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ABSTRACT

Fluid modelling is a next-generation technique for analysing
massive performance models. Passive cooperation is a pop-
ular cooperation mechanism frequently used by performance
engineers. Therefore having an accurate translation of pas-
sive cooperation into a fluid model is of direct practical ap-
plication. We compare different existing styles of fluid model
translation of passive cooperation in a stochastic process al-
gebra. We explain why the development of a fluid semantics
for passive cooperation is not straightforward and we present
an alternative definition which more closely matches the un-
derlying discrete model. Finally, we present quantitative
comparisons with a previous version of the fluid semantics
in which numerical discrepancies can be observed.

1. INTRODUCTION
Fluid analysis of performance models offers the exciting

potential for the analysis of massive state-spaces at small
computational cost. In the case of stochastic process algebra
models, fluid analysis involves approximating the underlying
discrete state space with continuous real-valued variables
and describing the time-evolution of those variables with
ordinary differential equations (ODEs). This approach was
first applied to a subset of the stochastic process algebra
PEPA by Hillston [9].

Since then, we have been looking at reasonable extensions
of this approach which can translate bigger subsets of PEPA
to a fluid model. This would therefore give the modeller
more access to the full expressiveness of the PEPA language
when it comes to using fluid analysis techniques.

One such language feature, for which it has been par-
ticularly tricky to provide a satisfactory fluid semantics, is
passive cooperation. Passive cooperation, in process alge-
bra terms, describes a popular style of synchronisation be-
tween cooperating components where one component pas-
sively waits for the other component to perform its action.
This can be seen simply in a client-server scenario, where
initially the server waits passively for a client to issue a re-
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quest. When constructing a continuous variable to represent
the number of replications of a passive component in a sys-
tem, a key issue was how to disable the passive cooperation
in the fluid model as the number of copies of the passive
component approached zero.

A semantics for passive cooperation was suggested in [3]
but, as we will discuss, this involved the use of indicator
functions in the fluid model. In this case, reasonable so-
lutions to the system of ODEs are not always even guar-
anteed to exist. Indeed, as investigated in this paper, the
approach taken in the literature to overcome this introduced
significant quantitative and qualitative errors in the result-
ing analysis.

In this paper, we will explore the existing fluid semantics
for passive cooperation and suggest a replacement model
that is more closely related to the underlying continuous-
time Markov chain (CTMC) of the PEPA model. We will
show empirically how the new fluid model generates more
realistic results and we will apply this to an example client-
server model with two-stage fetch and server breakdowns.

In the following section, Section 1.1, we introduce the
stochastic process algebra PEPA and in Section 1.2, we in-
troduce a new way of expressing the fluid model originally
given in [9]. In Section 1.3, we present the existing passive
fluid semantics, while in Section 2 we show how a modified
active cooperation can be used to represent passive coop-
eration. This leads naturally to a new fluid semantics for
passive cooperation. Finally, in Sections 2.4 and 3, we look
at some empirical comparisons between the old and new
techniques.

1.1 PEPA
PEPA [8] as a performance modelling formalism has been

used to study a wide variety of systems: multimedia appli-
cations [1], mobile phone usage [6], GRID scheduling [11],
production cell efficiency [10] and web-server clusters [2]
amongst others. The definitive reference for the language
is [8].

As in all process algebras, systems are represented in PEPA
as the composition of components which undertake actions.
In PEPA the actions are assumed to have a duration, or
delay. Thus the expression (α, r).P denotes a component
which can undertake an α action at rate r to evolve into a
component P . Here α ∈ A where A is the set of action types.
The rate r is interpreted as a random delay which samples
from an exponential random variable with parameter, r.

PEPA has a small set of combinators, allowing system
descriptions to be built up as the concurrent execution and
interaction of simple sequential components. The syntax of
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the type of PEPA model considered in this paper may be
formally specified using the following grammar:

S ::= (α, r).S | S + S | CS

P ::= P ��
L

P | P/L | C (1)

where S denotes a sequential component and P denotes a
model component which executes in parallel. C stands for a
constant which denotes either a sequential component or a
model component as introduced by a definition. CS stands
for constants which denote sequential components. The ef-
fect of the syntactic separation between these types of con-
stants is to constrain legal PEPA components to be cooper-
ations of sequential processes.

More information and structured operational semantics
on PEPA can be found in [8]. A brief discussion of the basic
PEPA operators is given below:

Prefix The basic mechanism for describing the behaviour
of a system with a PEPA model is to give a component
a designated first action using the prefix combinator,
denoted by a full stop, which was introduced above. As
explained, (α, r).P carries out an α action with rate r,
and it subsequently behaves as P .

Choice The component P + Q represents a system which
may behave either as P or as Q. The activities of
both P and Q are enabled. The first activity to com-
plete distinguishes one of them: the other is discarded.
The system will behave as the derivative resulting from
the evolution of the chosen component.

Constant It is convenient to be able to assign names to pat-
terns of behaviour associated with components. Con-
stants are components whose meaning is given by a

defining equation. The notation for this is X
def
= E.

The name X is in scope in the expression on the right

hand side meaning that, for example, X
def
= (α, r).X

performs α at rate r forever.

Hiding The possibility to abstract away some aspects of a
component’s behaviour is provided by the hiding op-
erator, denoted P/L. Here, the set L identifies those
activities which are to be considered internal or pri-
vate to the component and which will appear as the
unknown type τ .

Cooperation We write P ��
L

Q to denote cooperation be-
tween P and Q over L. The set which is used as the
subscript to the cooperation symbol, the cooperation
set L, determines those activities on which the com-
ponents are forced to synchronise. For action types
not in L, the components proceed independently and
concurrently with their enabled activities. We write

P ‖ Q as an abbreviation for P ��
L

Q when L is empty.

Further, particularly useful in fluid analysis is, P [n]
which is shorthand for the parallel cooperation of n
P -components, P || · · · || P

| {z }

n

.

In process cooperation, if a component enables an activity
whose action type is in the cooperation set it will not be
able to proceed with that activity until the other component
also enables an activity of that type. The two components
then proceed together to complete the shared activity. Once

enabled, the rate of a shared activity has to be altered to
reflect the slower component in a cooperation.

In some cases, when a shared activity is known to be com-
pletely dependent only on one component in the coopera-
tion, then the other component will be made passive with
respect to that activity. This means that the rate of the
activity is left unspecified (denoted >) and is determined
upon cooperation, by the rate of the activity in the other
component. All passive actions must be synchronised in the
final model.

Within the cooperation framework, PEPA respects the
definition of bounded capacity : that is, a component cannot
be made to perform an activity faster by cooperation, so
the rate of a shared activity is the minimum of the apparent
rates of the activity in the cooperating components.

The definition of the derivative set of a component will be
needed later in the paper. The derivative set, ds(C), is the
set of states that can be reached from the state C. If C is a
state in a strongly connected sequential component, ds(C)
represents the state space of that component.

The total capacity of a component P to carry out activi-
ties of type α is termed the apparent rate of α in P , denoted
rα(P ). It is used heavily when calculating the pairwise co-
operation rate: when cooperating with another component,
the bounded capacity principle ensures that the overall rate
of cooperation does not exceed either of the constituent ap-
parent rates.

To summarise the original ruleset from [8], the apparent
rate function can be defined as:

rα(P ) =
X

P
(α,λi)
−−−→

λi (2)

This is the sum of the rates of all α-activities enabled by

P , i.e. P
(α, λi)
−−−−→ means that P enables an α activity at rate

λi ∈ R+ ∪ {n> | n ∈ Q, n > 0}. n> is shorthand for n ×>
and > represents the passive action rate that inherits the
rate of the coaction from the cooperating component. >
requires the following arithmetic rules:

m> < n> : for m < n and m, n ∈ Q

r < n> : for all r ∈ R, n ∈ Q

m> + n> = (m + n)> : m, n ∈ Q

m>

n>
=

m

n
: m, n ∈ Q

Note that (r + n>) is undefined for all r ∈ R, r 6= 0, n ∈ Q,
n 6= 0 in PEPA therefore implicitly disallowing components
which enable both active and passive actions in the same
action type at the same time, e.g. (a, λ).P +(a,>).P ′. Also,
we define the multiset Act(P ) as the activities enabled by P
(this is a multiset because P may enable an activity (α, λ)
through more than one transition):

Act(P ) = {|(α, λ) : P
(α, λ)
−−−→ |}

1.2 Fluid semantics for active cooperation
Fluid semantics for PEPA have been presented in a num-

ber of different ways in the literature [9, 3]. In each case, the
class of models for which fluid semantics are presented dif-
fers, but the semantics are equivalent in each case where the
class of models considered overlaps. A fluid semantics for
passive cooperation is given in only one case [3], and we dis-
cuss the limitations of this approach in Section 1.3. For now,
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we present the existing fluid semantics for PEPA not includ-
ing passive cooperation. To do this in a manner which will
aid in explaining the contributions of this paper, we adopt a
new presentational approach, extending the standard PEPA
grammar of Equation (1) to support explicit identification
of component groups using component group labels. A com-
ponent group D is simply a parallel cooperation (involving
no synchronisation) of standard PEPA components P :

D ::= D ‖ D | P (3)

For the moment, we avoid having to provide a fluid seman-
tics for passive cooperation by explicitly asserting that the
standard PEPA components P in Equation (3) are such that
all (α, r) ∈ Act(P ′) for any P ′ ∈ ds(P ) have r ∈ R+; that
is, neither they nor any of their derivative states enable any
action passively. A grouped PEPA model M is then an ar-
bitrary combination of labelled component groups:

M ::= M ��
L

M | M/L | Y {D} (4)

where L is a set of action types. The term Y {D} is a labelled
component group and extends the original PEPA syntax. Y
is a unique component group label drawn from some suffi-
ciently large label set T . The operational semantics for this
augmented version of PEPA are the natural extension of the
standard PEPA operational semantics [8]. The only differ-
ence is that the explicit identification of component groups
is maintained as the model evolves. An example grouped
PEPA model might therefore be:

P0
def
= (a, r1).P1 R0

def
= (a, r2).R1

P1
def
= (b, q1).P0 R1

def
= (b, q2).R0

Sys
def
= Processors{P0[N ]} ��

{a}
Resources{R0[M ]}

(5)

This might represent N processors (grouped together explic-
itly in the Processors component group) which first un-
dertake a shared a-action with one of M resources (grouped
together explicitly in the Resources component group) be-
fore the processor and resource in question each complete
independent b-actions. The quantities which will be subject
to the fluid approximation are exposed through an aggrega-
tion of the model’s state space. For example, in this case,
there are N × M different ways the initial shared a-action
can be performed because it involves exactly one P0 and ex-
actly one R0 component. As defined by the standard PEPA
operational semantics [8], each of these transitions occurs at
rate:

1

N

1

M
min(Nr1, Mr2)

The aggregation collects states together based on the num-
ber of each type of component in each component group.
In the case of the Sys component, we would represent the
initial aggregate state informally as “N ×P0, 0×P1 M ×R0

and 0×R1 components”. All of the N×M transitions above
would thus become one transition from the aggregate state
“N × P0, 0 × P1 M × R0 and 0 × R1 components” to the
aggregate state “(N − 1) × P0, 1 × P1, (M − 1) × R0 and
1 × R1 components” at aggregate rate min(Nr1, Mr2).

More formally, each state of the underlying aggregated
CTMC of a grouped PEPA model can be uniquely deter-
mined by the model’s initial derivative state G and a func-
tion E ∈ G(G) × P → Z≥0 which counts the number of
standard PEPA components of each type currently active in

a given component group; that is, G(G) is the set of com-
ponent group labels in the model G and P is the set of
standard PEPA component derivative states in the model.
Conversely, note that not all such functions specify valid
states in the underlying aggregated CTMC (for example, if
it specifies a total number of components in a component
group that exceeds the component group’s size, or specifies
an otherwise unreachable CTMC state).

We may then define the component rate function for a
grouped PEPA model G, which calculates the aggregate rate
at which a standard PEPA component P within a compo-
nent group H completes an action α, in the aggregate state
specified by E. This is needed to describe the rate of evolu-
tion of a component group from one derivative state to the
next when constructing the fluid model.

Definition 1 (Component rate function).

Rα(M1 ��
L

M2, E, H, P ) :=
8

>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

Rα(M1, E, H, P )
rα(M1, E)

min(rα(M1, E), rα(M2, E))

if H ∈ G(M1) and α ∈ L

Rα(M1, E, H, P )

if H ∈ G(M1) and α /∈ L

Rα(M2, E, H, P )
rα(M2, E)

min(rα(M1, E), rα(M2, E))

if H ∈ G(M2) and α ∈ L

Rα(M2, E, H, P )

if H ∈ G(M2) and α /∈ L

Rα(M/L, E, H, P ) :=

8

>>>>><

>>>>>:

Rα(M, E, H, P )

if α /∈ L and α 6= τ

0 if α ∈ L (and α 6= τ)
P

βi∈L∪{τ} Rβi
(M, E, H, P )

if α = τ

Rα(Y {D}, E, H, P ) :=


E(H, P ) rα(P ) if H = Y
0 otherwise

Rational functions with zero-valued denominators in the above
are defined to be zero. We similarly require the definition
of apparent rate to be extended to the component group
model, rα(Y {D}, E). As with normal PEPA models, it cap-
tures the overall rate of an action within a structure (in this
case the ability of the component group, Y {D}, to carry
out an action α). rα(Y {D}, E) is defined similarly to that
of standard PEPA (Equation (2)), apart from the explicit
specification of component counts by E.

Definition 2 (Count-oriented apparent rate).

rα(M1 ��
L

M2, E) :=

8

>>><

>>>:

min(rα(M1, E), rα(M2, E))

if α ∈ L

rα(M1, E) + rα(M2, E)

otherwise

rα(M/L, E) :=


rα(M, E) if α /∈ L
0 otherwise

rα(Y {D}, E) :=
X

Pi

(α, λj)

−−−−→
Pi∈P

E(Y, Pi)λj
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For a given component group label H and standard PEPA
component P , we introduce the integer-valued stochastic
process nH, P (t) which counts the number of P -components
active at a given time t ≥ 0 within the component group,
H. We intend to define real-valued deterministic functions
vH, P (t) as fluid approximations to the nH, P (t), in some
sense.

For some time t ≥ 0, define Et ∈ G(G) × P → Z≥0 such
that Et(H, P ) = nH, P (t) for all H ∈ G(G) and P ∈ P. It is
clear that Et represents the aggregate CTMC state at time
t. Then it can be shown that Rα(G, Et, H, P ) is simply
the sum of the rates of all outgoing α-transitions from the
current aggregate CTMC state to any other where the num-
ber of P components in group H is decreased. In order to
consider outgoing transitions which increase a component
count, we need to make one further definition. We define
the derivative weighting function which calculates the prob-
ability that given that a standard PEPA component P does
an α-action, when it does so, it transits to another specified
standard PEPA component Q.

Definition 3 (Derivative weighting function).

pα(P, Q) :=
1

rα(P )

X

P
(α, λi)−−−−→Q

λi

Then it is also the case that the sum of all outgoing α-
transitions from CTMC states where the number of P com-
ponents in group H is increased is:

X

Q∈P
Q 6=P

pα(Q, P )Rα(G, Et, H, Q)

Furthermore, it is easy to see that all increases and decreases
of component counts are one component at a time. It then
makes at least heuristic sense to define the fluid approxi-
mations vH, P (t) as the solution to the system of ordinary
differential equations obtained by balancing these rates of
increasing and decreasing CTMC transitions for each com-
ponent. In particular, we assume a known initial CTMC
configuration nH, P (0) and define vH, P (0) := nH, P (0). The
functions vH, P (t) for t > 0 are then defined as the solutions
to the initial value problem obtained from the following sys-
tem of ODEs (where V (H, P, t) := vH, P (t) and the com-
ponent and apparent rate function definitions are naturally
extended to the real numbers):


dvH, P (t)

dt
=

X

α∈A

X

Q∈P
Q 6=P

»

pα(Q, P )Rα(G, V (·, ·, t), H, Q)

–

−Rα(G, V (·, ·, t), H, P ) : P ∈ P, H ∈ G(G)

ff

(6)

We now illustrate this by considering again the grouped
PEPA model of Equation (5). In this context and writing
P0(t) for vP, P0(t) and so on, Equation (6) yields the system
of ODEs:

Ṗ0(t) = −min(P0(t) · r1, R0(t) · r2) + P1(t) · q1

Ṗ1(t) = −P1(t) · q1 + min(P0(t) · r1, R0(t) · r2)

Ṙ0(t) = −min(P0(t) · r1, R0(t) · r2) + R1(t) · q2

Ṙ1(t) = −R1(t) · q2 + min(P0(t) · r1, R0(t) · r2)
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Figure 1: Comparison of ODE solutions with steady-
state solutions of the underlying CTMC for the
model of Equation (5). Rates used are r1 = 4.0,
r2 = 4.0, q1 = 1.0 and q2 = 2.8. Initial conditions
are N = 50 P0 and M = 20 R0 components.

Figure 1 shows the result of integrating these ODEs com-
pared with the steady-state populations computed by tradi-
tional methods.

The general success of such fluid analysis techniques for
models involving only active cooperation is well supported
by the literature [5, 9]. However, in the case of models in-
volving passive cooperation, fluid analysis techniques are less
well developed.

1.3 Existing passive fluid semantics
One fluid semantics for passive cooperation has already

been proposed in the literature [3] and has seen some use in
modelling real systems [7, 4]. It is a literal extension of the
existing fluid semantics for active cooperation (Section 1.2).
That is, ODEs are constructed using the aggregate CTMC
rate, extended as a function of the component populations
naturally to the real numbers. However, in the case of pas-
sive cooperation, this results in ODEs where the derivative
is specified by a discontinuous function. Consider again the
example of Equation (5), modified now to exhibit passive as
opposed to active cooperation (also, for the sake of brevity,
we have renamed the component groups to P and R respec-
tively):

P0
def
= (a, r).P1 R0

def
= (a, >).R1

P1
def
= (b, q1).P0 R1

def
= (b, q2).R0

Sys
def
= P{P0[N ]} ��

{a}
R{R0[M ]}

(7)

If ODEs are constructed from this model by using the ag-
gregate CTMC rate, we obtain the following system:

Ṗ0(t) = −I(R0(t)) · P0(t) · r + P1(t) · q1

Ṗ1(t) = −P1(t) · q1 + I(R0(t)) · P0(t) · r

Ṙ0(t) = −I(R0(t)) · P0(t) · r + R1(t) · q2

Ṙ1(t) = −R1(t) · q2 + I(R0(t)) · P0(t) · r

(8)

where I(·) is a discontinuous indicator function defined on
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non-negative real numbers:

I(x) :=


1 if x > 0
0 if x = 0

Given the discontinuous nature of these ODEs, it is not guar-
anteed by the standard theoretical results that they even
have a solution. Indeed, there exist many possible interpre-
tations of the differential equations themselves. When we
talk of a solution to these equations, we usually mean contin-
uous functions which are differentiable everywhere that the
right-hand side of the ODEs are continuous, with deriva-
tives satisfying the ODEs at these points. Otherwise, the
right-hand derivatives should exist and should agree with
the right hand side of the ODEs. For some parameter com-
binations, R0(t) never reaches zero and the ODEs have a
unique solution for all times t ≥ 0. Figure 2a shows one
such case.1 However, Figure 2b shows, for a different pa-
rameter combination, the unique solution up to the point at
which R0(t) does reach zero. In fact, there does not exist a
meaningful continuation of the ODE solution past this point
(it is shown simply to terminate in Figure 2b). To see this,
assume there does exist such a continuation and define:

t1 := inf{t : R0(t) = 0}

If R0(t1) 6= 0 then by continuity of R0(t), we can choose a
better infimum t2 > t1, a contradiction, so R0(t1) = 0. Note

that in some interval t ∈ [t1 − ε, t1) for ε > 0, Ṙ0(t) < 0
([0, t1) works here). Now it cannot be that R0(t) = 0
in any interval t ∈ [t1, t1 + δ), δ > 0 because in some
non-empty sub-interval of it containing t1, according to the
ODEs, Ṙ0(t) > 0, a contradiction. Now if R0(t) < 0 in
some interval t ∈ (t1, t1 + δ), δ > 0, we would have a con-
tradiction if we demand that the right-hand derivative at
t1 must be that given by the ODEs, since the ODEs assert
Ṙ0(t1) > 0.2 Therefore the only possibility for a meaning-
ful solution is that in some interval t ∈ (t1, t1 + δ), δ > 0,
we have R0(t) > 0. This is a contradiction since the ODEs

give Ṙ0(t) < 0 in said interval (or some sub-interval of it

t ∈ (t1, t1 + δ′)), because we recall that we had Ṙ(t) < 0 in
some interval t ∈ [t1 − ε, t1).

In practice, for instance [3], it seems such a solution is usu-
ally artificially continued such that R0(t) = 0 and R1(t) =
M are fixed for t ∈ [t1, ∞), with the further evolution of
P0(t) and P1(t) governed by the original ODEs. Such a “so-
lution” is shown in Figure 2c.

We see that under this interpretation, this passive fluid
semantics performs rather poorly, especially in reflecting ac-
curately the long-term situation when activity is effectively
blocked due to a lack of R0 components, although it is often
able to identify the approximate point at which the effects
of blocking due to starvation become evident. Indeed, the
number of P0 components is totally misrepresented and the
behaviour is as if the R0 components have been structurally
removed from the model.

1In all of the following figures, we will compare an ODE-
derived approximation with the stochastic expectation of
the quantity in question, obtained through costly repeated
stochastic simulation.
2Of course, even if we do not demand correspondence of
right-hand derivatives with the ODEs at t1, such a solution
has negative component counts which are meaningless in the
context of the original model.
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(b) Rates: r = 1.0, q1 = 0.5 and q2 = 1.0. Initial con-
ditions: N = 50 P0 and M = 20 R0 components. ODE
solution only shown up to where it exists formally.
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Figure 2: ODE and stochastic simulation solution
comparison for model of Equation (7).
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In cases such as that of Figure 2a, where blocking is less
likely (and in terms of the ODEs, the indicator function
does not come into play), this passive fluid semantics is (pre-
dictably) more accurate.

2. A NEW PASSIVE FLUID SEMANTICS
We now proceed to show how instances of passive cooper-

ation in a (grouped) PEPA model may be replaced by equiv-
alent instances of active cooperation. This will allow us to
apply the fluid analysis techniques for models with only ac-
tive cooperation (as detailed in Section 1.2) to models with
passive cooperation, yielding an alternative fluid semantics
for passive cooperation. We will see that this approach is
much more promising than the existing technique described
earlier.

2.1 Motivation
We begin by considering again the example of Equation (7).

The aggregate CTMC rate of the shared a-action is governed
by the number of P0 and R0 components in the current ag-
gregate CTMC state (say at time t) and is given by:

I(nR, R0(t)) · nP, P0(t) · r

Thus, if the number of R0 components is not zero, the rate
is nP, P0(t) · r and zero otherwise. Now since the size of each
component group is a fixed property of the model and all
of its derivative states, we know an upper bound on the un-
synchronised rate at which the active partner(s) in a passive
cooperation can perform the shared action. In the case of
this example, this is N · r, that is, an upper bound on the
number of P0 components possible in any derivative state is
the size of the P component group, N . Using this insight, we
can write the aggregate CTMC rate at time t equivalently
as:

min(nP, P0(t) · r, nR, R0(t) · N · r) =

r · min(nP, P0(t), nR, R0(t) · N)

If nR, R0(t) = 0, then the expression is zero as desired. Oth-
erwise, nR, R0(t) ≥ 1, and thus nR, R0(t)·N ≥ N ≥ nP, P0(t),
so the expression is nP, P0(t)·r as desired. Now the key point
to note is that the above expression has the form of the
aggregate CTMC rate found in an active cooperation. In-
deed, it suggests the construction of the following equivalent
grouped PEPA model, exhibiting only active cooperation:

P0
def
= (a, r).P1 R0

def
= (a, N · r).R1

P1
def
= (b, q1).P0 R1

def
= (b, q2).R0

Sys
def
= P{P0[N ]} ��

{a}
R{R0[M ]}

(9)

All we have changed is the definition of R0 from (a, >).R1 to
(a, N · r).R1. Both the model of Equation (7) and of Equa-
tion (9) have identical (aggregated) derivation graphs (and
thus underlying (aggregated) CTMCs). Passive cooperation
can thus be viewed as syntactic sugar for a particular active
cooperation. In fact, there is of course an infinite family
of grouped PEPA models exhibiting only active cooperation
equivalent to the original passive model, we may choose any

rate q ≥ N · r in R0
def
= (a, q).R1.

We will see that this point of view is a better one to adopt
when considering the analysis of models involving passive co-
operation in a fluid sense.

2.2 Formal translation
We now define the above transformation formally for an

arbitrary grouped PEPA model. The first notion we define
is for a given component group and action, the lowest rate at
which standard PEPA components within that component
group must perform the action to be effectively passive.

Definition 4 (Ext. rate of effective passivity).
For a grouped PEPA model G, action α 6= τ and com-
ponent group H, the external rate of effective passivity is
Eα(G, H) := E ′

α(G, H, 0), where E ′
· (·, ·, ·) is defined as:

E ′
α(M1 ��

L
M2, H, r) :=

8

>>>>>>>>>>><

>>>>>>>>>>>:

E ′
α(M1, H, max(r, rmax

α (M2)))
if H ∈ G(M1), α ∈ L

E ′
α(M1, H, r)

if H ∈ G(M1), α /∈ L

E ′
α(M2, H, max(r, rmax

α (M1)))
if H ∈ G(M2), α ∈ L

E ′
α(M2, H, r)

if H ∈ G(M2), α /∈ L

Eα(M/L, H, r) :=


Eα(M, H, r) if α /∈ L
Eα(M, H, 0) if α ∈ L

Eα(H{D}, H, r) := r

Note that for any legal (synchronised) passive enabling
of an action within component group H, Eα(G, H) 6= 0.
rmax
· (·) is the maximum real apparent rate.

Definition 5 (Maximum real apparent rate). For
a grouped PEPA model G and action α 6= τ , the maximum
real apparent rate is rmax

α (G), where rmax
· (·) is defined as:

rmax
α (M1 ��

L
M2) :=

8

>><

>>:

min(rmax
α (M1), rmax

α (M2))
if α ∈ L

rmax
α (M1) + rmax

α (M2)
if α /∈ L

rmax
α (M/L) :=


rmax

α (M) if α /∈ L
0 if α ∈ L

rmax
α (Y {D}) := S(Y {D}) × max

P∈J (Y {D})
rmax

α (P )

where for standard PEPA components

rmax
α (P ) := max

Pi∈ds(P )

X

λj∈R

Pi

(α, λj)

−−−−→

λj

S(·) and J (·) are respectively the size of the component
group and the set of standard PEPA components in the
component group.

It should be noted here that naming this quantity maxi-
mum real apparent rate is not entirely accurate. Indeed, it
is not necessarily the case that:

rmax
α (G) = max{rα(Gi) : Gi ∈ ds(G) and rα(Gi) ∈ R}

since not all component group configurations are necessarily
reachable. Using this definition instead might result in a
tighter (lower) version of the external rate of effective pas-
sivity.3 However, the evaluation requires a potentially costly
3Whether this is actually desirable is related to the question
of which of the infinite family of equivalent active models to
choose which is discussed in Section 2.4.
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expansion of ds(G), whereas the definition we have used does
not.

It is not sufficient simply to replace all standard PEPA
prefix sub-components (α, >).P within component group
H with (α, Eα(G, H)).P . Firstly, as well as being effec-
tively passive to other component groups, such standard
PEPA components must also maintain their effective pas-
sivity within their enclosing standard PEPA structure. The
following function on standard PEPA components computes
an internal rate of effective passivity for this purpose.

Definition 6 (Int. rate of effective passivity).
For any standard PEPA component P and action type α 6=
τ , the internal rate of effective passivity E int

α (P ) := E int
α (P, 0)

is a lower bound with which passive rates can be replaced
while still maintaining effective passivity within the standard
PEPA component, where E int

· (·, ·) is defined as:

E int
α (P1 ��

L
P2, r) :=

8

>>>><

>>>>:

max(E int
α (P1, max(r, rmax

α (P2))),
E int

α (P2, max(r, rmax
α (P1))))

if α ∈ L
max(E int

α (P1, r), E int
α (P2, r))

if α /∈ L

E int
α (P/L, r) :=


E int

α (P, 0) if α ∈ L
E int

α (P, r) if α /∈ L

E int
α (S, r) := r

Define E int
α (G, H) := maxP∈J (G, H) E

int
α (P ) and then it

is sufficient to replace all standard prefix sub-components
(α, >).P within component group H with:

(α, max(Eα(G, H), E int
α (G, H))).P

in order to simultaneously guarantee both effective external
and effective internal passivity.4 We now have the desired
result. We have omitted the proof for brevity.

Theorem 1. Let G be a grouped PEPA model. For every
component group H ∈ G(G) and standard PEPA component
P ∈ J (H), replace P in G with P ′ where P ′ := T (P ) to
define the grouped PEPA model G′, where T (·) is defined
as:

T ((α, r).S) :=


(α, R).T (S) if r = >
(α, r).T (S) otherwise

where R := max(Eα(G, H), E int
α (G, H)).

T (S1 + S2) := T (S1) + T (S2)

T (P/L) := T (P )/L

T (P1 ��
L

P2) := T (P1) ��
L

T (P2)

Then G′ has only active cooperation. Furthermore, G and
G′ have the same aggregated derivation graph (and thus un-
derlying aggregated CTMC).

4The careful reader might wonder why we can’t use each
standard PEPA component’s own internal rate of effective
passivity instead of taking the maximum over the component
group. This is because for each action type, we must be
consistent within each component group in our replacing of
passive rates with real rates in order to ensure the correct

meaning of expressions such as P0(t)>
(P0(t)+P1(t))>

= P0(t)
P0(t)+P1(t)

is maintained (so that the >s still cancel).

Of course, to state this completely formally, we must unify
each standard PEPA component P in G with its replacement
P ′ in G′.

2.3 Example translation
We now illustrate this result by means of a more compli-

cated example grouped PEPA model:

P0
def
= (a, >).P1 P2

def
= (a, >).P2 + (a, >).P3

P1
def
= (a, r1).P0 P3

def
= (a, r2).P2

P
def
= P0 ��

{a}
P2

R0
def
= (a, >).R1 R1

def
= (a, r3).R0

Q0
def
= (a, r4).Q1 Q1

def
= (a, r5).Q0

Sys
def
=

h

P{P [N ]} ��
{a}

R{R0[M ]}
i

��
{a}

Q{Q0[O]}

For component group P:

Ea(G, P) = max(O × max(r4, r5), M × r3)

and E int
a (G, P) = max(r1, r2), so we could replace the >s

in P0 and P2 with a real value greater than or equal to the
following expression:

max(max(O × max(r4, r5), M × r3), max(r1, r2))

In the case of component group R, we have trivially E int
a (G, R) =

0. Also:

Ea(G, R) = max(O × max(r4, r5), N × max(r1, r2))

so we could replace the passive rate in R0 with the following
expression:

max(O × max(r4, r5), N × max(r1, r2))

2.4 Evaluation
The key idea of this work is to use the result of the previ-

ous section (Theorem 1) to define a new fluid semantics for
grouped PEPA models exhibiting passive cooperation. The
initial idea is very simple: first we use Theorem 1 to translate
the model in question to an equivalent model which exhibits
only active cooperation, and then we simply apply the fluid
semantics for active cooperation (presented in Section 1.2).
Since the original model with passive cooperation has the
same underlying aggregated CTMC as the translated one
exhibiting only active cooperation, we have introduced no
extra stages of approximation than when we start with a
model that exhibits purely active cooperation.

Let us return to the example of Equation (7). Applying
Theorem 1 yields the following equivalent grouped PEPA
model, exhibiting only active cooperation (the same as Equa-
tion (9)):

P0
def
= (a, r).P1 R0

def
= (a, N · r).R1

P1
def
= (b, q1).P0 R1

def
= (b, q2).R0

Sys
def
= P{P0[N ]} ��

{a}
R{R0[M ]}

(10)

Applying the standard fluid semantics for active coopera-
tion from Section 1.2 yields the following system of ODEs
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Figure 3: ODE and stochastic simulation solution
comparison for model of Equation (10). Rates used
are r = 1.0, q1 = 0.5 and q2 = 1.0. Initial conditions
are N = 50 P0 and M = 20 R0 components.
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(writing P0(t) for vP, P0(t) as before):

Ṗ0(t) = −min(P0(t) · r, R0(t) · N · r) + P1(t) · q1

Ṗ1(t) = −P1(t) · q1 + min(P0(t) · r, R0(t) · N · r)

Ṙ0(t) = −min(P0(t) · r, R0(t) · N · r) + R1(t) · q2

Ṙ1(t) = −R1(t) · q2 + min(P0(t) · r, R0(t) · N · r)

We notice an immediate improvement of the situation under
this new passive fluid semantics. The ODEs are Lipschitz
continuous and thus we are guaranteed a globally unique
solution as was shown not necessarily to be the case with
the existing passive fluid semantics. Figure 3 shows this
solution for the interesting (blocking) parameters used to
generate Figure 2b. On comparing these two figures, we
see that a marked improvement under the new semantics
is evident, not least is the fact that the fluid analysis is
meaningful after the critical point when the R0 bottleneck
takes effect.

As we have mentioned, there is not just one way of con-
verting a model exhibiting passive cooperation to one with
purely active cooperation. Indeed, Theorem 1 merely gives
a lower bound required to maintain equivalence to the orig-
inal model. It is then a natural question to ask what hap-
pens if higher rates are used. One immediate consequence
not directly related to the PEPA model is that the ODEs
will become numerically stiffer and thus more costly to in-
tegrate. Figure 4 shows that increasing the effective passive
rate appears to have little effect at least for the example of
Equation (7), but does slightly worsen the correspondence
of the ODE results with those obtained through stochas-
tic simulation. Indeed, ongoing work beyond the scope of
this paper suggests a theoretical justification for picking the
lowest possible effectively passive rate.

3. WORKED EXAMPLE
We now apply the techniques previously introduced to a

larger, more realistic model of a real-world system: a client-
server scenario with a two-stage fetch protocol and the po-
tential for server breakdowns. As a grouped PEPA model,
this system can be expressed as follows:

Client
def
= (request , rreq).Client waiting

Client waiting
def
= (data,>).Client think

Client think
def
= (think , rthink ).Client

Server
def
= (request ,>).Server get

+ (break , rbreak ).Server broken

Server get
def
= (data, rdata).Server

+ (break , rbreak ).Server broken

Server broken
def
= (reset , rreset).Server

Sys
def
= Clients{Client [NC ]}

��
L

Servers{Server [NS ]} (11)

where L = {request , data}. We have a population of NC

clients and a population of NS servers. The system uses a 2-
stage fetch mechanism: a client requests data from the pool
of servers; one of the servers receives the request, another
server may then fetch the data for the client. At any stage,
a server in the pool may fail and later reset itself.

Writing C(t) for vClients, Client(t) and similarly Sg(t) for
vServers, Server get(t), and so on, we can derive two different
ODE systems for this model, one which uses the original
fluid passive semantics:

Ċ(t) = − I(S(t)) · C(t) · rreq + Ct(t) · rthink

Ċw(t) = − I(C(t)) · Sg(t) · rdata + I(S(t)) · C(t) · rreq

Ċt(t) = − Ct(t) · rthink + I(C(t)) · Sg(t) · rdata

Ṡ(t) = − I(S(t)) · C(t) · rreq − S(t) · rbreak

+ I(C(t)) · Sg(t) · rdata + Sb(t) · rreset

Ṡg(t) = − I(C(t)) · Sg(t) · rdata − Sg(t) · rbreak

+ I(S(t)) · C(t) · rreq

Ṡb(t) = − Sb(t) · rreset + Sg(t) · rbreak + S(t) · rbreak (12)

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4329 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4329 



and one which uses the new semantics as proposed in this
paper:

Ċ(t) = − min(S(t) · NC · rreq , C(t) · rreq) + Ct(t) · rthink

Ċw(t) = − min(C(t) · NS · rdata , Sg(t) · rdata)

+ min(S(t) · NC · rreq , C(t) · rreq)

Ċt(t) = − Ct(t) · rthink

+ min(C(t) · NS · rdata , Sg(t) · rdata)

Ṡ(t) = − min(S(t) · NC · rreq , C(t) · rreq) − S(t) · rbreak

+ min(C(t) · NS · rdata , Sg(t) · rdata)

+ Sb(t) · rreset

Ṡg(t) = − min(C(t) · NS · rdata , Sg(t) · rdata)

− Sg(t) · rbreak

+ min(S(t) · NC · rreq , C(t) · rreq)

Ṡb(t) = − Sb(t) · rreset + Sg(t) · rbreak + S(t) · rbreak (13)

Figure 5a shows the result of using the old fluid passive se-
mantics. Again we have artificially continued the solution
beyond the point at which the number of servers reaches
zero and there formally does not exist a (meaningful) solu-
tion to the ODEs of Equation (12). We see that as expected,
this delivers very misleading results. Indeed, after the point
of server exhaustion, the behaviour effectively switches to
become that which we might expect if the definitions of
Server get and Server broken in Equation (11) were to be
modified to become absorbing. That is, servers are no longer
replenished after having been used, so no clients are ever
served again. This is of course a very misleading rendition
of the client/server bottleneck scenario the original model is
supposed to represent.

Under the new passive fluid semantics, we obtain Fig-
ure 5b by integrating the ODEs of Equation (13). The sub-
stantial improvement under this regime is very evident.

It is widely assumed in the case of active cooperation
that the deterministic approximation vH, P (t) defined by
the ODEs is a low-variance approximation to the stochas-
tic expectation of the corresponding nH, P (t) stochastic pro-
cess. That is, its correctness with respect to the underlying
CTMC increases in some sense as the variance of the stochas-
tic processes in question decreases. Indeed, work is ongoing
to establish the exact relation. Since the new fluid passive
semantics presented here are equivalent to an application of
the existing fluid semantics for active cooperation, we pre-
sume their quantitative correctness is similarly related to
variance.

It is important to be aware then that passive cooperation
is more likely to lead to increased variance since when the
expected number of passive partners is very low (a block-
ing scenario), a minor deviation from this expectation could
mean zero passive partners. This is the difference between
a fast rate of the shared action governed by the active part-
ner to a rate of zero. This suggests that although the new
fluid passive semantics presented here are a significant im-
provement, they may not perform as well as when analysing
purely active models. Figure 6a shows the result of inte-
grating the ODEs of Equation (13) for different parameters,
designed to increase the variance in the counting stochastic
processes. Thus, we have engineered a situation where the
rate of the rreq shared action is very high when there are
available servers up to the bottleneck point. As expected,

 0

 10

 20

 30

 40

 50

 0  5  10  15  20  25  30

N
u
m

b
e
r 

o
f 

a
c
ti
v
e
 c

o
m

p
o
n
e
n
ts

Time, t

Clients (ODEs)
Servers (ODEs)

Broken servers (ODEs)
Clients (stochastic simulation)

Servers (stochastic simulation)
Broken servers (stochastic simulation)

(a) Old ODE semantics.

 0

 10

 20

 30

 40

 50

 0  5  10  15  20  25  30

N
u
m

b
e
r 

o
f 

a
c
ti
v
e
 c

o
m

p
o
n
e
n
ts

Time, t

Clients (ODEs)
Servers (ODEs)

Broken servers (ODEs)
Clients (stochastic simulation)

Servers (stochastic simulation)
Broken servers (stochastic simulation)

(b) New ODE semantics.

Figure 5: ODE and stochastic simulation solution
comparison for model of Equation (11). Rates used
are rreq = 1.0, rthink = 0.3, rbreak = 0.3, rdata = 0.5 and
rreset = 0.2. Initial conditions are NC = 40 Client and
M = 20 Server components.

the correspondence is not as impressive as in Figure 5b, but
again, exceedingly more useful than that obtained under the
existing passive fluid semantics (Figure 6b).

4. CONCLUSION
Passive cooperation is a key behaviour present in many

real-world systems. At the same time, distributed, massively
concurrent systems are becoming more prevalent and they
automatically invoke the problem of state space explosion.
As a result, these types of system inhibit traditional dis-
crete state-space analysis. It is therefore a key requirement
that emerging next-generation techniques of fluid-analysis
for stochastic process algebras support accurate modelling
of passive cooperation.

We have shown that the existing approach for handling
such models in a fluid sense is often inaccurate and poten-
tially very misleading in scenarios where blocking may occur
(arguably the most interesting situations). Furthermore, the
ODEs obtained through application of these semantics are
not even guaranteed to have a meaningful global solution
and it is necessary artificially (and without justification) to
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Figure 6: ODE and stochastic simulation solution
comparison for model of Equation (11). Rates used
are rreq = 2.0, rthink = 0.3, rbreak = 0.3, rdata = 1.0 and
rreset = 0.2. Initial conditions are NC = 40 Client and
M = 10 Server components.

construct a continuation past where the formal solution is
no longer defined.

However, we have also shown formally how to construct
an equivalent model inexpensively which exhibits only active
cooperation. From this model, the existing fluid semantics
for active cooperation can be applied to yield fluid semantics
for the original passive model. Such a fluid analysis has been
shown empirically to yield a massive quantitative and quali-
tative improvement over the existing passive fluid semantics
when compared with the expectation of the stochastic pro-
cesses in question (the normal interpretation of the ODE
approximation). The new semantics are also theoretically
easier to handle since a meaningful global solution to the
ODEs is guaranteed to exist.

Our plans for future work include investigating more for-
mally which is the best of the infinite family of equivalent
actively-synchronised models to choose for a given model
involving passive cooperation. Furthermore, work is ongo-
ing to address quantitatively the exact relation of the ODEs
(both for active and thus also, under the new semantics, for
passive synchronisation) to the underlying CTMC.
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