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ABSTRACT

Suppose that the mean µ = E[F (X)] of a given function

F : R → R is to be estimated by the empirical average Ŝn :=
1
n

∑n
i=1 F (Xi) of the values F (Xi), where X1, X2, . . . , Xn

are independent samples distributed like X. In cases when
the mean ν = E[U(X)] of a different function U : R → R

is known, we introduce a sampling rule, called the “screened
estimator,” which states that we should only consider esti-
mates that correspond to times n when the empirical average
of the {U(Xi)} is sufficiently close to its known mean. Un-
der the assumption that U dominates F in an appropriate
sense, it is shown that the screened estimates admit expo-
nential error bounds, even when F (X) is heavy-tailed. A
geometric interpretation, in the spirit of Sanov’s theorem, is
given for this fact, and nonasymptotic, explicit exponen-
tial bounds for the screened estimates are derived. The
mathematical tools used in the analysis consist, primarily,
of large deviations techniques. A detailed Markov Chain
Monte Carlo (MCMC) simulation example illustrates that,
in certain MCMC scenarios, screening can be very effective
in terms of variance reduction, even in cases where the stan-
dard technique of control variates fails.

Categories and Subject Descriptors

G.3 [Probability and Statistics]; I.6 [Simulation and
Modeling]
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1. INTRODUCTION
Let X1, X2, . . . , Xn be independent samples distributed

like a random variable X with an unknown density f on
[1,∞). A common task is search for an estimator for the
expectation µ := E[F (X)] =

∫ ∞

1
F (x) f(x) dx of some func-

tion F : R → R of X, and the most commonly used estimator
for µ is the empirical average Ŝn, where, for each k ≤ n, we
write

Ŝk :=
1

k

k
∑

i=1

F (Xi), 1 ≤ k ≤ n.

Let us assume that, somehow, we know two things about
f : That it has a “heavy” right tail, and the value of its
mean, ν := E(X) =

∫ ∞

1
xf(x) dx. The tail of f is of course

important for the estimation task, since relatively heavy tails
imply significant variability in the data {Xi} as well as in
the subsequent estimates of µ.

For definiteness, consider a specific example where the
function F (x) = x3/4, x ≥ 1, and the unknown density is
given by f(x) = 5

2x7/2 for x ≥ 1 (and f(x) = 0, other-

wise), so that µ = 10/7 and ν = 5/3. Although the law
of large numbers guarantees that the sequence of estimates
{Ŝk} is consistent and the central limit theorem implies that

the rate of convergence is of order n−1/2, a quick glance at
the behavior of Ŝk for finite k shows that, as expected, the
estimates are highly variable: The plots in Figure 1 clearly
indicate that, up to k = n = 5000, the {Ŝk} are still quite far
from having converged. Since f is heavy tailed, this irregular
behavior is hardly surprising: Indeed, the error probability
Pr{Ŝn > µ + ε} decays like,

Pr{Ŝn > µ + ε} ∼
1

ε10/3n7/3
, n → ∞, (1)

for any ε > 0; see, e.g., [16]. Therefore, unlike with most
classical exponential error bounds, here the error probability
decays polynomially in the sample size n, and with a rather
small power at that.

The main idea in this work is the proposal that the infor-
mation we have about f , namely that its mean ν equals 5/3,
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Figure 1: Two typical realizations of the estimates {Ŝk} for k = 100, 101, . . . , n = 5000.

can be used to “screen” the estimates {Ŝk}, as follows: To-

gether with the {Ŝk}, also compute the empirical averages

{T̂k} of the samples {Xi} themselves,

T̂k =
1

k

k
∑

i=1

Xi, 1 ≤ k ≤ n,

and only consider estimates Ŝk at times k when the corre-
sponding average T̂k is within a fixed threshold u > 0 from
its known mean. That is, only examine Ŝk only at times
time k such that |T̂k − ν| < u. This results in what we call
the “screened estimator” of µ. Figure 2 illustrates its perfor-
mance on four different realizations of the above experiment.

More generally, assume X, X1, X2, . . . are independent and
identically distributed (i.i.d.) random variables with un-
known distribution, and we wish to estimate the expecta-
tion µ := E[F (X)] for a given function F : R → R, while
we know the value of the expectation ν := E[U(X)] of a
different function U : R → R. In this general setting, we
introduce:

The Screened Estimator. For each k ≥ 1,
together with the empirical averages {Ŝk} of the

{F (Xi)} also compute the averages {T̂k} of the

{U(Xi)}, and only consider estimates Ŝk at times

k when T̂k is within a fixed threshold u > 0 from
its mean, i.e., those k such that, |T̂k − ν| < u.

It is straightforward to see the intuition behind the above
definition. In cases when we suspect that the empirical dis-
tribution P̂k of the samples {Xi ; i ≤ k} is likely to be far
from the true underlying distribution P , we can check that
the projection

∫

U dP̂k = T̂k of P̂k along a function U is
close to the projection

∫

U dP = ν of the true distribution

P along U . Of course this does not guarantee that P̂k ≈ P
or that Ŝk ≈ µ, but it does rule out instances k when it is
certain that P̂k differs significantly from P .

Furthermore, as we shall see next, it is often possible to
obtain explicitly computable exponential error bounds for the
screened estimator, even when the error probability of the
standard estimates {Ŝk} decays at a polynomial rate.

There are three main issues addressed in this work. First,
in Section 2.1 we provide a theoretical explanation for the
practical advantage of the screened estimator: We develop
general conditions under which the error probability of the
screened estimator decays exponentially, regardless of the
tail of the distribution of the {F (Xi)}. The main assump-
tion is that U dominates F from above, in that supx[F (x)−
βU(x)] is finite for all β > 0, where the supremum is over all
x in the support of X. Secondly, in Sections 2.2 and 2.3 we
state a number of explicit exponential bounds for the error
probability of the screened estimator, which are easily com-
putable and readily applicable to specific problems where
the only information we have about the unknown underly-
ing distribution is the mean and perhaps also the variance
of U(X) for a particular function U . Finally, in Section 3,
we present a simulation example of an estimation problem
in a setting somewhat different to the setting considered so
far. There, it is shown that the screened estimator can be
an effective practical tool even in cases where the classical
variance reduction technique of control variates fails; see the
discussion in Sections 1.1 and 3.

In order to illustrate the effectiveness of the screened es-
timator, we return to the example of estimating the expec-
tation µ = E(X3/4) with respect to an unknown density f
on [1,∞), based on n i.i.d. samples X1, . . . , Xn drawn from
f , and assuming that we only know the mean (and perhaps
some higher moments) of X. In the above notation, this

corresponds to F (x) ≡ x3/4 and U(x) ≡ x.

Proposition 1. (i) The error probability of the stan-

dard estimator {Ŝn} decays to zero at a polynomial
rate: If the density f is given by f(x) = 5

2x7/2 for
x ≥ 1, then for any ε > 0,

Pr{Ŝn − µ > ε} ∼
1

ε10/3n7/3
, n → ∞.

(ii) The error probability of the screened estimator decays
to zero exponentially fast: If the only information we
have about f is that its mean ν equals 5/3, then we can
conclude that for all ε, u > 0 there exists I(ε, u) > 0
such that, for all n ≥ 1,

Pr{Ŝn − µ > ε and |T̂n − 5
3
| < u} ≤ e−nI(ε,u).
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Figure 2: Four typical realizations of the estimates {Ŝk} for k = 100, 101, . . . , n = 5000. The “screened estimates”

are plotted in bold, and they are simply the original Ŝk at times k when the corresponding empirical average
T̂k is within u = 0.005 of its mean ν = 5/3.

(iii) If, in addition, we know that the variance of f equals
20/9, then an explicit exponential bound can be com-
puted: For any ε > 0 and any 0 < u ≤ ε

20
,

Pr{Ŝn − µ > ε and |T̂n − 5
3
| < u} ≤ e−(0.005)×nε2 ,

for all n ≥ 1.

(iv) If we also know that the value of the covariance between

X3/4 and X under f is 20/21, then the following more
accurate bound can be obtained: For any ε > 0 and
any 0 < u ≤ ε

20
,

Pr{Ŝn − µ > ε and |T̂n − 5
3
| < u} ≤ e−(0.0367)×nε2 , (2)

for all n ≥ 1.

If the mean of X is known, we can employ the screened esti-
mator and be certain that it will have an exponentially small
error probability, whereas the standard estimator’s proba-
bility of error may decay at least as slowly as n−7/3. If the
variance of X is also known, then for the specific values in
the simulation examples in Figure 2, with ε = 0.2, u = 0.005
and n = 5000, part (iii) of the proposition gives,

Pr{Ŝn − µ > 0.2 and |T̂n − 5
3
| < 0.005} ≤ 0.368.

This is fairly weak, despite the fact that ε = 0.2 is a rather
moderate margin of error. But the error probability does
decay exponentially, and with n = 10000 samples the corre-
sponding upper bound is only ≈ 0.136, while for n = 15000

it is ≈ 0.0498. And if, in addition, the value of the co-
variance between X3/4 and X is available, then part (iv)
gives a much more accurate result even for smaller ε: Tak-
ing ε = 0.1, u = 0.005 and n = 5000,

Pr{Ŝn − µ > 0.1 and |T̂n − 5
3
| < 0.005} ≤ 0.1596,

and for n = 10000 samples the corresponding bound is ≈
0.025.

We mention that some of the results we obtained in simu-
lation experiments indicate that the sampling times k picked
out by the screened estimator are not all equally reliable:
Naturally, since the probability of error decays exponen-
tially, earlier times correspond to much looser error bounds,
while the error probability of estimates obtained during later
times can be more tightly controlled. This is illustrated by
the (rather atypical but not impossibly rare) results shown
in Figure 3.

From the probabilistic point of view, the following calcula-
tion gives a quick explanation for the fact that the screened
estimator leads to exponential error bounds in great gener-
ality (although this is not how the actual error bounds in

Section 2 are obtained). Suppose the {Ŝk} are used to es-
timate the mean µ = E(F (X)) for some F , while we know
ν = E(U(X)) for a different function U that dominates F in
that ess supX [F (X)−βU(X)] < ∞, for all β > 0. Although

F (X) may be heavy tailed, in which case the {Ŝk} them-
selves will not admit exponential error bounds, the error
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Figure 3: Another realization of the empirical es-
timates {Ŝk} for k = 100, 101, . . . , n = 5000, plotted
together with the screened estimates shown in bold
(where u = 0.005 as before). The screened estimates
at earlier times are less accurate than some of the
later estimates that are ignored by the screened es-
timator.

probability of the screened estimator,

Pr{Ŝn − µ > ε and |T̂n − ν| < u},

is bounded above by,

Pr
{ 1

n

n
∑

i=1

[F (Xi) − βU(Xi)] − (µ − βν) > ε − βu
}

. (3)

Since E[F (X) − βU(X)] = µ − βν, for 0 < β < ε
u

this is a
large deviations probability for the right tail of the partial
sums of the random variables {F (Xi)−βU(Xi)}, which are
(a.s.) bounded above. It is, therefore, no surprise that this
probability is exponentially small.

1.1 Screening and control variates
A well-known and commonly used technique for reducing

the variance of an estimator in classical Monte Carlo simula-
tion is the method of control variates; see, e.g., the standard
texts [17][14][8][1] or the paper [10] for extensive discussions.
This method is based on the observation that in many ap-
plications – exactly as in our setting – there is a function
U whose expectation ν = E[U(X)] is known. Therefore, re-

placing the estimates {Ŝk} for µ = E[F (X)] with the control
variate estimates,

S̃k :=
1

k

k
∑

i=1

(

F (Xi) − β[U(Xi) − ν]
)

, 1 ≤ k ≤ n,

yields an estimator which is still consistent (since the addi-
tional term has zero mean) but whose variance is different

from that of {Ŝk}. In fact, choosing (or estimating) the
value of the constant β appropriately always leads to an es-
timator with strictly reduced variance, as long as F (X) and
U(X) are correlated random variables.

This technique is widely employed in practice; see the ref-
erences above as well as [7][2]; also the text [9] contains many
examples of current interest in computational finance and
pointers to the relevant literature. In particular, functions
U that appear in applications as control variates provide a

natural class of screening functions that can be incorporated
in the design on the screened estimator.

An interesting connection between these two methods (con-
trol variates and screening) is seen in that the probability
in equation (3) above is exactly the error probability for the

control variate estimates {S̃k}.
This discussion raises an obvious question: In applications

where we are not interested in actual bounds, but only in
estimating µ as accurately as possible, should we use a given
function U for screening or to form the standard control vari-
ate estimates {S̃k}? In numerous simulation experiments
we found that, in terms of variance reduction, screening of-
fers no significant advantage. But we also found that in
several examples of Markov Chain Monte Carlo (MCMC)
estimation – the exact same setting as above, except the
samples {Xi} are generated by a Markov chain with the de-
sired distribution as its steady-state distribution – screening
was much more effective. One such example is presented in
Section 3. There, screening reduces the variance of the es-
timates by approximately 10 to 20%, while there is no gain
from the use of the particular function U as a control variate.

Finally, we note that no proofs are given here. For more
details on these results see [13][12][4].

2. THEORY

2.1 A Geometric Explanation
In this section we give a theoretical explanation, in terms

of large deviations, for the performance improvement offered
by the screened estimator.

Let X, X1, X2, . . . be i.i.d. random variables with common
law given by the probability measure P on R. Given a func-
tion F : R → R whose mean is to be estimated by the
empirical averages {Ŝk} of the {F (Xi)}, for the purposes of
this section only we consider a slightly simplified version of
the screened estimator: Assuming the mean ν = E(U(X))
of a different function U : R → R is known, we exam-
ine the screened estimator based on the one-sided screen-
ing event, {

∑n
i=1 U(Xi) − nν < nu}, for some u > 0. To

avoid cumbersome notation, write, Sn :=
∑n

i=1 F (Xi) and
Tn :=

∑n
i=1 U(Xi), n ≥ 1.

In Theorem 1 we obtain representations for the asymptotic
exponents of the error probability, both for the standard es-
timator and for the screened estimator. The exponents are
expressed in terms of relative entropy, in the spirit of Sanov’s
theorem; cf. [18][3][5]. Recall that the relative entropy be-
tween two probability measures P and Q on the same space
is defined by,

H(P‖Q) :=

{
∫

dP log dP
dQ

, when dP
dQ

exists

∞, otherwise.

Theorem 1 follows from the more general results in [13] and
Theorem 2 below.
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Theorem 1. (Sanov Asymptotics) Suppose the functions
F : R → [0,∞) and U : R → R have finite first moments
µ := E[F (X)], ν := E[U(X)], and also finite second mo-
ments, E[F (X)2], E[U(X)2]. Assume that F (X) is heavy

tailed in that E[eθF (X)] = ∞ for all θ > 0, and that U dom-
inates F in that, m(β) := ess sup[F (X) − βU(X)] < ∞ for
all β > 0. Then:

(i) The error probability of the standard estimator decays
subexponentially: For all ε > 0,

lim
n→∞

1

n
log Pr{Sn − nµ > nε} = − inf

Q∈Σ
H(Q‖P ) = 0,

where Σ is the set of all probability measures Q on R

such that
∫

FdQ − µ > ε.

(ii) The error probability of the screened estimator decays
exponentially: For all ε, u > 0,

lim
n→∞

1

n
log Pr{Sn − nµ > nε and Tn − nν < nu}

= − inf
Q∈E

H(Q‖P ) < 0,

where E ⊂ Σ is the set of all probability measures Q
on R such that

∫

FdQ − µ > ε and
∫

UdQ − ν < u.

Therefore, while the (asymptotic) exponent of the error
probability of the standard estimator is equal to zero, the
exponent of the error probability of the screened estimator
is strictly positive. Although this situation is only possi-
ble when the relative entropy is minimized over an infinite-
dimensional space of measures (that is, if X takes on only
finitely many values, the exponent infQ∈Σ H(Q‖P ) cannot
be zero), it is perhaps illuminating to offer a geometric de-
scription.

The large oval in the first diagram in Figure 4 depicts
the space of all probability measures Q on R; the lighter
areas are those Q that are “closer” to P (in that H(Q‖P )
is “smaller”), and the set Σ on the left consists of those Q
with

∫

FdQ − µ > ε. Although P is separated from Σ by a
hyperplane, we nevertheless have that infQ∈Σ H(Q‖P ) = 0.
Of course this infimum is not achieved, but we can find a se-
quence {Qn} ⊂ Σ, presumably near the bottom (lighter) half
of Σ, such that H(Qn‖P ) → 0. In the second diagram, the
black shaded area corresponds to set E, formed by the inter-
section of Σ with the half space H = {Q :

∫

UdQ− ν < u}.
Note that H is a “typical” set under P , in that P ∈ H and
the empirical measure of the {Xi} will eventually concen-
trate there by the ergodic theorem. Nevertheless, when Σ
is intersected with H to give E, Theorem 1 tells us that it
excludes the part of Σ which is close to P in relative entropy
(the lighter area of Σ), and this forces the result of the min-
imization over Q ∈ E to be strictly positive; the limiting
minimizer Q∗, assuming it exists, is shown as laying on the
common boundary of Σ and H .

The following result gives a more precise description of
the large deviations upper bounds for the probabilities of in-
terest. Formally, it simply establishes a version of Cramér’s
theorem in the present setting. What is perhaps somewhat
surprising is that this is done without any assumptions of
finite exponential moments. In the presence of the domina-
tion condition m(β) < ∞, it turns out that is only necessary

to assume finite first (and in some cases second) moments
for F (X) and U(X).

The results in Theorem 2 form the basis for the develop-
ment of the bounds in Section 2.2.

Theorem 2. (Exponential Upper Bounds) Suppose the
functions F : R → R and U : R → R are such that µ :=
E[F (X)] and ν := E[U(X)] are both finite, and that m(β) :=
ess sup[F (X) − βU(X)] < ∞ for all β > 0. Then for all
ε, u > 0:

(i) Pr{Sn − nµ > nε, Tn − nν < nu} is bounded above
by exp{−nH(E‖P )}, for all n ≥ 1, where,

H(E‖P ) := inf{H(Q‖P ) : Q ∈ E}, (4)

and E is the set of all probability measures Q on R

such that
∫

FdQ − µ > ε and
∫

UdQ − ν < u.

(ii) Pr{Sn − nµ > nε, Tn − nν < nu} is bounded above
by exp{−nΛ∗

+(ε, u)}, for all n ≥ 1, where Λ∗
+(ε, u) is

defined as

sup
θ1,θ2≥0

{

θ1(µ + ε) − θ2(ν + u) − Λ+(θ1, θ2)
}

,

with Λ+(θ1, θ2) := log E
[

exp{θ1F (X) − θ2U(X)}
]

,

θ1, θ2 ≥ 0.

(iii) The rate function Λ∗
+(ε, u) is strictly positive.

2.2 Bounds for Arbitrary Tails
Let X, X1, X2, . . . be i.i.d. random variables. Given func-

tions F, U : R → R, write Sn =
∑n

i=1 F (Xi) and Tn =
∑n

i=1 U(Xi). We begin by restating part of Theorem 2.
Since the two-sided error event {Sn −nµ > nε, |Tn −nν| <
nu} is contained in {Sn − nµ > nε, Tn − nν < nu}, we
have:

Corollary 1. Suppose the functions F : R → R and U :
R → R are such that µ := E[F (X)] and ν := E[U(X)] are
both finite, and that m(β) := ess sup[F (X) − βU(X)] < ∞
for all β > 0. Then for all n ≥ 1 and all ε, u > 0,

Pr{Sn − nµ > nε, |Tn − nν| < nu} ≤ e−nΛ∗

+(ε,u),

where the exponent, Λ∗
+(ε, u) is defined by,

sup
θ1≥0,θ2≥0

{

θ1(µ + ε) − θ2(ν + u)

− log E
[

exp{θ1F (X) − θ2U(X)}
]}

, (5)

and it is strictly positive.

If F and U also have finite second moments, an easily ap-
plicable, quantitative version of Corollary 1 can be obtained.
The gist of the argument is the use of the boundedness of
[F (X)−βU(X)] in order to compute an explicit lower bound
for the exponent Λ∗

+(ε, u).
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Figure 4: Geometric illustration of the fact that infQ∈Σ H(Q‖P ) = 0 whereas infQ∈E H(Q‖P ) is strictly positive.

Theorem 3. Suppose that E[F (X)] = E[U(X)] = 0,
that Var(F (X)) ≤ 1, Var(U(X)) = 1, and that m(β) :=
ess sup[F (X)−βU(X)] < ∞ for all β > 0. Then the follow-
ing hold for all n ≥ 1:

(i) For any ε, u > 0, if there exists β > 0 such that,
m(β) ≤ ε − βu, then,

Pr{Sn > nε, |Tn| < nu} = 0.

(ii) For any ε, u > 0,

log Pr{Sn > nε, |Tn| < nu}

≤ −2n sup
α∈(0,1)

[

m · (1 − α)

m2 + 1 + (αε
u

)2 − 2αγε
u

]2

ε2, (6)

where m := m(αε
u

) and γ := E[F (X)U(X)] is the co-
variance between F (X) and U(X).

(iii) Let K > 0 arbitrary. Then for any ε > 0 and any
0 < u ≤ Kε,

log Pr{Sn > nε, |Tn| < nu}

≤ −
n

2

[

M

M2 + (1 + 1
2K

)2

]2

ε2, (7)

where M = m( 1
2K

).

Remarks.

1. The assumption that Var(F (X)) ≤ 1 in Theorem 3
seems to require that we know an upper bound on the
variance of F in advance, but in practice this is eas-
ily circumvented. In specific applications, we typically
have a function U that dominates F in that, not only
m(β) < ∞ for all β > 0, but also there are finite con-
stants C1, C2 such that,

|F (x)| ≤ C1U(x) + C2, for all x ∈ support(X). (8)

This is certainly the case for the example presented in
the Introduction. A bound on the variance of F (X) is
obtained from (8), Var(F (X)) ≤ C2

1Var(U(X)) + C2
2 .

This and several other issues arising in the application
of Theorem 3 are illustrated in detail in the proof of
Proposition 1 in [13].

2. In order to use the bounds in Theorem 3, it is not
necessary to know m(β) exactly; any upper bound on
the ess sup[F (X) − βU(X)] can be used in place of

m(β). Similarly, in order to apply (6) it suffices to
have an upper bound on γ, and such estimates are
often easy to obtain. See the proof of Proposition 1 in
[13] for an illustration.

3. The main difference between the bounds in (6) and
(7) is that (7) only requires knowledge of the first and
second moment of U(X), whereas (6) also depends on
γ. The bound in (7) is attractive because it is sim-
ple and it clearly shows that the exponent is of order
ε2 for small ε. Its main disadvantage is that it often
leads to rather conservative estimates, since it ignores
the potential correlation between F (X) and U(X) and
it follows from (6) by an arbitrary choice for the pa-
rameter α. The exponent in (6), on the other hand,
despite its perhaps somewhat daunting appearance, is
often easy to estimate and it typically gives signifi-
cantly better results. This too is clearly illustrated by
the results of Proposition 1.

2.3 Bounds for Light Tails
As before, let Sn, Tn denote the partial sums of {F (Xi)},

{U(Xi)}, respectively, with respect to the i.i.d. random vari-
ables X, X1, X2, . . . , with common law P . We assume that
E(F (X)) = E(U(X)) = 0, and throughout this section we
also assume that F and U have finite exponential moments,
i.e.,

Λ(θ) := log E[eθF (X)] < ∞,

and E[eθU(X)] < ∞, for all θ ∈ R.
Corollary 1 states that the screened estimator always ad-

mits exponential error bounds, and a simple modification of
its proof shows that, in fact,

log Pr{Sn > nε, |Tn| < nu}

≤ −n max{Λ∗
+(ε, u), Γ∗

+(ε, u)}, (9)

for all n ≥ 1 and ε, u > 0, where the exponents Λ∗
+ given in

(5) and

Γ∗
+(ε, u) := sup

θ1≥0,θ2≥0

{

θ1(µ + ε) + θ2(ν − u)

− log E
[

exp{θ1F (X) + θ2U(X)}
]}

,

are both strictly positive. But in this setting, the standard
estimates Ŝn = 1

n
Sn also admit exponential error bounds;

Cramér’s theorem states that,

log Pr{Sn > nε} ≤ −nΛ∗(ε), n ≥ 1, (10)
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where

Λ∗(ε) := sup
θ≥0

{θε − Λ(θ)} > 0,

for any ε > 0; cf., [5]. Note that the exponents in both (9)
and (10) are asymptotically tight.

In this section we develop conditions under which it can
be shown that the screened estimator offers a nontrivial im-
provement. That is, even when the error of the standard
estimator decays exponentially, the error of the screened es-
timator has a better rate in the exponent. To that end, we
look at difference,

∆(ε, u) := max{Λ∗
+(ε, u), Γ∗

+(ε, u)} − Λ∗(ε).

Clearly ∆(ε, u) is always nonnegative. Theorem 4 says that,
as long as the covariance between F (X) and U(X) is not
zero, ∆(ε, u) is strictly positive for all ε, u small enough.
This is strengthened in Theorem 5, where it is shown that
this improvement is a “first order effect,” in that, for small
ε, u, ∆(ε, u) and max{Λ∗

+(ε, u), Γ∗
+(ε, u)} are each of order

ε2.
This leads to a different interpretation of the advantage

offered by the screened estimator. Suppose that, for small
ε, u, Λ∗(ε) ≈ cε2, and, max{Λ∗

+(ε, u), Γ∗
+(ε, u)} ≈ (c + c′)ε2,

for some c, c′ > 0. Then for large n, the error of the standard
estimator is,

Pr{Sn > nε} ≈ e−ncε2 ,

whereas for the screened estimator,

Pr{Sn > nε, |Tn| < u} ≈ e−n(c+c′)ε2 .

In both cases, we have approximately Gaussian tails. There-
fore, roughly speaking, we may interpret the result of Theo-
rem 5 as saying that, as long as the covariance between F (X)
and U(X) is nonzero, the screened estimates are asymptoti-
cally Gaussian with a strictly smaller variance than the stan-
dard estimates.

Theorem 4. Suppose that E[F (X)] = E[U(X)] = 0 and
that γ := Cov(F (X), U(X)) is nonzero. There exists ε0 > 0
such that, for each 0 < ε < ε0, there exists u0 = u0(ε) > 0
such that ∆(ε, u) > 0 for all u ∈ (0, u0).

Note that the assumption on the covariance being nonzero
cannot be relaxed. For example, let Xi = YiZi, i ≥ 1, where
{Yi} are i.i.d. nonnegative random variables, and {Zi} are
i.i.d., independent of the {Yi}, with each Zi = ±1 with
probability 1/2. With F (x) ≡ |x| − E|X1| and U(X) ≡
sign(x), we have F (Xi) = Yi − E(Yi) and U(Xi) = Zi, so
that Sn and Tn are independent for all n ≥ 1. Therefore,

Pr{Sn > nε, |Tn| < nu} = Pr{Sn > nε} Pr{|Tn| < nu},

and since limn Pr{|Tn| < nu} = 1, the exponents of the
other two probabilities must be identical.

Whenever γ is nonzero, the variances σ2(F ), σ2(U) of

F (X) and U(X), respectively, are both nonzero. If ∆̃(ε, u)
denotes the corresponding difference of exponents for the
normalized functions F/σ(F ) and U/σ(U), then from the
definitions,

∆(ε, u) = ∆̃
( ε

σ(F )
,

ε

σ(U)

)

.

Therefore, in order to determine the nature of this difference
for small ε we can assume, without loss of generality, that
Var(F (X)) = Var(U(X)) = 1.

Theorem 5. Suppose that E[F (X)] = E[U(X)] = 0, that
Var(F (X)) = Var(U(X)) = 1, and that the covariance γ :=
Cov(F (X), U(X)) is nonzero. Then there exists α > 0 such
that,

lim inf
ε→0

1

ε2
∆(ε, αε) > 0.

In fact, there exists ε0 > 0 such that,

∆
(

ε,
|γ|

4
ε
)

≥
γ2

8
ε2,

for all ε ∈ (0, ε0).

3. SIMULATION
In numerous simulation experiments we found that, when

applied to i.i.d. samples, the screening estimator offered no
significant advantage over the classical method of control
variates [17]. On the other hand, we did observe that in
several cases where the underlying samples were produced by
a Markov chain, screening was much more effective. Below
we present one such example.

Consider the following Bayesian inference problem, as in
[17, Example 9.2]. Suppose that we have N independent
observations y = (y1, y2, . . . , yN ) from the mixture distribu-
tion,

pN(µ1, σ
2) + (1 − p)N(µ2, σ

2),

where the mixing proportion p and the variance σ2 are as-
sumed to be fixed and known, and that we wish to esti-
mate the value of µ1. A way to describe this model that
facilitates the estimation is to place independent N(0, 10σ2)
prior on the means µ1, µ2, and introduce latent variables
Z = (Z1, Z2, . . . , ZN ), where the Zi are independent with
distribution P (Zi = 1) = 1 − P (Zi = 0) = p, and, condi-
tional on µ1, µ2 and Z, each Yi|Zi = 1 ∼ N(µ1, σ

2), and
Yi|Zi = 0 ∼ N(µ2, σ

2).
The estimation of µ1 is typically performed by estimating

its mean under the posterior distribution given the data. In
turn, a standard way to do this is via MCMC, as follows.
First we note that, under the posterior, conditional on y and
z, the parameters µ1 and µ2 are independent, with,

π(µ1|y, z) ∼ N

(

∑

j zjyj

n1 + 1/10
,

σ2

n1 + 1/10

)

,

π(µ2|y, z) ∼ N

(

∑

j(1 − zj)yj

n2 + 1/10
,

σ2

n2 + 1/10

)

,

respectively, where n1 =
∑

j zj is the number of zi that are

equal to 1, and n2 =
∑

j(1− zj) = N − n1 is the number of
zi that are equal to zero. Also, given µ1, µ2 and y, the Zi

are independent, and for each i = 1, 2, . . . , N , the posterior
probability π(Zi = 1|µ1, µ2, y) equals,

p exp{−(yi − µ1)
2/2σ2}

p exp{−(yi − µ1)2/2σ2} + (1 − p) exp{−(yi − µ2)2/2σ2}
.
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The random-scan Gibbs sampler [17] can be used here to
construct a multivariate Markov chain {Xn}, where each Xi

is an (N + 2)-dimensional vector of the form,

(µ1, µ2, Z) = (µ1, µ2, Z1, Z2, . . . , ZN ),

and where the steady-state distribution of {Xn} is exactly
the posterior distribution π(µ1, µ2, Z|y). This is done as
follows: Start with arbitrary values for µ1(1) and µ2(1),
say µ1(1) = µ2(1) = 0, and draw a sample Z(1) from the
conditional distribution described above; this produces the
initial value X1. Then at each step, given Xn, the random-
scan Gibbs sampler draws a sample from µ1, µ2, or from the
entire vector Z, each chosen with probability 1/3, according
to the conditionals of the posterior; Xn+1 is the same as Xn,
except for the one component that has been updated.

Although this Monte Carlo setting is different from the
i.i.d. problems we considered so far – since the samples Xi

are multivariate, and they are not independent – we can
nevertheless define F (x) = F (µ1, µ2, z) = µ1, and form the

estimates {Ŝn} as in the Introduction. The ergodic theorem

guarantees that Ŝn → µ∗
1 , the true mean of µ1 under the

posterior, and the associated central limit theorem states
that the convergence takes place at a rate O(n−1/2).

Models of this type often present a difficultly, in that the
posterior on (µ1, µ2) is bimodal. As a result, the Gibbs sam-
pler only makes rare transitions between the two modes, and,
as a result, the empirical averages {Ŝn} have high variabil-
ity; cf. [17][6]. Figures 5 and 6 show two typical realiza-
tions of the Gibbs sampler, illustrating this behavior. The
parameter values in these experiments and throughout the
remainder of this section, are N = 300, p = 0.9 and σ2 = 1.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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2.0

Figure 5: A realization of the samples µ1, µ2 pro-
duced in n = 10000 steps of the Gibbs sampler. The
thin solid line is the sequence of µ1 samples, and the
bold points depict the sequence of µ2 samples. For
the sake of visual clarity, the values of µ2 are plotted
only every 20 simulation steps.
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Figure 6: A realization of the sequence of the stan-
dard empirical estimates {Ŝk ; 1 ≤ k ≤ n} of µ1, for
n = 10000 steps of the Gibbs sampler. The horizontal
line is the “true” posterior mean of µ1, estimated to
be ≈ 0.0161 after 15 million Gibbs steps.

In order to construct a screening function U , we adopt an
idea of Henderson [11]. Let G(x) = G(µ1, µ2, z) = µ2

1, and
define U(x) = G(x) − E[X1|X0 = x], so that,

U(x) =
1

3
µ2

1 −
1

3

{(

∑

j zjyj

n1 + 1/10

)2

+
σ2

n1 + 1/10

}

.

The definition of U together with the fact that π(µ1, µ2, Z|y)
is the stationary distribution of this chain immediately imply
that the mean ν of U under π is zero. Therefore, U can be
used as a screening function, or, alternatively, we can form
the control variate estimates as in Section 1.1, via,

S̃k :=
1

k

k
∑

i=1

(

F (Xi) − β̂U(Xi)
)

= Ŝk − β̂T̂k,

for 1 ≤ k ≤ n, where {T̂k} are the empirical averages of

{U(Xi)} as in the Introduction, and β̂ is an adaptive esti-
mate of the optimal coefficient β∗, obtained using a method-
ology similar to that outlined in [15] and [4]; see these ref-
erences for details.

Although, because of the high variability of the Gibbs
samples it is hard to speak of “typical” instances, we do show
one particular realization of all three estimators (the stan-

dard empirical averages {Ŝk}, the control variate estimates

{S̃k}, and the screened estimates) in Figure 7.
In order to obtain a more precise idea of the degree of

improvement offered by the control variate estimates and
by the screening method, for each sample size n = 100,
500, 1000, 2000, 5000 and 10000 we performed T = 500
repetitions of the same experiment, and we computed the
(estimated) variance reduction factor offered by the control
variate estimates and by the screened estimates. Specifically,
for each repetition i = 1, 2, . . . , T = 500, based on the values

of the standard estimates Ŝ
(i)
n , we estimated their variance

by

σ2
standard =

1

T − 1

T
∑

i=1

[Ŝ(i)
n − S̄n]2,

where S̄n is the average of the values Ŝ
(1)
n , Ŝ

(2)
n , . . . , Ŝ

(T )
n .
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Table 1: Estimated factors by which the variance of the standard empirical averages Ŝn is larger than the
corresponding variances of the control-variate estimator and the screened estimator, respectively, after n =
100, 500, 1000, 2000, 5000 and 10000 simulation steps.

Variance reduction factors
Simulation steps

Estimator n = 100 n = 500 n = 1000 n = 2000 n = 5000 n = 10000
Control variates < 1 < 1 1.01 <1 1.01 1.00

Screening 1.09 1.23 1.18 1.11 1.16 1.08
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Figure 7: A realization of the three estimators based
on sequence n = 1000 Gibbs samples. The solid
line depicts the standard empirical averages {Ŝk} for
200 ≤ k ≤ 1000, the “+” signs show the values of the
control variate estimates {S̃k} plotted every 20 steps,
and the screened estimates are plotted in bold. The
horizontal line is the “true” posterior mean of µ1,
estimated as ≈ 0.0161 after 15 million Gibbs steps.

Similarly, we estimated the variances σ2
screening and σ2

cv of
the screening and the control variates estimators, respec-
tively, and the variance reduction factors were estimated by
the ratios σ2

standard/σ2
cv and σ2

standard/σ2
screening. From the

results, shown in Table 1, it is clear that in this scenario
screening offers a significant advantage in terms of variance
reduction, whereas the control variate estimates fail to pro-
duce a meaningful improvement. Finally we note that, al-
though the results in the above example – as well as some
other MCMC examples presented in [12] – are quite promis-
ing, the actual domain of applicability and the degree of ef-
fectiveness of the screened estimator are yet to be precisely
determined.
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