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ABSTRACT

We examine the stability of two interfering processors with
service rates depending on the number of users present of
each of the classes and subject to static or dynamic load
balancing. Such models arise in several contexts, especially
in wireless networks, or multiprocessing. In case of static
load balancing, we extend existing stability results by deriv-
ing Lyapunov functions that are connected to the solutions
of one dimensional Poisson equation. We then characterize
the optimal static load balancing. The Lyapunov function
found for the static load balancing is used to derive the ex-
act stability condition of an interesting class of dynamic load
balancing policies. We show that for certain properties of
the state-dependent service rates, simple dynamic load bal-
ancing schemes improve the stability condition.

Categories and Subject Descriptors
D.4.8 [Performance]: Queueing Theory

General Terms
Performance

Keywords
Stability, Dynamic load balancing, State-dependent service
rates, Lyapunov functions.

1. INTRODUCTION
We consider a queueing system with two servers defining

two classes of customers and the special feature that the
service rates of the servers depend on the number of users
present of each class. Such models arise in various settings,
particularly in wireless communications, manufacturing sys-
tems, and multiprocessing. In wireless networks for instance,
the transmission rates in a given cell depend on the activity
states of the surrounding cells due to the impact of interfer-
ence. Thus, the transmission rates in a given cell increase
when the interfering cells have no traffic to serve [2]. In
these scenarios, the total service rate is hence not main-
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tained where the cells are simultaneously non-empty, so the
system will typically not be work-conserving. The service
rates as functions of the number of customers become even
more complicated in wireless data networks when channel-
aware scheduling is employed: the total service rate avail-
able to all customers of a given class can be increasing in
the total number of customers of this class, due to multiuser
diversity [9].

Multiprocessing is the use of two or more central process-
ing units (CPUs) within a single computer system. CPUs
can be used symmetrically or can be dedicated to a certain
type of task (for instance the execution of the kernel mode
code). In both cases, the sharing of a common memory ac-
cess introduces a reduction of capacity, when CPUs work
simultaneously.

In the above examples, the service rates of the correspond-
ing queuing model may depend on which queues are empty,
or more generally on the exact number of users or tasks
present at each queue. In the first case, the model is equiv-
alent to the so-called coupled processors (or weakly coupled
processors) system as considered in [7, 6].

In the present paper, we examine the stability proper-
ties of the model described above, with the additional as-
sumptions that the arriving customers can be dynamically
directed to one of the queue. Dynamic means here that
the routing decision is based on the number of customers
present at each queue. Under the usual assumptions of expo-
nentially distributed service times and Poisson arrivals, the
process describing the number of customers in the network
is Markov and stability refers in the sequel to its positive
recurrence.

The stability of multidimensional processes correspond-
ing to interfering processors with static load balancing have
been recently studied in [5]. The authors focused on the case
where the service rates of the various classes are monotone
functions in the sense that they decrease with the number
of users of the various classes, and the arrival intensities do
not depend on the state of the network. These monotonicity
assumptions are satisfied in a variety of situations, such as
the examples described above. The method used to prove
stability in [5], (as in other contexts in [11, 13]) is essen-
tially stochastic domination and requires some monotonicity
properties of the studied Markov process. When the arrival
rates depend on the number of customers present in the net-
work (i.e., in the presence of dynamic load balancing), these
monotonicity properties are generally not verified anymore
and the latter techniques cannot be employed.
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A main contribution of this article is to overcome these
technical difficulties by finding Lyapunov functions for this
type of model. These Lyapunov functions are connected to
the solutions of Poisson equations of dimension 1 which ex-
plains the difficulty to intuitively find them. This allows to
strengthen the stability results previously derived for a sys-
tem with two classes of customers and to attack the stability
problem of systems with dynamic load balancing. Finding a
Lyapunov function not only allows to characterize whether
the process is positive recurrent but can also give indica-
tions on the convergence to its stationary measure (see [10]
for more details). On the other hand, our technique allows
to partially release the assumption of monotonicity of the
service rates and to find necessary and/or sufficient condi-
tions of stability for non-monotone service rates.

Building on these results, we first characterize the optimal
static load balancing and the maximum arrival intensity that
the network can put up with when the arrival intensities are
fixed. We show in particular that even for symmetric state
dependent service rates, the optimal static policy can be to
send the arriving customers to each queue with unequal pos-
itive probabilities being the roots of certain functions. We
also give a simple upper bound on the maximum intensity
leading to a stable system. This bound is attained in the
case of the weakly coupled processors, which shows that a
dynamic load balancing cannot improve the stability of a
static load balancing when the service rates depend only on
whether the queues are empty or not. This result can be
more generally interpreted in terms of some properties of
the stability region in case of static load balancing.

We then turn our attention to a class of dynamic load bal-
ancing depending only on the number of customers present
of one of the classes. This assumption makes the analy-
sis considerably simpler and tractable. Using the Lyapunov
functions derived for the static case, we derive the stability
conditions of such schemes and further characterize the op-
timal scheme of this class. Depending on the service rates,
we find that such dynamic schemes might improve the sta-
bility conditions over static schemes. This result contrasts
with the case of static (non-state dependent) service rates,
where dynamic load balancing does not improve the stability
condition (see for instance [8]). To the best of our knowl-
edge, a similar result has not been observed previously in
queuing networks. We illustrate the results on a simple ex-
ample. These results suggest that dynamic load balancing of
a switch curve type might significantly improve the stability
condition for certain service rates.

The remainder of the paper is organized as follows. In Sec-
tion 2, we present a detailed model description and introduce
notation. In Section 3, we derive Lyapunov functions for the
model with static load balancing. and extend existing stabil-
ity results. In Section 4, we characterize the optimal static
load balancing in terms of the service rates properties. In
Section 5, we give a simple bound on the maximal inten-
sity leading to a stable system. Stochastic comparisons are
established to interpret the result. In Section 6, the class
of decoupled load balancing is introduced. We character-
ize the optimal load balancing within that class and give an
example of gain of stability via dynamically balancing the
load. Section 7 concludes with some final observations and
suggestions for further research.

2. MODEL
We consider an open network with 2 nodes. x = (x1, x2) ∈

N
2 denotes the number of customers in each node. Cus-

tomers arrive subject to a Poisson process of intensity ν and
are directed with an intensity λi(x) towards node i = 1, 2
where they require an exponentially distributed service time.
We assume that the arrival process and the service times are
independent and the service times are i.i.d. By definition of
the λi(x):

∀x,
2
∑

i=1

λi(x) = ν.

Let X be the stochastic process describing the state of the
system on a state space x ∈ N

2. Denote ei, i = 1, 2 the unit
vectors in N

2. Following from the statistical assumptions
made on the traffic,X is a multi-dimensional birth and death
process with transition rates, i = 1, 2 :

q(x, x− ei) = φi(x),

q(x, x+ ei) = λi(x).

2.1 Assumptions on the service rates
In the following, we consider a model M with given service

rates φ having the following properties:

1. φ is monotone in the sense that φi(x) is decreasing
in xj when xi > 0, ∀j 6= i. In other words, adding a
customer in queue j decreases the capacity of queue i 6=
j, (when there are customers of class i to be served).

2. φi(.) has a limit when x1 or/and x2 go to infinity and
the limits are uniform in the sense that,

lim
x1→∞

lim
x2→∞

φi(x) = lim
x2→∞

lim
x1→∞

φi(x), i = 1, 2.

This assumption is sometimes referred to as ’asymp-
totically spatially homogeneous’ [4].

An interesting particular case is when the service rates
are symmetric and do not depend on their own coordinate.
We hence define the symmetric instance (M ′) of our model
verifying the additional assumptions:

φi(x) = φi(xj) = φ(xj), j 6= i.

2.2 Static and dynamic allocations
A routing scheme is a choice of rates λ(·). We consider in

the following routing schemes that depend only on the num-
ber of customers in the network at the time of the routing
decision (the residual service times and the past history do
not influence the decisions taken). Note that the routing can
be probabilistic (at time t customers are directed to queue

i with probability λi(x)
ν

), or deterministic (if λi(x) = ν or
λi(x) = 0, ∀x.) The policy is said to be static if λ(·) does
not depend x. Otherwise the policy is called dynamic.

We study the stability properties of this system and more
specifically address the following issues:

1. What is the maximal stability condition of the system
i.e., for a given φ, what is the maximum ν for which
there exists λ(·) such that the process X with inten-
sity ν − ε is stable (positive recurrent), for all ε > 0.
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Figure 1: Interfering processors with static load bal-

ancing
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Figure 2: Interfering processors with dynamic load

balancing

We denote this maximal intensity νmax. This question
appears difficult both theoretically and numerically. A
first step is thus to find theoretical bounds on νmax.

2. Define similarly νmax
S the maximum ν for which there

exists a static λ, such that the process X with intensity
ν−ε is stable (positive recurrent), for all ε > 0. How to
calculate νmax

S and what is the corresponding optimal
static load balancing?

3. When do we have νmax = νmax
S , and νmax > νmax

S ?

3. STABILITY CONDITIONS FOR STATIC

LOAD BALANCING
We first need to introduce notations to describe the rates

of the system when the number of customers tend to infinity.
In the sequel, we denote

Ci = lim
x1,x2

φi(x), i = 1, 2,

the limit of the service rates when both queues tend to in-
finity, and

φ1
1(x1) = lim

x2→∞
φ1(x),

φ1
2(x1) = lim

x2→∞
φ2(x),

φ2
1(x2) = lim

x1→∞
φ1(x),

φ2
2(x2) = lim

x1→∞
φ2(x),

the limit of the service rates, when one of the queue tends

to infinity. In a more compact form,

φij(xi) = lim
xk→∞,k 6=i

φj(x).

We also define what can be informally seen as an average
departure rate for the system, when customers of class j 6= i
tends to infinity, while the number of class-i customers is a
stable process. Using a scalar product notation, define:

〈φij , π
i〉 =

∑

xi

φij(xi)π
i(xi), j 6= i,

where πi, when it exists, is the probability distribution given
by (c is the normalization constant):

πi(xi) = c

xi
∏

z=1

λi
φii(z)

, j 6= i. (1)

When the load balancing is static and φ is decreasing (as
defined in subsection 2.1), the stability region of the system
was derived in [5].

Theorem 1 ([5]).
If φ is decreasing, the stability region can be described as

the set of (λ1, λ2) such that either

λ1 < C1 and λ2 < 〈φ1
2, π

1〉, (2)

or λ2 < C2 and λ1 < 〈φ2
1, π

2〉. (3)

It is remarkable that the shape of the stability region is
generally not simple and might be different from the rate re-
gion defined as the convex hull of the service rates (φ(x))x∈X .

In [5], the use of stochastic comparisons allowed to de-
rive the conditions under which the process X is positive
recurrent. However, stronger stability results1 may be es-
tablished if a Lyapunov function is known. In the follow-
ing Theorem, we show how to find Lyapunov functions for
the system by solving Poisson equations of dimension 1.
For that purpose, suppose without loss of generality that
λi + φi(x) < 1, i = 1, 2, ∀x and define P1 the Markovian
kernel with transitions:

p1(x1, x1 + 1) = λ1,

p1(x1, x1 − 1) = φ1
1(x1),

p1(x1, x1) = 1 − (λ1 + φ1
1(x1)).

Define symmetrically P2. Note that the Markov chain with
generator Pi correspond to a uniformized discrete time ver-
sion of the continuous time birth and death process with
rates λi and φii(xi). π1 and π2 are hence the stationary
measures associated with P1 and P2 (when they exist) and
were already defined by (1).

Theorem 2. Suppose φ decreasing and assume that (λ1, λ2)
verify:

λ1 < C1 and λ2 < 〈φ1
2, π

1〉, (4)

or λ2 < C2 and λ1 < 〈φ2
1, π

2〉. (5)

1convergence of the process to its stationary measure in a
stronger sense and f -ergodicity results, see [10].

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4322 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4322 



Then, a Lyapunov function for the system is given by:

F (x) = 1λ1<C1
F1(x) + 1λ2<C2

F2(x),

with

F1(x) = ψx1 + γ1[x2 + V1(x1)],

F2(x) = ψ′x2 + γ2[x1 + V2(x2)].

With ψ > 1, ψ′ > 1, γ1 > 0, γ2 > 0 some constants to be
chosen and V1 and V2 some functions defined as the solutions
of the following Poisson equations. If λ1 < C1, V1 is the
bounded solution of:

(I − P1)V1 = λ2 − φ1
2 + ε

where ε is defined as:

ε = −〈λ2 − φ1
2, π

1〉. (6)

V2 is defined symmetrically.

Proof:

First, remark that if λ1 < C1 and λ2 < C2, then the
process is geometrically ergodic because each coordinate Xi
is dominated by a geometrically ergodic Markov process.

Hence, assume λ1 < C1 and λ2 ≥ C2. (The symmetric
case is equivalent.) Remark that under this condition, π1 is
well defined. Let ψ > 1 and ε′ > 0 such that ε′ = C1

ψ
− λ1.

Consider the (one-dimensional) Poisson equation:

λ1(V (x1 + 1) − V (x1)) + φ1
1(x1)(V (x1 − 1) − V (x1))

= −(λ2 − φ1
2(x1) + ε). (7)

or written differently:

(I − P1)V = λ2 − φ1
2 + ε,

with P1 the corresponding Markovian kernel defined pre-
viously2. Because λ1 < C1, it is not difficult to see that
the Markov process associated with the kernel P1 is geomet-
rically ergodic. We can therefore apply the results of [1]:
there exists a bounded solution to equation (7) if condition
λ1 < C1 is fulfilled together with:

〈λ2 − φ1
2 + ε, π1〉 = 0,

which we have supposed in condition (6). Let V be such a
solution.

Using the existence of uniform limits for φ2, we have that
for all δ > 0, there exists x∗

2 such that ∀x1, and ∀x2 ≥ x∗
2:

|φ2(x) − φ1
2(x1)| ≤ δ.

Let δ < ε′ and consider the following Lyapunov function:

F (x) = ψx1 + γ1(x2 + V1(x1)),

with γ1 a strictly positive constant to be chosen. Since ψ >
1, F (x) → ∞, when |x| → ∞ and F is hence a proper
Lyapunov function. The drift of F (for the original process
X) is defined as:

∆F (x) =
∑

y∈N2

q(x, y)(F (y) − F (x)),

2In applied probability, the Poisson equation is often written
as (I − P1)V = r − c, with r a reward function and c a
constant given by c =

∑

x
π1(x1)r(x1). Here the drift λ2−φ

1
2

plays the role of the reward function and ε of the constant.

which gives:

∆F (x) = (λ1−
φ1(x)

ψ
)(ψ−1)ψx1 +γ1(λ2−φ2(x)+∆V (x1)),

with ∆V (x1) = λ1[V1(x1+1)−V1(x1)]+φ1(x)[V1(x1−1)−V1(x1)].

-Suppose first that x2 < x∗
2. Using the monotonicity of φ

and the existence of limits for φ1
1, there exists x∗

1 such that
for all x1 > x∗

1,

φ1(x)

ψ
≥
φ1

1(x1)

ψ
≥
C1

ψ
− ε′/2,

which leads to

λ1 −
φ1(x)

ψ
≤ λ1 −

φ1(x)

ψ
+ ε′/2 ≤ −ε′/2.

Hence:

∆F (x) ≤ −ε′/2(ψ − 1)ψx1 + γ1(λ2 − φ2(x) + ∆V (x1)).

V being bounded and all transitions being bounded, (λ2 −
φ2(x) + ∆V (x1)) is bounded by a positive constant K and
we can then choose x∗

1 such that ∀x1 > x∗
1, ψ

x1(ψ−1)ε′/2−
Kγ1 > ε, which leads to ∆F (x) ≤ −ε.

- Consider now the case x2 ≥ x∗
2. Since φ1(x) ≥ φ1

1(x1)

and φ1
1(x1) converges to C1, the term ∆ψx1 = (λ1−

φ1(x)
ψ

)(ψ−

1)ψx1 ≤ (λ1−
φ1

1
(x1)

ψ
)(ψ−1)ψx1 is bounded by a constantK′

independent of x2. (Recall that for x1 > x∗
1, λ1−

φ1

1
(x1)

ψ
< 0).

Hence

∆F (x) ≤ K′ + γ1(λ2 − φ2(x) + ∆V (x1))

≤ δ +K′ + γ1((P1 − I)V (x1) + λ2 − φ1
2(x1)),

= δ +K′ − γ1ε.

Choosing γ1 such that δ +K − γ1ε ≤ −ε, we have shown
that the drift of F1 is negative outside a finite set. 2

Looking at the latter proof, we can partially release the
assumption of monotonicity of φ. Define

C′
1 = lim

x1→∞
inf
x2

φ1(x), (8)

C′
2 = lim

x2→∞
inf
x1

φ2(x), (9)

Note that we might however obtain a gap between sufficient
and necessary condition of stability due to the fact than the
C′
i and Ci might not coincide in general. We give here only

sufficient conditions of stability.

Theorem 3. Assume that (λ1, λ2) verify:

λ1 < C′
1 and λ2 < 〈φ1

2, π
1〉,

or λ2 < C′
2 and λ1 < 〈φ2

1, π
2〉.

Then X is positive recurrent.

Proof: The proof follows from the Lyapunov-Foster crite-
rion [12] with the Lyapunov function defined in the previous
theorem. The monotonicity assumption used in the latter
argument is that for all ε′, for x1 sufficiently large, for all

x2, φ1(x) > C1 + ε′, and hence λ1 − φ1(x)
ψ

≤ −ε′, for large

x1. This can hence be replaced by assumption (8) since for
large x1, φ1(x) ≥ C′

1 + ε′. 2
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4. OPTIMAL STATIC LOAD BALANCING
Using the stability conditions for the system with fixed

arrival rates, and maximizing the sum of arrival rates λ1 +
λ2 = ν, we directly get the following characterization of the
maximum intensity νmax

S :

Proposition 1. The maximal intensity leading to a sta-
ble system when arrival rates are fixed is given by:

νmax
S =

max[ max
0≤λ2≤C2

(λ2 + 〈φ1
2, π

1〉), max
0≤λ1≤C1

(λ1 + 〈φ2
1, π

2〉)],

= max[φ1(1, 0), φ2(0, 1), max
0<λ2≤C2

(λ2 + 〈φ1
2, π

1〉),

max
0<λ1≤C1

(λ1 + 〈φ2
1, π

2〉)].

Writing λ1 = ην and writing explicitly the dependence of
πi with respect to η, the optimal load balancing is given by:

(λ∗
1, λ

∗
2) =ν(η, 1 − η),

= arg max
η∈[0,1]

[ν(1 − η) + 〈φ1
2, π

1(η)〉),

νη + 〈φ2
1, π

2(1 − η)〉)].

In the particular simpler instance (M ′), writing Ci = C,
the optimal static load balancing further simplifies to:

Proposition 2. Consider the instance (M ′) where

φi(x) = φi(xj) = φ(xj), j 6= i.

νmax
S = max

λ1∈[0,C]

(

λ1 +

∞
∑

n=0

φ(n)(
λ1

C
)n(1 −

λ1

C
)

)

,(10)

= max
η∈[0,1]

[

ηC +
∞
∑

n=0

φ(n)ηn(1 − η)

]

, (11)

= max
η∈[0,1]

G(η). (12)

where G(η) = ηC+(1−η)φ̃(η) and φ̃(η) is the z−transform
of φ at point η.

This Proposition can be interpreted in the following way:
when class 2 is close to be unstable, and class one is stable,
the rate offered to class 2 is the linear combination of two
’virtual’ rates C and δ̃(η), the weights of this combination
being η and 1 − η.

In the case of purely interfering processors (model (M’)),
we can further characterize the optimal static solution in
terms of η∗, the value of η maximizing G and of the sequence
δ(n) = (n+ 1)(φ(n) − φ(n+ 1)), δ̃ being its transform.

Proposition 3. Consider the instance (M ′) where

φi(x) = φi(xj) = φ(xj), j 6= i.

We have the three following cases:

1. If C ≤ φ(0)−φ(1), then the optimal static load balanc-
ing consists in sending all the incoming traffic to only
one queue, i.e., η∗ = 0.

2. Let C > φ(0) − φ(1) and suppose that the equation

δ̃(η) = C,

has a solution η∗ ∈]0, 1[. Then it is optimal to balance
the load unevenly between the two servers, η∗C being
the intensity of customers directed to queue 1.

3. Let C > φ(0) − φ(1) and suppose that the equation

δ̃(η) = C,

has no solution on ]0, 1[, then to load equally the two
processors is optimal.

Proof: We have G′(η) = C − δ̃(η). As φ is decreasing,

δ(n) ≥ 0 for all n and hence δ̃ is an increasing function. If

C − δ̃(0) ≤ 0, then G′(η) ≤ 0, and its maximum is attained

for η = 0. If C − δ̃(0) ≥ 0, then G′(0) ≥ 0 for η ≥ η′, with

η′ the solution of δ̃(η′) = C. 2

We illustrate the result on the following example.

Example 4 (’geometrically’ coupled processors).
Consider the symmetric allocation :

φi(x) = C + axj , j 6= i,

with a < 1. νmax
S is given by:

νmax
S = max

η∈[0,1]

[

ηC +

∞
∑

n=0

(an + C)ηn(1 − η)

]

,

= max
η∈[0,1]

[C + ηC + (1 − η)
1

1 − aη
].

This leads to the following cases:

1. If C ≤ 1 − a, then the optimal static load balancing
consists in sending all the incoming traffic to only one
queue, i.e., η∗ = 0, νmax

S = 1 + C.

2. If C > 1 − a and (1 − a)C < 1, then it is optimal to
balance the load unevenly between the two servers with:

η∗ = 1/a(1 −

√

1 − a

C
),

which gives

νmax
S =

1

a
(1 + (1 + a)C − 2

√

C(1 − a)).

3. If C > 1−a and (1−a)C ≥ 1, then to load equally the
two processors is optimal, i.e., η∗ = 1 and νmax

S = 2C.

The figure 3 and 4 and 5 illustrate the different scenarios
for the optimal static load balancing. The stability region
of the system with static load balancing is the union of two
regions defined respectively by conditions (2) and (3). The
functions defining the frontiers of these regions are:

L1 : η 7→ 〈φ1
2, π

1(η)〉,defined on [0, C1],

and L2 : η 7→ 〈φ2
1, π

2(η)〉, defined on [0, C2].

If these functions are sub-linear, i.e.,

L1(η) ≤ ηφ1
2(0) + (1 − η)C1,
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L2(η) ≤ ηφ2
1(0) + (1 − η)C2,

then the best static load balancing is to send all the traffic
to one queue or half of the traffic to both. This the case for
weakly coupled processors for which L1 and L2 are linear as
shown in Figure 3. More generally, this is the case if L1 and
L2 are convex functions.

On the other hand, if there exist values of η for which
〈φij , π

i(η)〉 ≥ ηφij(0) + (1 − η)Ci, then a non-trivial static
load balancing, (i.e., different from sending all the traffic to
one queue or half of the traffic to both queues) is optimal.
This the case on Figure 4 where L1 and L2 are concave
functions or in Figure 5 where L1 and L2 are neither convex
nor concave.

In the following section, a simple bound on the maximum
intensity that the system can support is explained, given
further insights on the cases where the 2 frontiers are convex
functions.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

λ1

λ1

νmax
S = λ∗

1 + λ∗
2

Figure 3: Stability region of weakly coupled proces-

sors with static load balancing, the frontiers of the

stability regions are linear

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

S λ1

λ1

νmax
S = λ∗

1 + λ∗
2

Figure 4: Stability region of geometrically coupled

processors with static load balancing, the frontiers

of the stability regions are concave
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Figure 5: Stability region of coupled processors with

general frontiers

5. A SIMPLE UPPER BOUND
In this section, we consider an arbitrary number of queues.

Define S(x) =
∑K

i=1 φi(x). An upper bound of νmax is ob-
tained by replacing the system by a unique queue with total
service rates S̄ = maxx S(x).

Proposition 4. We have the following upper bound:

νmax ≤ S̄

Proof: Consider a system such that ν > S̄. Consider the
Lyapunov function F (x) = x1+x2. ∆(x) = ν−

∑K

i=1 φi(x) ≥
ν−S̄ > 0. Using the Foster criterion, the system is unstable.
2

This simple result can actually be better understood and
refined using stochastic comparisons. Denote Y the process
corresponding to a M/M/1 queue with transitions ν and S̄.

Proposition 5. Y and |X| are stochastically compara-
ble:

Y (t) ≤st |X|(t), ∀t.

Proof: We construct the following coupling. Consider the
Markov process (X̃, Ỹ ) having the following transitions:

(X̃, Ỹ ) → (X̃ + ei, Ỹ + 1) with rate λi(x), ∀i.

(X̃, Ỹ ) → (X̃ − ei, Ỹ − 1) with rate φi(x), ∀i

(X̃, Ỹ ) → (X̃, Ỹ − 1) with rate S̄ − S(x).

The marginals of (X̃, Ỹ ) have the same laws as X and Y
which concludes the proof. 2

In the case of ’weakly’ coupled processors or more gener-
ally in the case where the functions L1 and L2 are convex,
then this bound allows to conclude than no dynamic load
balancing can improve stability upon static load balancing.

Example 5 (2 weakly coupled processors). Consider
φi(x) = 1 if xj = 0, j 6= i and φi(x) = ai if xj > 0, j 6= i.
We get:

νmax
S = S̄ = max (1, a1 + a2).

It follows that

νmax
S = νmax = S̄.
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On the other hand, in the case of ’geometrically’ coupled
processors, this bound is strictly bigger than νmax

S . This thus
suggest that there is a possible improvement of the stability
condition using a dynamic scheme.

Example 6 (’geometrically’ coupled processors).
Consider the symmetric allocation φi(x) = C + axj , j 6= i
with a < 1. For this allocation:

S̄ = max(1 + C, 2a+ 2C).

It follows that if C > 1 − a, then νmax
S < S̄.

6. DECOUPLED DYNAMIC

LOAD BALANCING
In this section, we study some load balancing schemes

depending on the number of customers in one queue only,
i.e.,

λ1(x) = λ1(x1),

λ2(x) = λ2(x1) = ν − λ1(x1).

In the following, we characterize the optimal schemes within
this class and we show in the following that this class of
routing already allows a gain of stability for certain capac-
ity allocation functions.

6.1 Stability condition
As previously, define (when it exists) the following distri-

bution:

π1(x1) =

∏x1

z=1
λ1(z)

φ1

1
(z)

∑

x1

∏x1

z=1
λ1(z)

φ1

1
(z)

.

Theorem 7. Under the following conditions:

lim sup
x1

λ1(x1) < C1 (13)

and ν < 〈λ1 + φ1
2, π

1〉, (14)

the process X is stable.

Proof: The proof uses a Lyapunov function exactly along
the lines of Theorem 2. It is therefore postponed to the
Appendix. 2

6.2 Stochastic comparisons
In the specific case of purely interfering processors, (i.e.,

φi(x) = φj(xj)), and when λ1 is a decreasing function, the
stability results can once again be interpreted in terms of
a dominant system via appropriate stochastic comparisons.
This also leads to general performance bounds. Note how-
ever that the monotonicity of the Markov processes is not
verified anymore in the general case, which makes this tech-
nique inapplicable. Consider the process X̃ having the tran-
sitions:

q̃(x, x− e1) = C1,

q̃(x, x− e2) = φ2(x1),

q̃(x, x+ e1) = λ1(x1),

q̃(x, x+ e2) = ν − λ1(x1),

Given the considered monotonicity of the transitions, we
have the following comparison between the original process
(with the considered decoupled transition) and X̃:

Proposition 1. X and X̃ are stochastically comparable
with the coordinate-wise partial order, i.e., for ordered initial
conditions:

X(t) ≤st X̃(t),∀t.

Proof: We construct the following coupling, i.e. a Markov
process (Y, Ỹ ) preserving Y (t) ≤ Ỹ (t) on its trajectories and

having marginals with laws equal to the laws of X and X̃.
The coupled transitions are given by:

(Y, Ỹ ) → (Y + e1, Ỹ + e1),

with rate λ1(Y1) if Y1 = Ỹ1,

(Y, Ỹ ) → (Y, Ỹ + e2),

with rate λ1(Y1) − λ1(Ỹ1) ≥ 0 if Y1 ≤ Ỹ1,

(Y, Ỹ ) → (Y + e2, Ỹ + e2),

with rate 1 − λ1(Y1) if Y1 ≤ Ỹ1,

(Y, Ỹ ) → (Y − e1, Ỹ − e1),

with rate C1,

(Y, Ỹ ) → (Y − e1, Ỹ ),

with rate φ1(Y2) − C1 ≥ 0,

(Y, Ỹ ) → (Y − e2, Ỹ − e2),

with rate φ2(Ỹ1),

(Y, Ỹ ) → (Y − e2, Ỹ ),

with rate φ2(Y1) − φ2(Ỹ1) ≥ 0.

2

6.3 Optimal decoupled load balancing
We define a specific policy that we call ’simple’ by the

parameter N ∈ N with:

λN1 (x1) = ν, x1 ≤ N − 1,

λN1 (x1) = 0, x1 ≥ N.

The stability condition given by equation (13) is depends
on λ1 through the stationary measure π1. Let π1,N = πN

the stationary measure associated with a simple routing of
parameter N . We show in the following Proposition that the
stationary measure π1 associated with any routing λ1(·) can
be expressed as a convex combination of stationary measures
of simple load balancing. Similar ideas were used to derive
the optimal insensitive load balancing in [3].

Proposition 6.
Let π1 be the stationary measure associated with an ad-

missible (stable) routing λ1(·). There exists positive weights
(α(N))N≥0, summing to one (|α|1 = 1) such that:

π(x) =
∑

N≥0

α(N)πN (x). (15)

Proof: The reversibility of the stationary measure of a one
dimensional birth and death process implies that π1 verifies:

λ1(x1) =
π1(x1 + 1)

π1(x1)
φ1

1(x1), (16)
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Consider an admissible π1. Because of the routing con-
straints, λ1(x1) ≤ ν, hence we have for all x1:

π1(x1 + 1) ≤ νπ1(x1)φ
1
1(x1).

π1 is hence equivalently defined by a function β through:

π1(x1) = β(x1) +
1

ν

π1(x1 + 1)

φ1
1(x1)

.

Let α(N) = β(N)

πN (N)
. Define the stationary measure π′(x1) =

∑

N≥0
β(N)

πN (N)
πN(x1) =

∑

N
α(N)πN(x). Using the defini-

tion of the simple routing we get that:

π′(x1) = β(x1) +
∑

N≥x1+1

α(N)πN (x1),

π′(x1) = β(x1) +
∑

N≥x1+1

α(N)
1

ν

πN(x1 + 1)

φ1
1(x1)

,

π′(x1) = β(x1) +
1

φ1
1(x1)ν

∑

N≥x1+1

α(N)πN(x1 + 1),

π′(x1) = β(x1) +
1

φ1
1(x1)ν

π′(x1 + 1).

As π′ and π1 follow the same recursive equations, there are
equal. Moreover, because each πN sums to 1, |α|1 = 1. 2

The next Proposition characterize the stability condition
derived for a given intensity ν using the previous Proposi-
tion.

Proposition 7. If the couple ν, λ1 lead to a stable system
with stationary measure πν,λ1 , then:

ν ≤ 〈δ1, πν,λ1〉,

where δ1(n) = φ1
1(n) + φ1

2(n).

Proof: Given that λ1(x1) = φ1
1(x1)

π(x1+1)
π(x1)

, the left term of

condition (14) can be written
∑

x1
(π(x1 + 1)φ1

1(x1 + 1) +

φ1
2(x1)π(x1)). (Remark also that φ1

1(0) = 0). 2

Of course, a symmetric situation where the routing de-
pends only on x2 would lead to the symmetric stability con-
dition:

ν ≤ 〈δ2, πν,λ2〉,

The previous Proposition has an easy and important inter-
pretation. The maximal arrival intensity equals the depar-
ture rate of the system when class 2 goes to infinity, which
is the sum of the service rates φ1

1(n) + φ1
2(n), weighted by

the probability than X1 = n.

We now aim at maximizing the left term of (14) by choos-
ing an appropriate λ1. This can be done with the help of
Proposition 6. Define νN as the stability condition of a
simple routing with parameter N , and νmax

D the maximum
routing intensity in the class of one dimensional routing.
Further define:

N∗ = arg max
N≥0

{〈δ1, πν,λ1〉, 〈δ2, πν,λ2〉}.

The following Theorem is the main result of this Section:

Theorem 8. We have the two following cases. If 0 <
N∗ < +∞, then a dynamic simple routing is optimal and
νmax
D is the maximal solution of one of the polynomial equa-

tions of degree N + 1:

xN+1 =
N
∑

n=0

φ1
2(n)φ1

1(n+ 1) . . . φ1
1(N)xn, (17)

xN+1 =

N
∑

n=0

φ2
1(n)φ2

2(n+ 1) . . . φ2
2(N)xn, (18)

Otherwise, if N∗ = 0 or N∗ = +∞, i.e., the supremum of
the solutions of (17) and (18) are not attained for a finite
N or are attained for N = 0, then a static load balancing is
optimal.

Proof: Fix a routing λ1, an intensity ν and let π1 the asso-
ciated stationary measure. Using the previous Propositions,
the considered system is stable if:

ν ≤
∑

n

δ1(n)π1(n).

Hence,

νmax
D ≤

∑

n

δ1(n)
∑

N

α(N)πN (n) ≤ sup
N

〈δ1, πN 〉. (19)

Introduce the function g(η,N) = 〈δ1, πη,N〉. Using classical
theorems on power series, if η > C1, then g(η,N) → δ1(0) ≤

νmax
S , whenN → ∞. Hence if the supremum of 〈δ1, πν

max,N 〉
is attained for N = ∞, then

νmax
D = max

η≤C1

〈δ1, πη,∞〉 = νmax
S .

Similarly, if the supremum is attained for N = 0, then a
static load balancing corresponding to sending all the in-
coming traffic to only queue is optimal. If the supremum
is attained for a finite value 0 < N∗ < ∞, we can further
simplify equation (14) to get:

νπN,ν(N) ≤
N
∑

n=0

φ1
2(n)πN(n),

which rewrites:

νN+1 ≤
N
∑

n=0

φ1
2(n)φ1

1(n+ 1) . . . φ1
1(N)νn.

Let g(ν) = νN+1 −
∑

n≥0 φ
1
2(n)φ1

1(n+ 1) . . . φ1
1(N)νn. Since

g(0) < 0, g is continuous and diverging to infinity, g has at
least one positive real root. Provided that the maximal root
is greater than C1 +C2, ν

max
D is hence the maximal solution

of the equation:
∑

n≥0

φ1
2(n)φ1

1(n+ 1) . . . φ1
1(N)xn = xN+1.

Equation (18) is given by the symmetric situation where
λ1(x) = ν − λ2(x2). 2

It follows from the proof of the previous Theorem that:

Corollary 1. If the optimal static load balancing is not
given by λ ∈ {(ν, 0), (0, ν), (ν/2, ν/2)}, then νmax ≥ νmax

D >
νmax
S .
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We come back again to our main example and identify the
different cases in the light of the results of this section:

Example 9. Consider the symmetric allocation :

φi(x) = C + axj , j 6= i, with a < 1.

If C > 1−a and (1−a)C < 1, the optimal static load balanc-

ing is given by η∗ = 1/a(1 −
√

1−a
C

) 6= 0, 1 and the optimal

decoupled load balancing corresponds to a simple load bal-
ancing with a finite parameter N , νmax

D being Cy with y the
root of:

CyN+1 =
1 − yN+1

1 − y
+

1 − (ay)N+1

1 − ay
.

The results are illustrated on Figures 5 to 9 for different
C and a. For a = 0.8 and C = 0.9, we observe a gain of
around 10 percent:

νmax
D ' 1.11νmax

S .

Note that the dynamic scheme employed uses only the state
of the first queue as information the system. This suggest
that more sophisticated schemes like a switch-curve type
routing might improve very significantly the stability condi-
tion.

5 10 15 20

2.0

2.1

2.2

2.3

2.4

νmax
S

νN

Figure 6: νN and νmax
S , when N varies, a = 0.8, C =

0.9.
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2.6

2.8

3.0

3.2

νmax
S

νN

Figure 7: νN and νmax
S , when N varies, a = 0.8, C =

1.3.
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6.1

6.2

6.3

6.4

νmax
S

νN

Figure 8: νN and νmax
S , when N varies, a = 0.8, C = 3.

0 5 10 15 20

1.5

2.0

2.5
νmax
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νN

Figure 9: νN and νmax
S , when N varies, a = 0.4, C =

1.3.
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7. CONCLUSION
We have found Lyapunov functions for a system of two

coupled processors with static or decoupled dynamic load
balancing. We then have characterized the optimal static
load balancing and the optimal decoupled load balancing
and have shown that dynamic load balancing may improve
stability. We expect to generalize these results to higher di-
mensions in a near future. Also, these results suggest that a
switch-curve type dynamic load balancing is generally opti-
mal and might improve significantly the stability condition
for certain service rates. An interesting future line of re-
search is to jointly optimize the service rates and the load
balancing scheme, which might allow to draw stronger con-
clusions.
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APPENDIX

Proof of Theorem 7:

Under condition (13), π1 is well defined. Then choose ψ >
1 such that λ1 −

C1

ψ
< −ε′. Then, fix ε = ν −

∑

x1
(λ1(x1) +

φ1
2(x1))π

1(x1), and consider the (one-dimensional) Poisson
equation:

λ1(x1)(V (x1 + 1) − V (x1)) + φ1
1(x1)(V (x1 − 1) − V (x1))

= −(ν − λ1(x1) − φ1
2(x1) + ε). (20)

or written differently:

(I − P1)V = λ2 − φ1
2 + ε,

(I − P1)V = ν − λ1 − φ1
2 + ε,

with P1 the corresponding Markovian kernel. Applying again
the results of [1], there exists a bounded solution to this
Poisson equation if condition (13) is fulfilled together with
〈ν−λ1 +φ1

2 + ε, π1〉 = 0, which we have supposed. Let then
V be such a solution.

Using the existence of uniform limits for φ2, we have: For
all δ > 0, there exists x∗

2 such that ∀x1, and ∀x2 ≥ x∗
2:

|φ2(x) − φ1
2(x1)| ≤ δ.

Let δ < ε′ and consider the following Lyapunov function:

F (x) = ψx1 + γ1(x2 + V (x1)),

with γ1 a strictly positive constant to be chosen. Since ψ >
1, F (x) → ∞, when |x| → ∞ and F is hence a proper
Lyapunov function. The drift of F is:

∆F (x) = (λ1(x1)−
φ1(x)

ψ
)(ψ−1)ψx1+γ1(λ2−φ2(x)+∆V (x1)),

-if x2 < x∗
2 and x1 > x∗

1,

∆F (x) ≤ −ε′(ψ − 1)ψx1 + γ1(λ2(x1) − φ2(x) + ∆V (x1)).

V being bounded and all transitions being bounded, (λ2(x1)−
φ2(x)+∆V (x1)) is bounded by a positive constantK and we
can then choose x∗

1 such that ∀x1 > x∗
1, ψ

x1(ψ−1)ε′−Kγ1 >
ε which leads to ∆F (x) ≤ −ε.

- If x2 ≥ x∗
2, using that:

∆ψx1 ≤ K′

∆F (x) ≤ K′ + γ1(λ2(x1) − φ2(x) + ∆V (x1))

≤ δ +K′ + γ1((P1 − I)V (x1) + ν − λ1(x1) − φ1
2(x1)),

= δ +K′ − γ1ε.

Choosing γ1 such that δ + ν(ψ − 1) − γ1ε ≤ −ε, we have
shown that the drift of F is negative outside a finite set. The
positive recurrence of X then follows from the Lyapunov-
Foster criterion. 2
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