
XAV: A Tracing Framework for Exploring Large

Network Simulation Outputs

Ryad Ben-El-Kezadri
LIP6, Université Paris VI,

104 avenue du Président Kennedy
75016 Paris - France

ryad.bek@lip6.fr

Guy Pujolle
LIP6, Université Paris VI,

104 avenue du Président Kennedy
75016 Paris - France

guy.pujolle@lip6.fr

Farouk Kamoun
CRISTAL, Université de la Manouba,

Campus Manouba, 2010 - Tunisia

frk.kamoun@planet.tn

ABSTRACT

This paper presents our ongoing works towards visual exploration

of large network simulation outputs. Visual exploration allows

users to search through simulation traces by using multi-

dimensional representations of the network in an intuitive and

interactive way. To speed up trace file exploration, we propose to

store the simulation events according a format, namely XAV, that

i) exploits the multidimensional nature of users requests and ii)

allows quick identification of the packet paths through the

network. XAV files are stored in a database to simplify data

manipulation. The XAV tracing framework has been implemented

in the NS-2 simulator and tested over a wireless ad-hoc network

composed of 25 nodes. The performance evaluation shows that

XAV enables to extract about 1000 packet paths per second from

100 MB trace files.

Categories and Subject Descriptors

I.6 [Simulation and modeling]: Simulation Output Analysis;

H.2.1 [Database Management]: Logical Design – Data models;

H.2.8 [Database Management]: Database Applications –

Statistical databases.

General Terms

Standardization, Design.

Keywords

Network simulation, Exploration, Database, Data path, Trace file,

XML, XQuery.

1. INTRODUCTION
Networks are becoming increasingly large, dynamic and complex.

In this demanding environment, the simulation tools are not only

expected to faithfully simulate networks, but also to enable users

to understand the whys and hows of the obtained simulation

results. The larger and more complex the networks, the larger the

simulation traces are and the more users will need freedom to

explore the simulation outputs. Data exploration goes beyond

traditional data exploitation as it allows the user to navigate and

interact intuitively with the outputs. Contrary to classic data

exploitation which limits the analysis to general and surface

examinations, data exploration enable the users to enter in the

trace files and to access every piece of information they contain.

Data exploration relies on extensive trace file processing. Trace

processing is a complex task because the useful information can

be deeply buried into the files. Two processing methods can be

distinguished at this level. In the traditional method, a procedural

language is used for filtering and aggregating the relevant trace

records. Huginn [1] as the majority of post processing tools relies

on this principle. Huginn allows the visualization and interaction

with NS-2 wireless traces at the MAC level. The Huginn

evaluation engine reads the trace in sequential order, correlates

the events of interest and finally generates an intermediate

network representation with which the user can interact. The

problem of this approach is that the filtering and the correlation of

the send events with their corresponding receive events on the

MAC layer are complex, memory-expensive, and involve a lot of

code. The second method uses non procedural languages. Non

procedural query languages such as SQL or XQuery do not

require writing traditional programming logic. Users only

concentrate on defining the inputs and outputs rather than the

programming steps required in a procedural language. Non

procedural languages also have the advantage to work with

databases which provide built-in indexing facilities to speed up

access to data. Non procedural languages relieve applications

from complex memory management as most underlying functions

are delegated to an external processor. To our best knowledge,

JTrana [2] is the only tool that uses a database management

system (DBMS) to process the simulation outputs. JTrana

displays general information on the network, nodes remaining

energy level and packet statistics. Different tables are used for

packet events, nodes movements and energy but each table row

roughly corresponds to an event record. Such use of DBMSs is a

clear step towards innovative applications. However, a model that

captures the fine structure of the simulation outputs has not yet

been defined for real time exploration. Indeed, JTrana does not

perform well with large trace files [3] and has not been designed

for visual exploration.

Data exploration will rely on new paradigms. Until now, for

reasons of simplicity, the post processing applications have been

developed separately, each one operating on potentially different

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

WNS2, October 23, 2008, Athens, GREECE.

Copyright © 2008 ICST ISBN #978-963-9799-31-8.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4264
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4264

simulation outputs. For example, the popular NS-2 simulator [4]

generates NAM files for specific animation purpose and TR traces

for packet and queue statistics analysis. Specific formats have

also been released to provide statistics on network components

and flows [5]. In future systems, the standalone applications will

be replaced by an interconnected set of services. At the center of

the system, the exploration service will act as a portal projecting

representations of the network from which users can interact,

navigate and launch other services.

The XML tracing framework of Yavista (XAV) has been built to

support the various requirements involved in these tasks. Yavista

is a post processing toolset dedicated to wireless simulation

exploration [6], [7]. Yavista directly instruments the simulators in

neutral language. Yavista neutral language is a simple, highly

expressive, and well defined declarative language dedicated to

network simulation. It operates as an interface between the post

processing layer and the source layer. From this interface,

simulators appear as neutral code generators and only distinguish

themselves by non functional aspects such as performance,

completeness (number of protocols implemented) and ease of use.

XAV and Yavista conceptual architecture is described in figure 1.

Figure 1. Yavista/XAV conceptual architecture.

The XAV framework relies on the XML standard [8] and XML

enabled databases. XML enabled databases are extensions of

RDBMS which transparently map the XML documents into their

own data structures. Users access the XML data through a non-

procedural query language called XQuery [9]. XQuery acts much

like SQL. It has been designed to select the XML data elements of

interest, reorganize them and return the results in the desired

form.

XAV final objectives are the followings:

i. Allow interaction with simulation outputs: an important

feature of XAV is to define the dimensions along which the

user can interact (protocols, time and space) and to model

them as first class items in the trace files. In comparison, flat

trace files only expose one implicit entry point, this latter

being the first line of the file and having no type.

ii. Allow data navigation: the second important feature of XAV

is to be data-path oriented: under XAV, the complete path of

a packet in the network can be retrieved from an ID. As a

result, XAV outputs are not considered as independent data

records but as collections of data paths. Furthermore, XAV

data lie in visible contexts and these contexts can be used by

the processing tools to find the relationships between the

packet paths.

iii. Seamless integration into simulators: The integration of

XAV does not require modifications in the protocol of

simulators. Only the tracing module changes. XAV actually

adds two minimal preformatting stages. The slowest, i.e. the

copy of XAV outputs in the database, is done at 200MB/mn

through a single native DBMS command.

iv. Simplify post processing tools design: Under XAV, the

memory management and the query processing are handled

by external components. Memory management which is

critical, especially when processing very large amount of

data, is moved from the applications to the database and the

hard coded filtering is replaced by XQuery commands.

Complex intermediate representations are no more needed

because the returned results are formatted on-demand

directly from the simulation outputs.

v. Overcome the 100 MB and 1 GB trace size limits: The

minimum time to parse a flat file of a hundred of MB with an

AWK script1 is about ten seconds. As complex queries often

need to scan documents multiple times (to retrieve

preliminary information) the response time may not be

tolerable for users. XAV outperforms traditional systems for

targeted queries, that is to say queries that retrieve a small set

of closely related tuples. The efficiency of these queries is

especially important because they are extensively used for

data exploration.

XAV architecture and performance for traditional service delivery

have been discussed in [3]. This paper covers the interaction and

navigation processes.

The rest of this paper is organized as follows. Chapter 2 describes

the practical implementation of XAV in NS-2. Chapter 3 focuses

on navigation and data path extraction. Chapter 4 details the

interaction aspects between XAV and users. Chapter 5 evaluates

the performance of XAV under three test scenarios. Chapter 6

concludes the article and presents future works.

2. IMPLEMENTATION OF XAV UNDER

NS-2
XAV logs events as all tracing systems. XAV actually introduces

two changes to conventional systems:

1. Under XAV, packets data and send and receive nodes

operations are not stored together but in two distinct files.

The first file, namely the data file, lists the packets payloads

and headers generated during simulation with their different

fields: source, destination, type, length, etc. The second file,

namely the operation file, lists the nodes operations.

2. The nodes send and receive operations are not enumerated in

the same order as they are generated but are grouped

according their node id.

A basic XAV output is displayed in figure 2. The top of the figure

shows an excerpt from a data file. One RTP, one IP and one MAC

header are represented. Each header is identified by a unique ID.

1 AWK and Perl are the most commonly used tools to process

trace files.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4264
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4264

The RTP, IP and MAC headers respective IDs are RTP258,

IP258.1 and MAC258.1. Each header carries its own information.

For instance, the MAC header refers to a data frame (element

data) and this frame is sent by node 1 (attribute s) to node 5

(attribute d).

The lower half of figure 2 is extracted from an operation file. It

shows the operations carried out by node 1 (attribute n of nid) to

send an RTP packet. The syntax is a hybrid of XML and NS-2 TR

trace formats [10]. The AGT (agent), RTR (router) and MAC NS-

2’s literals relate to the application (END2END), network

(NETWORK) and MAC (LAN) layers of the TCP/IP stack. The

:r, :s, :f and :D literals have also been preserved to help

understanding. They indicate whether the packet is received (:r),

sent (:s), dropped (:D) or forwarded (:D) by the layer. However,

contrary to NS-2, XAV does not log the payload and header fields

in the operation records. Only the header IDs are written. These

IDs reference the data stored in the data file. Thanks to these

pointers, the packet information can be retrieved from anywhere

in the operation file although it is only stored once in the data file.

Figure 2 shows three pointers in the operation file referencing the

same RTP object in the data file.

Figure 2. XAV data file (on top) &

operation file (on the bottom).

Figure 3 extends the illustration of the pointer mechanism to the

network scope. As we can see, the data are not only shared within

nodes but along the whole packet path. As an example, the

link/LAN layer header (in green in figure 3) is referenced by all

MAC entities (transmitter and receivers) in the LAN. Data sharing

is particularly useful for shared medium access networks and

multicast protocols because data may be replicated hundreds

times in these environments.

A XAV file can be transformed into an equivalent NS-2 flat trace

file by recopying the header and payload fields of the data file

into the corresponding operation tags. However, the reverse is not

true: there is no secure method to convert an NS-2 TR file to

XAV. Indeed, there are cases where the receive operations can

not be surely reassociated to the corresponding send records,

especially for packets that do not contain the sender address [1].

Figure 3. Sequence of tracing operations at the network scope.

Under XAV, all headers and data payloads whose content remains

unchanged over the packet paths share the same ID. Several

methods for distributing IDs can guarantee this property. The

method that we propose is simple and well suited to mobile ad-

hoc networks. An ID (or headerID) such as “MAC258.1” is the

concatenation of a protocolID, a bufferID and a nodeID.

protocolID differentiates headers from different protocols. In our

current implementation, the set of protocolID values is

{“RTP”,”AODV”,”IP”,”MAC”}. The protocol headers (and the

payload) encapsulated in the same frame have the same bufferID.

This value is returned by the uid() built-in function of the

common packet header class of NS-2. The ‘uid()’ static variable

of NS-2 is incremented each time a new packet structure is

allocated in the protocol stack. The uniqueness of the uid()s is

reinforced particularly in the 802.11 MAC protocol for the RTS,

CTS, ACK frames and for the AODV messages as the function

which allocates frame buffers is not called for these packets.

nodeID contains the MAC address of the node which sends the

packet, when logging is performed at the RTR (NETWORK) and

MAC (LAN) layers2 and the null value when logging is done at

the AGT (END2END) layer. nodeID is really useful only at the IP

layer to recycle the headerID over the data end-to-end path.

Indeed, the IP header can not be shared over the whole path

2 The nodeID is set to -1 for the ACK and CTS packets.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4264
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4264

because several of its fields are modified in the routers when

forwarding the packet.

When a protocol receives a Service Data Unit (SDU) from an

upper layer or sends a Protocol Data Unit (PDU) to a lower layer,

XAV generates the headerIDs of all headers in the data unit and

logs them along with the rest of the operation records in the

operation file. An equivalent process is applied when a packet is

received at a node. The headers content is logged in the data file

at the transmitter side during the packet transmission in the

protocol stack.

The implementation of XAV does not need to modify the code of

NS-2 protocols3. Minor changes are introduced in the ns-

cmutrace.tcl, ns-mobilenode.tcl and ns-lib.tcl scripts to interface

the main TCL simulation script to the new C++ tracing module.

In the tracing module, the major changes concern basetrace.cc,

trace.cc and cmu-trace.cc. In basetrace.cc, we have added to the

existing NAM and TR trace channels two additional Tcl channels

to write in the operation and data files. Control functions have

been added in trace.cc to open (attach), close (detach) and write

into the XAV files from the main simulation script. The core of

XAV is implemented in cmu-trace.cc. Actually, the interfacing of

XAV is very simple because NS-2 tracing module is flexible and

already supports other tracing frameworks such as NAM and TR.

3. DATA PATH NAVIGATION
Once the XAV files are put into the database, XQuery [8] is used

to extract the data. The XQuery FLWOR expression allows to

write join queries in a similar way to the familiar SQL select

command. FLWOR stands for "for, let, where, order by, return",

namely the five clauses that are used in the expressions :

� the for clause allows to set up an iteration over a set of XML

nodes;

� the let clause allows users to declare intermediate variables;

� the where clause selects the nodes of interest;

� the order by clause sorts data;

� finally, the return clause tells how to compose and format

the information to get back.

The id() built-in function allows to retrieve the header content

from the XAV pointers in the operation file. On the same

principle, the inverse function, idref(), is used to return all the

send and receive operations related to a headerID.

Figure 4 shows examples of data paths that can be extracted from

the headerIDs contained in a RTP packet. It is worth to note that

multiple views can be elaborated from a single RTP path

according the operating level of the post processing tools. For

example, in figure 4, two paths (at least) can be associated to the

RTP packet. The first one goes through the physical interfaces. It

represents the end-2-end path seen at the LAN level. The second,

namely the end-2-end path seen at the E2E level, only connects

the RTP sender and receiver. A data path is described by a set of

operations. A query returning the whole set of operations

involved in a RTP path at the E2E level is presented in figure 5.

3 Excepted to guarantee the uniqueness of the distributed uid()

values.

XPath [11] is used to move along the node hierarchy of the XML

trace. Its syntax is very similar to the one of Unix path names.

The first three instructions declare the operating levels supported

by the post-processing tool. The id() function4 in the for clause

finds all the RTP pointers in the operation file which reference the

given RTP packet. The let clause retrieves the nodes operations

from the RTP pointers.

Figure 4. Examples of path views elaborated from a

single packet path

The where clause puts in place the AGT (END2END) view. The

:* symbol matches all types of node operations. It can be changed

to :r or :s to select only the receive or send events. Finally, the

order by clause sorts the operations in time order. The query

returns the AGT:s and AGT:r operation records indicated in

figure 4.

Figure 5. Example of query returning the operations involved

in a RTP path at the E2E level.

The exploration service checks the nodes contexts to retrieve the

packet paths. The context of the nodes that these paths traverse

can be analyzed in their turn to exhibit relationships between

flows. More details on node contexts are provided in the

following sections.

4. INTERACTION WITH THE

SIMULATION OUTPUTS
Under XAV, the trace files generated by simulators are not

directly formatted as in figure 2. XAV raw outputs do not include

nid tags. These tags are added afterwards during a process that we

call “multidimensional formatting”. Actually, this process is very

fast because it parses the trace file in one pass and operates on a

record per record basis.

4 Due to technical constraints, the current implementation under

the MonetDB DBMS inverts the role of the id and idref functions.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4264
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4264

The role of multidimensional formatting is to organize the trace

file so that the locality of the queries can be exploited. Space,

time and observation level are three fundamental elements in data

exploration as they are commonly used abstractions for locating

oneself in the environment. The space dimension is described in

terms of physical entities such as nodes and networks. The time

dimension is made of time intervals (minute, hour, day, etc). The

protocol level dimension refers to the different layers of the

protocol stack (LAN, Network, End to End). The interactive

representation of the network is built in a way that the user can

move and interact along these axes.

Multidimensional formatting restructures the simulation outputs

in order to tie the interactive representation of the network to the

content of the trace file. Space formatting is a simple process

which involves grouping all operations related to a node in a node

container and the node containers in network containers. Protocol-

level formatting groups all operations related to a particular

protocol level in protocol-level containers. Finally, time

formatting arranges all operations occurring in the same periods

in time containers. XAV implements the protocol-level, time and

space containers as XML nested elements and scoped dimensions

[12]. Compared to a file system tree, the advantage of a

hierarchical XML structure is that all elements are enclosed in a

common context and are easily accessible through XPath.

In the current implementation, the nodes operations are logged

line-by-line in the operation file. The formatting program is a

short script which parses the operation file in one pass. The

operation records are filtered by node id (attribute @n), time

(attribute @time) and protocol level (tag name). A temporary file

hierarchy is generated during the XML trace scan as shown in

figure 6. A directory is created for each node encountered in the

operation file. A directory is created in the node directories for

each protocol level used by the nodes. The third directory level

gathers all operations occurring in the same time interval. At the

end of the scan, the file hierarchy is transformed into an XML tree

to form the final output. In the final output, an XML container is

associated to each directory in the file hierarchy.

Figure 6. Example of file hierarchy generated during

multidimensional formatting.

Figure 7 shows how the interactive representation of a

subnetwork is bounded to XAV. The lower half of the figure

represents the XAV output after the multidimensional formatting

stage and the copy of the files into the XAV database. The blue

spheres materialize the node containers. Each XML node

container has it own XPath context which encloses all E2E,

Network and LAN operations recorded by the network node

during the simulation. Actually, these spheres correspond to the

points from where the XQueries can attack the XAV database.

The top of the figure represents the avatar the user interacts with.

As we can see the interaction points in the network representation

have direct correspondences at the trace file level. These

correspondences subsequently improve the time needed to

retrieve the information of interest in the database.

xx

x
x

xx

x
x

xx

x
xxx

x
x

xxx

xxx

Figure 7. Multidimensional modeling of XAV outputs and

interfacing with the network avatar.

Figure 8 illustrates the interaction between the database and the

exploration service.

xx

x
x

xx

x
x

xx

x
xxx

x

xxx

xxx

Figure 8. Interactions between the XAV database and the

exploration service.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4264
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4264

The explorer extracts the network structure from the simulation

outputs along with the result of the XQuery. The interactive

representation is built by combining the two pieces of

information. The actual position of the network elements may

correspond to the physical location of the objects or be random.

Specific layout algorithms taking into account the traffic volume

can also be used as in [6] and [7].

5. PERFORMANCE RESULTS
This section evaluates the performance of XAV for extracting a

set of packet paths from the traces. The tests have been conducted

on a mobile ad-hoc network consisting of 25 nodes placed on a

regular grid. As illustrated in figure 9, the node transmission area

includes all direct neighbors and the carrier sense area the two-

hop neighbors. Ten CBR/RTP flows are established along the x

and y axes of the grid. The CBR traffic starts at time 0. The CBR

payload is 78 bytes long and each application generates a packet

every 100ms. The AODV protocol is used to compute the routing

tables. The routes used during the first second of simulation are

depicted in figure 10. The 802.11 protocol operates at 2 Mbps.

We use a PC with 3GB of RAM with Linux and the MonetDB

DBMS [13] (release “Feb 2008”). The MonetDB server which

holds the XAV database runs on the local machine. The queries

are sent through the Monet client interface. The resulting network

representations (ie figures 11, 14 and 17) are drawn by hand. We

use the trace format described in figure 2. Time and protocol-level

formatting are disabled.

At the tracing level, contrary to the original logic, we log all the

802.11 packets decoded by the MAC even when the packets are

not addressed to the MAC5. Logging these frames allows us to

have a more complete model of the data paths and to reveal the

intricate relationships between flows.

Figure 9. Traffic matrix and sensing areas.

5 Only the packets originating from the decoding area are

considered: as in the original framework, we do not log the

packets from the carrier sensing area.

Figure 10. Routes maintained by AODV during the

first second of the simulation.

The duration of the simulations varies from 1 to 100 seconds. One

second of simulation generates about 8500 operations and 1 MB

of trace. The operation file represents about 80% of the total

output size. It is composed of 2.5% of AGT records, 12% of RTR

records and 85.5% of MAC records on average.

5.1 Extraction of the paths originating from a

CBR source
The first test simulates the request of a user who selects a

CBR/RTP source in the interactive network representation and

asks for the list of packet paths originating from this node. The

horizontal paths returned by the exploration service are displayed

in figure 11. The result shows that the routes are recomputed at

time 24.7.

Figure 11. Horizontal paths followed by node 0

packets during the fifty first seconds of simulation.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4264
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4264

The XQuery expression used in this example is detailed in figure

12. The query is the same than the one of figure 5 except the two

nested for loops. The outer loop processes the end-to-end context

to extract the whole set of RTP headers generated by node 0. The

inner loop retrieves the packet paths from the header IDs.

Figure 12. Query returning the paths followed by node 4 data

packets at the network level.

The average response time of the nine CBR/RTP sources is

graphed in figure 136. The maximum values are obtained for node

0. The explanation is that node 0 runs two CBR applications (see

figure 8) and thus generates twice as much packet paths. The

minimum values correspond to the CBR sources that use the

shortest paths. As we can see, the average response time for a

100MB file size is 1 second. This is the time needed to extract

1200 packet paths from the database. The query actually returns

6800 records, each path being described by 5.7 records on

average.

0

0,5

1

1,5

2

2,5

0 20 40 60 80 100

Size of the simulation outputs (MB)

R
es

p
o

n
se

 t
im

e
(s

)

0

15000

#
 o

f
o

p
e
r
a

ti
o

n
s

e
x

tr
a

c
te

d

Mean
Max
Min

Figure 13. Average response time to extract the paths

originating from a CBR source.

5.2 Extraction of the paths flowing through

an IP router
The second test simulates the request of a user who selects a core

node in the interactive network representation and asks for the list

of flows forwarded by this node. An example of such request is

represented in figure 14.

6 The time needed to print the result is not considered. The time

spent by MonetDB to shred the trace into main memory at first

use is also ignored.

Figure 14. Paths flowing through node 8.

The query used in this example is presented in figure 15. The

FLWOR is very similar to the query used to retrieve the flows

originating from a node. The difference is that the outer loop has

to process the IP context (instead of the end-2-end one) to retrieve

the packets forwarded by the node.

Figure 15. Query returning the paths flowing through node 8

at the network level.

The average response time of the nine nodes in the center of the

network is represented in figure 16. The maximum (respectively

minimum) values correspond to the nodes with the highest

(respectively lowest) traffic loads. Processing 100 MB takes 1.5

seconds on average. The result contains about 7400 operations

which is the equivalent of 1200 packet paths.

0

0,5

1

1,5

2

2,5

3

3,5

0 20 40 60 80 100

Size of the simulation outputs (MB)

R
e
sp

o
n

se
 t

im
e
 (

s)

0

17000

#
 o

f
o

p
e
r
a

ti
o

n
s

 (
p

a
th

s)

e
x

tr
a

c
te

dMean
Max
Min

Figure 16. Average response time to extract the paths

forwarded by the core nodes.

(2500)

(2800)

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4264
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4264

5.3 Extraction of the paths competing for the

same medium
The last test simulates the request of a user who selects a node

and asks for the list of flows competing for medium access at this

node. Figure 17 shows an example of such request. It lists the set

of flows competing for air access in node 8 vicinity.

Figure 17. Paths competing for medium

access in node 8 vicinity.

Figure 18 presents the query corresponding to this request. As we

can see, the query processes the MAC context to retrieve the data

packets which have been received or dropped by node 8. The

distinct-value() function filters the 802.11 frames retransmitted at

the MAC layer. The condition on the position() function captures

a fingerprint of the traffic at node 8 by keeping only one out of

five MAC:D and MAC:r records.

Figure 18. Query returning the paths competing for medium

access in node 8 vicinity at the network level.

The average response time of the query of the 9 network core

nodes is graphed in figure 19. The max (respectively min) values

correspond to the most (respectively least) stimulated nodes at the

MAC level. The average response time to process a 100 MB file

is about 3.5 seconds. 18300 operations (which are equivalent to

3200 packet paths) are returned in this case.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 20 40 60 80 100

Size of the simulation outputs (MB)

R
e
sp

o
n

se
 t

im
e
 (

s)

0

23000

#
 o

f
o

p
e
r
a

ti
o

n
s

 (
p

a
th

s)

e
x

tr
a

c
te

dMean
Max
Min

Figure 19. Average response time to extract the paths

competing for medium access at the network level.

6. CONCLUSION
This paper has presented a general network tracing framework

called XAV. XAV enables the exploration of large simulation

outputs while offering users a more intuitive and enjoyable

experience. For that purpose, XAV defines a multidimensional

model to represent the trace data and quickly identify the data

paths in the network. XAV has been implemented in the NS-2

simulator. Our solution offers high performance and flexibility

levels. As future work, we plan to improve XAV IDs distribution

algorithm and to adapt it to more complex encapsulation

processes such as packet fragmentation. We will compare the

performance with a SQL based solution using entity relation

schemas instead of XML nested elements. A release of XAV will

also be published in the framework of the Yavista project to serve

as a basis for innovative development of real time applications in

the network simulation area.

7. REFERENCES
[1] Scheuermann, B., Füßler, H., Transier, M., Busse, M.,

Mauve, M. and Effelsberg, W. 2005. Huginn: A 3D

Visualizer for Wireless ns-2 Traces. In Proceedings of the

8th ACM International Symposium on Modeling, Analysis

and Simulation of Wireless and Mobile Systems (Montreal,

Canada, October 10 - 13, 2005). MSWiM'05.

[2] JTrana, Available : http://ns2trana.googlepages.com

[3] Ben-El-Kezadri, R., Kamoun, F. and Pujolle G. 2008. XAV :

A Fast and Flexible Tracing Framework for Network

Simulation. In Proceedings of the 11th ACM International

Symposium on Modeling, Analysis and Simulation of

Wireless and Mobile Systems (Vancouver, Canada, October

27 - 31, 2008). MSWiM’08.

[4] NS-2, Available: http://www.isi.edu/nsnam

[5] Cicconetti, C. Mingozzi, E. and Stea, G. 2006. An integrated

framework for enabling effective data collection and

statistical analysis with ns-2. In Proceedings of the 2006

Workshop on ns-2: the IP network simulator (Pisa, Italy,

October 10, 2006). WNS2’06.

(4000)

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4264
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4264

[6] Ben-El-Kezadri, R. and Kamoun, F. 2007. Towards MANET

Simulators Massive Comparison and Validation. In

Proceedings of the 18th IEEE International Symposium on

Personal, Indoor and Mobile Radio Communications

(Athens, Greece, September 3 - 7, 2007). PIMRC’07

[7] YAVISTA videos and tool,

Available: http://yavista.sourceforge.net

[8] XML, Extensible Markup Language (XML) 1.0 (Third

Edition), W3C Recommendation (February 2004)

Available: http://www.w3.org/TR/XML

[9] XQuery 1.0: An XML Query Language, W3C

Recommendation (January 2007)

Available: http://www.w3.org/TR/xquery

[10] Fall, K. and Varadhan, K. The ns Manual, The VINT Project

[11] XML Path Language (XPath) 2.0, W3C Recommendation

(January 2007)

Available: http://www.w3.org/TR/xpath20/

[12] Bordawekar, R. and Lang, C. 2005. Analytical processing of

xml documents: Opportunities and challenges. SIGMOD

Record. 34(2), 27 - 32.

[13] Boncz, P. A., Grust, T. ,van Keulen, M.,Manegold, S.,

Rittinger, J., and Teubner, J. 2006. MonetDB/XQuery: A

Fast XQuery Processor Powered by a Relational Engine. In

Proceedings of the 2006 ACM SIGMOD International

Conference on Management of Data (Chicago, USA, June 27

- 29, 2006). SIGMOD’06.

MonetDB, Available: http://monetdb.cwi.nl

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4264
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4264

