and their
performance can be found in [1]). Assume that the detec-
tor was configured to function at an optimal point of the
ROC curve, that corresponds to the pair (Pfa1, Pd1). Note
that this curve is just an example and that in realistic sce-
nario, the False Alarm rates should be much lower than the
ones presented in Fig. 7. If the interference level increases,
the number of False Alarms (and consequently the Pfa) de-
creases and the corresponding Pd also decreases. Conse-
quently, the operating point of the detector shifts to a point
(Pfa2, Pd2) (with Pd1

> Pd2
and Pfa1

> Pfa2
) which in-

creases overall cost, since we assume the cost is inversely
proportional to the detection delay. Consequently, the fur-
ther increase in interference levels forces the detector to op-
erate at the operating point (Pfak

, Pdk
)=(0,0). The inter-

pretation of this result is that the features of the deployed
detector are not good enough for the environment and that
either more detectors need to be deployed or another, more
robust, detection system needs to be designed.

Alternatively, a user may decide to maintain the same Pd

even when the interference is present. In this specific setting,
the corresponding Pfa needs to be increased (i.e. we com-
promise with having a larger number of false alarms in order
to maintain the same detection rate). This will result in a
new ROC curve (a new detection system). Naturally, this
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approach should be taken in extreme cases as it is expen-
sive and time consuming to deploy a new detection system
due to the change of interference levels. A more reasonable
approach, applicable due to the random nature of wireless
networks, is to deploy an adaptive detection system, which
will change its settings depending on the perceived interfer-
ence levels and guarantee certain performance levels as long
as interference level remains below the pre-defined critical
value.

8. CONCLUSIONS AND FUTURE WORK
This work represents the first step towards providing per-

formance bounds of intelligent adaptive adversaries in wire-
less networks as well as providing a set of tools for evaluation
of performance of detection schemes in the presence of in-
terference. The interpretation of results provided in Sect. 7
points out that it is desirable to have an adaptive detection
system that will change its parameters according to the con-
ditions in the network and subject to its own performance
parameters (such as Pfa, Pd).

As a part of future work,we intend to test the performance
of various detection systems (with different ROC curves, i.e.
different sensitivity parameters) under a wide range of in-
terference values. In addition to that, we intend to extend
the work presented in [4] by comparing the performance of
detection schemes in the presence of interference and obtain
a more realistic set of performance bounds for parametric
(SPRT) and non-parametric (DOMINO, np-CUSUM) de-
tection procedures.
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