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ABSTRACT

We consider a constant rate data stream which shares a
buffer with a variable rate data stream. A first come first
serve service discipline is applied at the buffer. After service
at the first buffer the variable rate traffic leaves the system,
whereas the constant rate traffic is sent to a second buffer.
Both buffers provide non-idling service at constant rates and
infinite waiting rooms. We model the behavior of the queue
lengths as a function of the cumulative variable rate cross
traffic arrivals. Under the assumption that the random vari-
able rate cross traffic satisfies an appropriate sample path
large deviation principle, we deduce a sample path large de-
viation principle for the induced queue length processes.

This allows us to investigate logarithmic large deviation
asymptotics for the tail probabilities of the steady-state
queue length distribution at the second buffer. We show
that these asymptotics can be obtained as the solution of a
two-dimensional minimization problem. We explicitly cal-
culate rates and associated minimizing paths when the vari-
able rate cross traffic consists of an increasing number of
superimposed exponential on-off sources and compare them
to related large buffer asymptotics for a single on-off source
as cross traffic.

These results partially extend those of Ramanan and
Dupuis [19] to more general rate functions. Also they com-
plement our work [13] in which we investigated moderate
deviations of this queueing network in critical loading.
Key words: many sources asymptotics, large buffer asymp-
totics, Markov-modulated fluid sources, on-off sources,
queueing network, fluid model, first come first serve
Subject classification: primary 60F10; secondary 60K25,
90B15, 68M20

1. INTRODUCTION
Large deviations is a theory about the asymptotic decay

of probabilities on a logarithmic scale. The decay rate is
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Figure 1: Queueing network with two nodes.

characterized as the minimum of a rate function on a related
event [4]. The minimizer gives insight into the most likely
behavior leading to the rare event [3].

In this work we investigate large deviations of the queue-
ing network with two buffers depicted in figure 1. A constant
rate data stream C has to share the first buffer A with a ran-
dom variable rate data stream V before being sent to the
second buffer B. The steady-state queue length distribution
of second buffer B is a measure for the cell delay variation
induced on the constant rate traffic C by sharing the first
buffer A with the random cross traffic V. We assume that
both buffers provide non-idling service at constant rates and
infinite waiting rooms. The first buffer A uses a first come
first serve service discipline.

Large deviation properties of such a queueing network
have already been investigated in the seminal work of Ra-
manan and Dupuis [19]. In contrast to our work they don’t
restrict the longitudinal traffic C to a constant rate stream.
On the other hand they restrict attention to rate functions
which are defined as the integral of a convex function of the
derivative of a given sample path similar as in display (19)
below. This form yields piecewise linear minimizers, a prop-
erty which is heavily used in their proofs. But there are
examples of rate functions which don’t possess this prop-
erty, for instance, the normalized superimposed cumulative
traffic generated by an increasing number of Markov modu-
lated fluid sources [16, 18].

In order to establish this partial generalization, we present
a functional fluid model for the behavior of the queue lengths
on the time interval R. The use of the doubly infinite time in-
terval R simplifies the direct examination of stationary cases.
The functional relation between the cumulative cross traffic
arrivals and induced queue lengths is continuous. Hence a
large deviation principle for the sample paths of queue length
processes can be derived from an appropriate large deviation
principle for the cross traffic processes through an applica-
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tion of the contraction principle. As main result of this work
we show that in this situation the variational problem asso-
ciated with the large deviation rate of the steady-state queue
length distributions at the second buffer can be reduced to
a two-dimensional minimization problem.

We then show that the prerequisites of these results are
satisfied for many sources (see [23]) and large buffer (com-
pare [22]) asymptotics with Markov modulated fluid cross
traffic. In the special case of superimposed or scaled on-off
sources we explicitly calculate and visualize large deviation
rates and minimizing paths. Related moderate deviations in
critical loading for the network have been obtained in [13,
15]. For many sources large deviation asymptotics of an-
other queuing network with on-off traffic see [17].

An overview of this work is as follows: We recall neces-
sary basic definitions and facts in Section 2. We present a
functional fluid model for the network behavior in Section 3.
This leads to a large deviation principle for queue lengths
processes and induced stationary distributions in Section 4.
Many sources and large buffer asymptotics of Markov mod-
ulated fluid cross traffic are shown to satisfy the required
prerequisites in Section 5. Numerical examples for large de-
viation rates and minimizing paths with on-off cross traffic
are presented in Section 6. Appendix A contains the proof
of the reduction to a two dimensional minimization problem.

2. PRELIMINARIES
We recall the following elements of large deviations theory

for which [4] is a standard reference. A [0,∞]-valued lower
semicontinuous function on a topological space is called rate
function. A rate function is good if it has compact level sets.
A sequence (Xk)k∈N of random elements with values in a
measurable space (E, E) satisfies a large deviation principle
with rate function I in the topology T on E if for every
measurable set A ∈ E

lim sup
k→∞

1

k
log P (Xk ∈ A) ≤ − inf

x∈Ac
I(x), (1)

and lim inf
k→∞

1

k
log P (Xk ∈ A) ≥ − inf

x∈Ao
I(x), (2)

where Ac (resp. Ao) is the closure (resp. interior) of A in the
topology T , and P is the underlying probability measure.

This work deals with large deviation principles for the
sample paths of random processes. The underlying function
spaces are introduced next. We let C be the set of functions
c : R → R which are continuous, and possess finite limits

c := lim
t→−∞

c(t)

t
, (3)

c := lim
t→∞

c(t)

t
.

With I we denote the subset non-decreasing functions in
C. We provide these function spaces with the σ-algebras
generated by the family of one-dimensional projections and
topology induced by the norm ‖ · ‖ given by

‖c‖ := sup
t∈R

|c(t)|
1 + |t| . (4)

Product function spaces are equipped with corresponding
product σ-algebras and topologies.

With id : R → R, t 7→ t we denote the identity map of R.

For τ ∈ R we define the time-shift Θτ : C → C by

(Θτd)(t) := d(t + τ)

for every d ∈ C and t ∈ R. We say that a process X with
sample paths in C is stationary (resp. has stationary incre-
ments), if the distribution of Θτx (resp. Θτx − x(τ)) is the
same for every τ ∈ R.

We recall that the composition ◦ : (C × I) → C, (c,d) 7→
c◦d is continuous and satisfies c◦d = cd (see Lemma B.1
in [9]). Similarly, the inverse −1 is a continuous map of the
subset of strictly increasing functions in I onto itself [9]. On
the subset Csup := {c ∈ C : c > 0} we consider the “running
supremum” sup : Csup → I defined for d ∈ Csup and t ∈ R

by

(supd)(t) := sup
τ∈ ]−∞,t]

d(τ).

The sup-mapping is continuous (see [5]), and satisfies
supd = d and supd = max{0,d}. (For a finite subset
K of R we let maxK denote the maximum of its elements.)

3. FUNCTIONAL NETWORK MODEL
We consider the queueing system depicted in figure 1. It

possesses two queueing nodes A and B with infinite waiting
room, constant service rates and fifo service discipline. It
is populated with customers of two traffic classes C and V.
Traffic of class C (“constant rate”) must queue up for service
at node A and subsequently at node B. Traffic of type V

(“variable rate”) must visit only node A before leaving the
system. We are interested in the impact of sharing queue A

with the random cross-traffic on the constant rate traffic.
We assess this impact through large deviation asymptotics
for queue lengths of queue B.

With a function x ∈ I we can model the cumulative num-
ber of arrivals of class V customers at node A as a function of
time. Concerning the constant rate traffic we fix an arrival
rate α > 0 and use the function αid to model the cumula-
tive arrivals of the C traffic, thus implementing the“constant
rate” property. In view of the assumed continuity of the cu-
mulative input streams the following model falls into the
category of fluid queueing models.

We let σA > 0, σB > 0 be fixed constant service rate at the
first, resp. second queue. We must assume

α < σB,

x < µ := σA − α, (5)

where µ is the reduced service rate of buffer A when traffic C

would immediately be served. These conditions make sure
that the queues are not overloaded during the negative time
interval.

We set

Iµ := {c ∈ I : c < µ}.

The behavior of the total queue lengths at the queue A under
the cross traffic x ∈ Iµ and the constant rate traffic αid can
be modelled through the mapping QA : Iµ → C by setting

QA(x) := x + αid − σAid + sup (σAid − x − αid)

= x − µid + sup(µid − x). (6)

This standard construction of the queue length behavior of
a non-idling queueing node on the entire time interval R
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has its root in Loynes’s lemma [1, 8] and is also used in
equation (9).

Next we let TA(x)(t) be the time at which the customers
which depart from the first node under the first in first out
service discipline at time t, arrived in the system. This func-
tion satisfies

(x + αid) ◦ TA(x) = x + αid − QA(x).

Since the function x+αid is strictly increasing, this specifi-
cation of the mapping TA : Iµ → I is equivalent to the more
explicit definition

TA(x) = (x + αid)−1 ◦ (x + αid − QA(x)) .

In particular, the cumulative departures of constant rate
customers at queue one are given by

DA,C(x) := αTA(x). (7)

and the queue length induced by constant rate customers at
queue A by

QA,C(x) := αid − DA,C(x).

For later use we note the equation

QA(x) ◦ TA(x) = σAid − σATA(x), (8)

which is satisfied because for every t ∈ R queue A is fully
loaded in the time interval [TA(x)(t), t] and thus produces
σAt − σATA(x)(t) departures which matches the number of
customers which reside in the queue at time TA(x)(t).

The function DA,C(x) describes the cumulative arrivals of
constant rate customers at the second queueing node. These
arrivals induce the queue length behavior (compare equa-
tion (6))

QB(x) := DA(x) − σBid + sup (σBid − DA,C(x)) . (9)

See [11, 12] for a more general version of this construction.

4. LARGE DEVIATIONS OF THE QUEUES
Throughout this section we let (Xk) be a sequence of ran-

dom cross traffic processes with sample paths in I. We as-
sume

Xk < µ

for every k ∈ N with probability 1, in order to make sure that
the queueing model of Section 3 can be applied (compare
condition (5)).

Furthermore we assume that the sequence (Xk)k∈N satis-
fies a large deviation principle with a good rate function I
satisfying

II := {x ∈ I : I(x) < ∞} ⊂ Iµ.

Hence large deviation principles for the sequence (Xk)k∈N

established on the space I are also valid on Iµ; see Lemma
4.1.5(b) in [4]. In Section 5 we present examples of cross
traffic processes which satisfy these assumptions.

4.1 Sample path large deviation principle
In this section we state a large deviation principle for the

queue lengths processes and motivate the importance of min-
imizers of the rate function.

Theorem 4.1. The sequence

(Xk,QA,V(Xk),QA,C(Xk),QB(Xk))k∈N
(10)

satisfies a sample path large deviation principle with good
rate function J on I × C × C × C given by

J (x,qA,V,qA,C,qB) := inf
x ∈ II ,

qA,V = QA,V(x),

qA,C = QA,C(x),

qB = QB(x)

I(x).

Proof. The statement of the theorem is a direct con-
sequence of the continuity of the mappings which appear
in the definition of QA,V, QA,C, and QB and the contraction
principle [4].

This sample path large deviation principle implies the fol-
lowing convergence of conditional distributions to minimiz-
ing paths of the rate function; compare corollary 1 in [14].

Corollary 4.2. If the measurable set Q ∈ I ×C ×C ×C
satisfies

inf
(x,qA,V,qA,C,qB)∈Qc

J (x,qA,V,qA,C,qB)

= inf
(x,qA,V,qA,C,qB)∈Qo

J (x,qA,V,qA,C,qB) < ∞,

and there is a unique element
(

x∗,q∗
A,V,q

∗
A,C,q

∗
B

)

∈ Qc which
attains the infimum in the last display, the distribution of
the process

(

Xk, QA,V(Xk), QA,C(Xk), QB(Xk)
)

conditioned
to the event Q converges to the Dirac measure of the path
(

x∗, q∗
A,V, q∗

A,C, q∗
B

)

in distribution as k → ∞. Furthermore,
q∗
A,V = QA,V(x

∗), q∗
A,C = QA,C(x

∗), and q∗
B = QB(x

∗).

Hence minimizing paths of the rate function J can char-
acterize the asymptotically most likely conditional behav-
ior which leads to an untypical queue lengths behavior at
buffer A under the sequence of cross traffic arrival processes
(Xk)k∈N.

4.2 Large deviations for the second buffer
In this section we derive large deviation asymptotics for

the sequence (Bk)k∈N of queue length distributions of buffer
B at time 0. These random variables are defined by

Bk := QB(Xk)(0).

We will need the following two assumptions on the rate func-
tion I of the cross traffic processes: firstly, I(x) = ∞ when-
ever x(0) 6= 0; secondly, the rate function I is invariant
under time shifts, i.e. for every τ ∈ R and x ∈ I

I(Θτx − x(τ) + x(0)) = I(x). (11)

Clearly, this latter assumption is satisfied whenever Xk has
stationary increments for every k ∈ N. We note that if Xk is
a process with stationary increments, the associated queue
length processes are stationary, which means that the distri-
bution of the triple (ΘτQA,C(Xk), ΘτQA,V(Xk), ΘτQB(Xk))
does not-depend on τ ∈ R.

For t1 < t2 < 0 we let It1,t2 : R
2 → R+ ∪{∞} be the good

rate function defined by

It1,t2(x1, x2) := inf
x ∈ II ,

x(t1) = x1,
x(t2) = x2

I(x). (12)

The following theorem shows that large deviation asymp-
totics for the (steady-state) queue length distribution at
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node B can be obtained by solving two-dimensional min-
imization problems defined in terms of this rate function
It1,t2 . Its proof is relegated to Appendix A. For its formu-
lation we introduce the parameters

φ :=
σA

σB

,

ψ :=
(σA − σB)α

σB

.

Theorem 4.3. For every δ > 0

lim sup
k→∞

1

k
log P (Bk ≥ δ)

≤ − inf
t1 < t2 < 0,

x1 ≤ µt1,

x2 ≥ φδ + ψt2

It1,t2(x1, x2)

= − inf
t1<t2<0

It1,t2(µt1, φδ + ψt2), (13)

lim inf
k→∞

1

k
log P (Bk ≥ δ)

≥ − inf
t1 < t2 < 0,

x1 = µt1,

x2 > φδ + ψt2

It1,t2(x1, x2). (14)

If there are unique values t∗1 < t∗2 < 0 satisfying

It∗1 ,t∗2
(µt∗1, φδ + ψt∗2)

= inf
t1 < t2 < 0,

x1 < µt1,

x2 > φδ + ψt2

It1,t2(x1, x2) < ∞, (15)

and there is a unique path x∗ ∈ II satisfying x∗(t∗1) = µt∗1,
x∗(t∗2) = φδ + ψt∗2, and

I(x∗) = inf
x ∈ II ,

x(t∗1) = µt∗1 ,

x(t∗2) = φδ + ψt∗2

I(x),

the distribution of the process
(

Xk, QA,V(Xk), QA,C(Xk),

QB(Xk)
)

conditioned to the event
{

(x,qA,V,qA,C,qB) ∈ I × C × C × C : q
B(0) ≥ δ

}

,

converges to the Dirac measure of the path
(

x∗, QA,V(x
∗),

QA,C(x
∗), QB(x

∗)
)

in distribution as k → ∞.

This theorem is very similar to Theorem 1 in [13] obtained
for moderate deviation asymptotics of the same queueing
system in critical loading. It partially extends Theorem 8.1
of [19]: It uses less assumptions concerning the rate function,
but it is restricted to non-random longitudinal traffic. Only
Problem 3“buffer B exploits buffer A”of [19] is relevant under
this restriction.

5. MARKOV MODULATED TRAFFIC
The results of Section 4 call for a sequence of cross traf-

fic arrival processes satisfying a sample path large devia-
tion principle. In this section we present two well known
examples of such sequences. In example M (“many sources
asymptotics” [23]) we consider the averaged superposition
of the fluid produced by an increasing number of sources
with Markov modulated fluid production rate. We contrast
this example with example L (“large buffer asymptotics”),
obtained from a single Markov modulated fluid source by
scaling time and value.

We let G ∈ R
n×n be the transition matrix belonging

to a positive recurrent continuous-time Markov chain with

states {1, . . . , n}. As usual we assume Ge = 0 where
e ∈ R

n
+ is the vector with ones in every component. We

let M = (M(t))t∈R be a finite-state stationary continuous-
time Markov chain associated with G. We denote its one-
dimensional marginal distribution with π ∈ R

n
+, that is, π

is the non-negative vector satisfying eT π = 1 and πT G = 0.
Here vT denotes the transpose of a vector v and the standard
vector-vector, vector-matrix and matrix-matrix multiplica-
tions are used.

We let ξ ∈ R
n
+ be a vector of fluid production rates. When

the Markov chain M is in state i ∈ {1, . . . , n} the source
produces fluid with rate ξi. Hence the definition

Z(t) :=

∫ t

0

ξM(t) dt

defines the cumulative fluid produced up to time t. This
amount is normalized to be 0 at time 0. We note that Z is
non-decreasing, has stationary increments, and satisfies

Z = Z = πT ξ a.s. (16)

In the following we will assume (compare (5))

πT ξ < µ. (17)

5.1 Many sources asymptotics
We let (Zk)k∈N be sequence of independent copies of the

process Z and define

(

X
M

k

)

k∈N
:=

(

1

k

k
∑

i=1

Zi

)

k∈N

.

Because of equation (16) and condition (17), for every k ∈ N

X
M

k = XM

k = πT ξ < µ

with probability 1. Hence the mappings QA,V, QA,C and QB

can be applied to almost all sample paths of the processes
XM

k.
We let C∗ be the topological dual of C. The logarithmic

moment generating function Λ: C∗ → R+ is given by

Λ(y) := log E (expy(Z)) .

The rate function IM : I → R+ ∪{∞} is defined as the
Fenchel-Legendre-transform of ΛM, that is,

IM(x) := sup
y∈C∗

(y(x) − Λ(y)).

Theorem 5.1. The sequence (XM

k)k∈N satisfies a large de-
viation principle with good rate function IM.

Proof. See [2] and compare [17].

For t1 < t2 < 0 and y1, y2 ∈ R we define

Λt1,t2(y1, y2) := log E (exp (y1Z(t1) + y2Z(t2))) .

For t, y ∈ R we let H(t, y) ∈ R
n×n be the matrix

H(t, y) := exp(t(G + y diag(ξ)),

where diag(ξ) is the diagonal matrix having the components
of the vector ξ in its diagonal and the exponential of a matrix
is defined as usual; see Section 6.3 in [7].

Lemma 5.2. For every t1 < t2 < 0 and y1, y2 ∈ R

Λt1,t2(y1, y2)

= log
(

πT H(t2 − t1,−y1)H(−t2,−y1 − y2)e
)

. (18)
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Proof. One can first use the stationary increments prop-
erty of the process Z to obtain

exp Λt1,t2(y1, y2)

= E exp (−y1(Z(t2) − Z(t1)) − (y1 + y2)(Z(0) − Z(t2)))

= E exp (−y1(Z(t2 − t1) − Z(0))

− (y1 + y2)(Z(−t1) − Z(t2 − t1))) .

Since for every i, j ≤ n, y ∈ R and t > 0 (see Appendix
in [6])

E(1{j}(M(t)) exp(yZ(t)) | M(t) = i) = H(t, y)i,j ,

this implies formula (18) via the Markov property of the
process M with standard conditioning arguments. Here 1S

is the indicator function of the set S.

With the help of this two-dimensional logarithmic mo-
ment generating function, the rate function IM

t1,t2 , defined
by changing I to IM in equation (12), admits a more explicit
representation.

Lemma 5.3. For every t1 < t2 < 0 and x1, x2 ∈ R

IM

t1,t2(x1, x2) = sup
y1,y2∈R

(x1y1 + x2y2 − Λt1,t2(y1, y2)) .

This supremum is infinite if x1 > x2 or x2 > 0 or (x2 −
x1)/(t2 − t1) > maxn

i=1 ξi or x2/t2 > maxn
i=1 ξi.

Proof. The contraction principle implies that IM

t1,t2 is
the rate function in a large deviation principle for the se-
quence (XM

k(t1),X
M

k(t2))k∈N. By Cramér’s Theorem, the
Fenchel-Legendre transform of Λt1,t2 is also a rate function
for this sequence. Hence the identity of the lemma is a con-
sequence of the uniqueness of rate functions in large devia-
tion principles; compare Lemma 4.1.1 in [4]. The last state-
ment of the lemma is clear from the fact, that the events
{XM

k(t1) > XM

k(t2)}, {XM

k(t2) > 0}, {XM

k(t2) − XM

k(t1) >
(t2− t1) maxn

i=1 ξi}, and {XM

k(t2) > t2 maxn
i=1 ξi} have prob-

ability 0 for every k ∈ N.

Certain minimizing paths of the rate function IM can be
expressed via derivatives.

Lemma 5.4. If t1 < t2 < 0 and x1, x2, y1, y2 ∈ R satisfy

IM

t1,t2(x1, x2) + Λt1,t2(y1, y2) = x1y1 + x2y2,

then the path x∗ defined for t = t1 by x∗(t) := x1, for t = t2
by x∗ := x2, for t < t2 by

x
∗(t) := x1 −

d

dy
log

(

πT H(t − t1, y)

H(t2 − t1,−y1)H(−t2,−y1 − y2)e
)
∣

∣

y=0
,

for t1 < t < t2 by

x
∗(t) := x1 +

d

dy
log

(

πT H(t − t1, y − y1)

H(t2 − t,−y1)H(−t2,−y1 − y2))e
)
∣

∣

y=0
,

for t2 < t < 0 by

x
∗(t) := x2 +

d

dy
log

(

πT H(t2 − t1,−y1)

H(t − t2, y − y1 − y2)H(−t,−y1 − y2)γ2

)
∣

∣

y=0
,

and for t > 0 by

x
∗(t) :=

d

dy
log

(

πT H(t2 − t1,−y1)

H(−t2,−y1 − y2)H(t, y)e
)
∣

∣

y=0
,

is the unique path satisfying x∗(t1) = x1, x∗(t2) = x2 and
IM(x∗) = IM

t1,t2(x1, x2).

Proof. Since IM

t1,t2(x1, x2) < ∞ and IM has compact level
sets, the definition of IM

t1,t2 implies the existence of a path x∗

satisfying the last conditions of the last line of the statement.
In order to complete the proof of the lemma it remains to
verify that x∗(t) satisfies the equations given in the lemma
for an arbitrary t ∈ R.

Here we just consider the case t > 0. We define x3 :=
x∗(t) and

Λt1,t2,t(y1, y2, y)

:= log E (exp(y1Z(t1) + y2Z(t2) + yZ(t))) .

The properties of x∗ imply (compare Lemmas 5.2 and 5.3)

IM(x∗) = sup
y1,y2,y3∈R

(

3
∑

i=1

xiyi − Λt1,t2,t(y1, y2, y3)

)

≤ sup
y1,y2∈R

(

2
∑

i=1

xiyi − Λt1,t2,t(y1, y2, 0)

)

= sup
y1,y2∈R

(

2
∑

i=1

xiyi − Λt1,t2(y1, y2)

)

= IM(x1, x2) = IM(x∗).

Since Λt1,t2,t is convex (compare Example 2.16 in [20]) and
differentiable, this implies the equation in the last display of
the lemma.

In particular, prerequisites of Theorem 4.1, Corollary 4.2
and Theorem 4.3 are satisfied when I = IM and Xk = XM

k

for every k ∈ N. This setup is called example e = M.

5.2 Large buffer asymptotics
In order to compare the numerical findings below with

the results of [19], we also consider the following sequence
(XL

k)k∈N of scaled Markov modulated fluid processes defined
for k ∈ N and t ∈ R by

X
L

k(t) :=
1

k
Z(kt).

Because of equation (16) and condition (17) for every k ∈ N

X
L

k = XL

k = πT ξ < µ a.s.

Hence the mappings QA,V, QA,C and QB can be applied to
almost all sample paths of the processes XL

k.
The appropriate rate function IL : I → R+ ∪{∞} for this

sequence is given by

IL(x) :=

∫

R

f(ẋ(t)) dt, (19)

if x is absolutely continuous and x(0) = 0, and IL(x) = ∞,
otherwise. The function f : R+ → R+ ∪{∞} is given as

f(r) := inf
x ∈ R

n
+,

eT x = 1,

ξT x = r

sup
u>0

(

−
n

∑

i=1

n
∑

j=1

xiGi,juj

ui

)

. (20)
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Theorem 5.5. The sequence (XL

k)k∈N satisfies a large de-
viation principle with good rate function IL.

Proof. See references in [19]. The “local” rate function
f is calculated in Exercise 4.2.28 of [4]. The strengthening
to the topology considered here can be done with [10].

The rate function IL

t1,t2 , defined by replacing I with IL in
equation (12), admits a more explicit representation:

Lemma 5.6. For every t1 < t2 < 0 and x1, x2 ∈ R

IL

t1,t2(x1, x2) = (t2 − t1)f

(

x2 − x1

t2 − t1

)

− t2f

(

x2

t2

)

.

In particular, IL

t1,t2(x1, x2) < ∞, if and only if x1 ≤ x2 ≤ 0,
(x2 − x1)(t2 − t1) ≤ maxn

i=1 ξi and x2/t2 ≤ maxn
i=1 ξi.

Furthermore, we can specify minimizing paths.

Lemma 5.7. If t1 < t2 < 0, x1 ≤ x2 ≤ 0 and
IL

t1,t2(x1, x2) < ∞, the function x∗ ∈ I given by

x
∗(t) :=















x1 − (t1 − t)πT ξ if t < t1,
t−t1
t2−t1

x2 + t2−t

t2−t1
x1 if t1 ≤ t < t2,

t
−t2

x2 if t2 ≤ t < 0,

tπT ξ if t ≥ 0,

is the unique function satisfying x∗(t1) = x1, x∗(t2) = x2

and IL(x∗) = IL

t1,t2(x1, x2).

We omit the detailed proofs of these two lemmas which
could be based on Jensen’s inequality.

The prerequisites of Theorem 4.1, Corollary 4.2 and The-
orem 4.3 are satisfied when I = IL, It1,t2 = IL

t1,t2 and
Xk = XL

k for every k ∈ N. This setup is called example
e = L.

6. ON-OFF CROSS TRAFFIC
In order to derive explicit numerical results we further spe-

cializing the cross traffic to exponential on-off traffic. This
can be achieved by choosing M as Markov chain with two
states n = 2 and by assuming that the fluid arrival rate in
state 1 (“off”) is ξ1 = 0 and in state 2 (“on”) is ξ2 > 0. Hence
the transition matrix G can be written as

G =

(

−g2 g2

g1 −g1

)

.

with g1 > 0 being the transition rate from “on” to “off”,
g2 > 0 being the transition rate from “off” to “on”. The
steady-state distribution of Z is given by

π =
1

g2 + g1

(

g1

g2

)

.

In this setting the process Z behaves like an on-off fluid
source with fluid production rate ξ2 during on phases. The
on phase durations (= lengths of maximal time intervals
during which M = 2) form a sequence of independent and
exponentially distributed random variables with mean g2.
Similarly, the off phase durations (= lengths of maximal
time intervals during which M = 1) form a sequence of
independent and exponentially distributed random variables
with mean g1. These two sequences are independent.

In order for our network model to be well defined we have
to assume condition (17), which bounds the mean fluid pro-
duction rate of this source through

ξ2g2/(g1 + g2) < µ.

In the remainder of this section we explain how to cal-
culate the two-dimensional logarithmic moment generating
function Λt1,t2 and the local rate function f in this on-off
source case. These expressions simplify the numerical cal-
culations of the two-dimensional rate functions IM

t1,t2 and
IL

t1,t2 .
For y ∈ R we define the values η+(y), η−(y) ∈ R by

η±(y) :=
yξ2

2
− g1 + g2

2
± 1

2

√

(yξ2 + g2 − g1)2 + 4g1g2.

These values are the eigenvalues of the matrix G+ydiag(ξ).
Therefore (compare Exercise 2 in Section 9.3 of [7])

H(t, y) =
exp(tη+(y))

η+(y) − η−(y)
(G + diag(yξ − η−(y)e))

− exp(tη−(y))

η+(y) − η−(y)
(G + diag(yξ − η+(y)e)) .

This representation is also the subject of Lemma 2.1 in [17].
In the on-off case one can also derive an explicit represen-

tation of the local rate function f defined in equation (20).

Lemma 6.1. We have for r ∈ [0, ξ2]

f(r) =
ξ2 − r

ξ2
g2 +

r

ξ2
g1 − 2

√

r(ξ2 − r)g1g2

ξ2
2

,

and f(r) = ∞, otherwise.

Proof. We calculate for x1, x2 ∈ R+ with x1 + x2 = 1

sup
u1,u2>0

(

−
n

∑

i=1

n
∑

j=1

xiGi,juj

ui

)

= x1g2 + x2g1 − 2
√

x1x2g1g2

This implies the statement of the lemma.

We note that the non-linear solver Ipopt [21] has been
used to solve the optimization problems which arose in the
numerical examples of the following two sections.

6.1 Overflow rates
In this section we display numerical examples for the val-

ues

I∗ := inf
t1<t2<0

Ie
t1,t2(µt1, φδ + ψt2), (21)

which, appear on the right hand side of display (13) in the-
orem 4.3. We will consider both examples e ∈ {M, L} in the
special case of on-off sources.

We introduce the parameters ξmean := ξT π and β := g1 +
g2. The value ξmean is the mean traffic intensity of the on-
off stream and β the sum of the transition rates. Given the
maximum cross traffic rate ξ2 > ξmean and β > 0 we can
express the individual transition rates g1 and g2 as

g2 =
ξmeanβ

ξ2
,

g1 = β − g2.
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Figure 2: Large deviation rates I∗/β as functions of

δ for β ∈ {1, 2, 4} and e = {M, L}.
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Figure 3: Large deviation rates I∗ as functions of δ
for e = M and ξ2 ∈ {6, 8, 10}.

In all examples we consider the set-up ξmean = 2, σA = 4,
σB = 2 and α = 1. This implies µ = 3, φ = 2, and ψ = 1. In
particular, we cannot observe strictly positive queue lengths
if ξ2 ≤ 3. The remaining parameters are ξ2 > 3, β > 0,
δ > 0, and e ∈ {M, L}.

In figure 2 we keep ξ2 = 6 constant and display I∗/β as
a function of δ for different values of β. We note that for
e = L the value I∗/β does not depend on β such that there
is only one function for this case.

The jump which appears for e = M at δ = 0 is in sharp
contrast to the linearity of the functions for e = L. This
jump corresponds to the asymptotic effort to increase the
traffic intensity at node B to 1. The results of [19] are re-
stricted to the linear case. Figure 2 suggests that the values
of I∗/β for e = M converge to those of e = L as β increases
to infinity and all other parameters remain fixed.

In figure 3 we show the values I∗ as a function of δ for
fixed parameters e = M and β = 1 and varying parameters
ξ2 ∈ {6, 8, 10}. The values seem to decrease when maximum
rate ξ2 increases.

6.2 Minimizing paths
In this section we consider the fixed parameters δ = 1,

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

-15 -10 -5  0  5

s = F, e = M, beta = 1
s = F, e = M, beta = 2
s = F, e = L

Figure 4: Differences between x∗ and ξmeanid.

α = 1, σB = 2, σA = 4, ξ2 = 8, g1 = 3β/4, g2 = β/4 which
implies µ = 3, and ξmean = 2.

The numerical solution of the two-dimensional minimiza-
tion problems (21) indicates that for both examples e ∈
{M, L} there exist unique values t∗1 < t∗2 < 0 such that equa-
tion (15) is satisfied. It determines the values of these min-
imizing time points as a by-product. By setting x∗

1 := µt∗1
and x∗

2 := φδ + ψt∗2 we can apply lemmas 5.4 and 5.7 in
order to calculate minimizing paths associated with these
time points and fixed values. (In order to apply lemma 5.4
one first has to calculate the associated dual values y∗

1 , y∗
2 .)

Hence, in all numerical examples considered here there ex-
ists a unique path x∗ minimizing the rate function I subject
to the conditions x∗(t∗1) = x∗

1 and x∗(t∗2) = x∗
2. According to

theorem 4.3, this path x∗ characterizes the asymptotically
most likely behavior of the centered and scaled cross traffic
which leads to a large queue length at the second node. This
asymptotically most likely conditional behavior has a period
with an extraordinarily large number of arrivals in the cross
traffic followed by a period with unusually few arrivals. In
figure 6.2 we show the minimizing path x∗ for each example
e = {M, L}, and β ∈ {1, 2}. We note that the minimizing
path for the example e = L does not depend on β, that is,
it is invariant under simultaneous scalings of the transition
rates g1 and g2.

In figure 6 we show the associated queue length behaviors
QV,A(x

∗), QC,A(x
∗), QB(x

∗) for β = 1 and the two cases
e ∈ {M, L}. The case e = L reproduces the piecewise linear
behavior called “buffer B exploits buffer A” in [19]. The
other graphs contrast this known case with the new results
obtained in this work.
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[21] A. Wächter and L. T. Biegler. On the implmentation
of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Math. Program.,
Ser. A, 106:25–57, 2006.

[22] A. Weiss. A new technique for analyzing large traffic
systems. Advances in Applied Probability, 18:506–532,
1986.

[23] D. Wischik. Sample path large deviations for queues
with many inputs. The Annals of Applied Probability,
11:379–404, 2001.

APPENDIX

A. PROOF OF THEOREM 4.3
Throughout this section we assume that the prerequisites

of Theorem 4.3 are satisfied, namely those at the beginning
of Sections 4 and 4.2.

The last statement of the theorem is a consequence of the
statements in the text of Section 3. Hence it only remains
to prove inequalities (13) and (14), which is done in the
remaining two sections.

A.1 Proof of inequality (13)
Since the mapping QB is continuous and the set {q ∈

C : q(0) ≥ δ} closed, we obtain from the upper bound (1) of
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the large deviation principle of Theorem 4.1

lim sup
k→∞

1

k
log P (Bk ≥ δ) ≤ − inf

x ∈ II ,
QB(x)(0) ≥ δ,

I(x). (22)

When the right hand side in this display is infinite inequal-
ity (13) is trivially satisfied. In the following we can therefore
assume that the right hand side in the previous display is
finite.

Because the rate function I has compact level sets, there
exists a path a ∈ II satisfying QB(a)(0) ≥ δ and being
such that the value of −I(a) is equal to the right hand side
of inequality (22). Since this value is finite the path a is
continuous and satisfies a(0) = 0.

There exists a largest time τB < 0 at which the contin-
uous path QB(a) is zero. (Queue B cannot be non-empty
throughout the negative time interval because the long-term
arrival rate α of the constant rate traffic is strictly less than
the service rate µB.) Due to the shift property (11) we can
assume without loss of generality that QB(a)(0) = δ and
0 < QB(a)(t) < δ if τB < t < 0.

We let τA < 0 be the largest time with QA(a)(τA) = 0. We
show τA < τB by contradiction: If there were a time t with
τB ≤ t < 0 with QA(a)(t) = 0 then DA,C(a) could increase
from time t to 0 at most by −αt. Since the service speed at
buffer B is σB > α this would imply that QB(a) at time t is
strictly greater than δ which is a contradiction.

Since the queues cannot idle when their buffer is non-
empty this implies

QA(a)(t) = a(t) − a(τA) − µ(t − τA) (23)

for t ∈ [τA, 0] and

QB(a)(t) = DA,C(a)(t) − DA,C(a)(τB) − σB(t − τB)(24)

for t ∈ [τB, 0]. In particular, setting t = 0 the last display
implies

DA,C(a)(0) − DA,C(a)(τB) = δ − σBτB. (25)

If we define

θ0 := TA(a)(0),

θ1 := TA(a)(τB).

then, displays (7) and (25) imply

τB =
1

σB

(

δ − DA,C(a)(0) + DA,C(a)(τB)
)

=
δ − α(θ0 − θ1)

σB

.

Since QA(a)◦TA(a) = σA(id−TA(a)) (compare equation (8))
we obtain from (23) and (24)

a(θ1) − a(τA) − µ(θ1 − τA) = QA(a)(θ1) = σA(τB − θ1),

a(θ0) − a(τA) − µ(θ0 − τA) = QA(a)(θ0) = −σAθ0.

Taking differences and rearranging terms this yields

a(θ1) − a(θ0) = µ(θ1 − θ0) + σA(τB − θ1 + θ0)

=
σA

σB

δ +

(

σA

σB

− 1

)

α(θ1 − θ0).

Hence the path x∗ := Θθ0a − a(θ0) satisfies I(x∗) = I(a)

and, with t1 := τA − θ0 and t2 := θ1 − θ0,

x
∗(t1) = a(τA) − a(θ0)

= σAθ0 − µ(θ0 − τA) ≤ µt1,

x
∗(t2) = a(θ1) − a(θ0) = φδ + ψt2.

In particular, we established

lim sup
k→∞

1

k
log P (Bk ≥ δ) ≤ −I(a)

= −I(x∗) ≤ − inf
t1 < t2 < 0,

x1 ≤ µt1,
x2 ≥ φδ + ψt2

It1,t2(x1, x2),

which completes the proof of the inequality in (13).
In order to prove the right hand side equality in dis-

play (13), we just have to show “≤”. Hence we can assume
without loss of generality that the second last term is finite.
For every ε > 0 we can therefore find values t′1 < t′2 < 0,
x′

1 ≤ µt′1, x′
2 ≥ φδ + ψt′2 and a path a ∈ II such that

a(t′1) = x′
1, a(t′2) = x′

2 and

I(a) = It′1,t′2
(x′

1, x
′
2)

≤ ε + inf
t1 < t2 < 0,

x1 ≤ µt1,
y ≥ φδ + ψt2

It1,t2(x1, x2) < ∞.

In particular, a is continuous. Since φ > 0 and ψ < µ,
there exist values t′′1 < t′′2 < 0 such that a(t′′1 ) = µt′′1 and
a(t′′2 ) = φδ + ψt′′2 . This implies

It′′1 ,t′′2
(µt′′1 , φδ + ψt′′2 )

≤ I(a) ≤ ε + inf
t1 < t2 < 0,

x1 ≤ µt1,
x2 ≥ φδ + ψt2

It1,t2(x1, x2).

Letting ε tend to 0, we therefore recover the equation in
display (13).

A.2 Proof of inequality (14)
In order to show inequality (14) we can assume without

loss of generality that its right hand side is finite. For ε > 0
we can therefore find values t′1 < t′2 < 0, x′

1 = µt′1, and
x′

2 > φδ + ψt′2 such that

It′1,t′2
(x′

1, x
′
2) ≤ ε + inf

t1 < t2 < 0,
x1 = µt1,

x2 > φδ + ψt2

It1,t2(x1, x2) < ∞.

Since the function I has compact level sets we can find a
path a ∈ II such that I(a) equals the value of the left hand
side in this display and the equations a(t′1) = x′

1 and a(t′2) =
x′

2 are satisfied. In particular, the function a is continuous
and satisfies a(0) = 0. Without loss of generality, we can
additionally assume

a(t) > µt

for every t with t′1 < t < 0. (Otherwise use property (11)
to modify a in this sense.) This last inequality implies that
queue A is non-empty during the time interval ]t1, 0].

The −αt′2 type C customers which arrive in the time in-
terval [t′2, 0] leave the first queue during the time interval
[t′2 + QA(a)(t′2)/σA,QA(a)(0)/σA]. Since

QA(a)(0) − QA(a)(t′2) = −a(t′2) − αt′2 + σAt
′
2

= −x′
2 + µt′2,
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at most

σB

(

−t′2 −
x′

2 − µt′2
σA

)

< δ − αt′2

customers can be served during this time interval by buffer
B. Hence more than δ type C customers remain unserved in
buffer B at time τ := QA(a)(0)/σA. Through the definition
x∗ := Θτ ba − a(τ) we therefore obtain a function which
satisfies I(x∗) = I(a) and

QB(x
∗)(0) = QB(a)(τ) > δ.

Since the mapping QB is continuous we conclude that there

is an environment of x∗ such that all elements x in this
environment satisfy QB(x)(0) > δ. With the help of the
lower bound (2) of the large deviation principle for the se-
quence (10) this yields

lim inf
k→∞

1

k
log P (Bs ≥ δ)

≥ −I(x∗) ≥ −ε − inf
t1 < t2 < 0,

x1 < µt1,
x2 > φδ + ψt2

It1,t2(x1, x2).

Letting ε decrease to zero we obtain inequality (14) and
completed the proof.
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