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ABSTRACT

Multi-Agent Geo-Simulation (MAGS) is a modelling and
simulation paradigm which involves a large number of au-
tonomous situated agents of various extents evolving in, and
interacting with, an explicit description of a geographic envi-
ronment called a Virtual Geographic Environment (VGE).
One of the most important skills of autonomous situated
agents is their ability to navigate and plan a path inside
a VGE. Path planning in MAGS has to be solved in real
time, often under constraints of limited memory and CPU
resources. Moreover, the computational cost of path plan-
ing increases in complex and large-scale VGEs. In addition,
most current planners only provide agents with obstacle-
free paths and do not take into account the environments’
topologic and semantic characteristics nor the agents’ capa-
bilities. In this paper, we extend the automated approach
to build a semantically-enhanced and geometrically-accurate
VGE called an Informed VGE (IVGE) that we proposed
in [21]. Then, we propose our Hierarchical Path Planning
(HPP) algorithm which relies on the topologic graph of the
IVGE, and takes advantage of this IVGE’s semantically-
enriched description in order to provide autonomous situ-
ated agents with optimised paths with respect to both the
environment’s and the agents’ characteristics.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: E.1Data Struc-
ture; D.2.8 [Software Engineering]: H.1.1Systems and In-
formation Theory [Design Tools and Techniques]

General Terms

Design, Algorithms, Optimisation

Keywords

Multi-Agent Geo-Simulation (MAGS), Geographic Informa-
tion System (GIS), Informed Virtual Geographic Environ-
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ment (IVGE), Autonomous Situated Agents (ASA), Situ-
ated Reasoning (SR), and Hierarchical Path Planning (HPP)

1. INTRODUCTION
Multi-Agent Geo-Simulation (MAGS) is a modelling and

simulation paradigm used to study complex systems in a
variety of domains including traffic simulation, crowd simu-
lation, and urban dynamics, to name a few. Such complex
systems (i.e. car traffic, crowd behaviours, etc.) involve
a large number of simulated actors (implemented as soft-
ware agents) evolving in, and interacting with, an explicit
description of the geographic environment called a Virtual
Geographic Environment (VGE). VGEs are usually over-
simplified and represented as being composed of only free
spaces and obstacle regions. However, real geographic en-
vironments may be complex and large scale which makes
the creation of a VGE difficult and needs large quantities
of geometrical data originating from environmental charac-
teristics (terrain elevation, location of objects and agents,
etc.) as well as semantic information that qualifies space
(building, road, park, etc.). The problem of path planning
in MAGS involving complex and large scale VGEs has to
be solved in real time, often under constraints of limited
memory and CPU resources. Classic path planners provide
agents with obstacle-free paths between two located posi-
tions in the VGE [12]. Such paths do not take into account
the environment’s characteristics (topologic and semantic)
nor the agents’ types and capabilities. For example, clas-
sic planners assume that all agents are equally capable of
reaching most areas in a given map, and any terrain portion
which is not traversable by one agent is considered to be not
traversable by the other agents [4]. Such assumptions limit
the applicability of these planners to solve only a very nar-
row set of problems: path planning of homogeneous agents
in a homogeneous environment. Our goal is to address the
issue of path planning for agents with different capabilities
evolving in complex and large scale geographic environments
of various extents.

In order to achieve such a goal, a VGE must precisely
represent the geometrical information which corresponds to
geographic features. It must also integrate several semantic
notions about various geographic features. To this end, we
propose to enrich the VGE with semantic information that
is associated with the geographic features. Since we deal
with large scale geographic environments, the VGE must
be organised in a way that reduces the search space for
path planning. Hierarchical search is acknowledged as an
effective approach to reduce the complexity of such a prob-
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lem. A number of challenges arise when creating such a
semantically-enriched and geometrically-accurate hierarchi-
cal VGE, among which we mention: 1) to automatically
create an accurate geometric representation of a 3D VGE;
2) to integrate several types of semantic information into
the geometric representation; and 3) to structure the envi-
ronment representation as a hierarchy and use it in situated
reasoning algorithms (such as obstacle detection and path
finding) which are required for MAGS.

In this paper, we present our approach that addresses
these challenges toward the creation of such a semantically-
enriched and geometrically-accurate hierarchical VGE, which
we call an Informed VGE (IVGE). This approach extends
the IVGE generation model that we presented in [21] by geo-
metrically abstracting the IVGE description for the purpose
of the qualification of terrain elevation. Figure 1 presents
an overview of our IVGE extended approach which aims at
producing an exact representation of the geographic envi-
ronment based on realistic data provided by a Geographic
Information System (GIS), and which uses the Constrained
Delauney Triangulation (CDT) technique for an accurate
spatial decomposition. This representation is organised as
a topological graph enhanced with data integrating both
quantitative information (like the geometry) and qualita-
tive information (like the types of areas such as roads and
buildings). In addition, the topological graph is abstracted
in order to reduce its size and to enable fast hierarchical
path planning processes. Moreover, we propose a Hier-
archical Path Planning (HPP) algorithm which relies on
this topologic graph structure and which takes advantage
of the semantically-enhanced description of the VGE in or-
der to provide autonomous situated agents with optimized
semantically-constrained paths. Finally, the complexity anal-
ysis of our hierarchical path planning algorithm demonstrates
its capacity to optimise path finding in large-scale and com-
plex geographic environments.

The remainder of this paper starts with a discussion of
related works on virtual environments and path planners.
In Section 3, we provide an overview of geographic envi-
ronment representation using data provided by Geographic
Information Systems (GIS). Section 4 presents our approach
to automatically create an Informed VGE. Section 5 outlines
a method to enhance the IVGE description using a topologic
abstraction that reduces the size of the topologic graph and
enables building a hierarchical topologic graph; Section 6
presents how we leverage the hierarchical graph structure of
the IVGE model in order to support situated reasoning al-
gorithms such as hierarchical path planning. Section 7 high-
lights some results obtained by applying our approach to a
urban geographic environment in order to address the issue
of path planning with respect to both the environment’s and
the agents’ characteristics. Finally, we conclude and present
future works.

2. RELATED WORK
Virtual environments and spatial representation have been

used in several application domains. For example, Thal-
mann et al. [6] proposed a virtual scene for virtual humans
representing a part of a city for graphic animation pur-
poses. Donikian et al. [15] proposed a modelling system
which is able to produce a multi-level data-base of virtual
urban environments devoted to driving simulations. In this
work, authors proposed a rich virtual environment repre-

Figure 1: Global architecture for IVGE generation;
Green: GIS data processing; Red: the topologic
graph abstraction and hierarchical path planning
processes.

senting the shopping mall including layout and positions of
the stores, kiosks, doors, as well as the atmosphere such
as music, lighting, odor, temperature, etc. More recently,
Shao et al. proposed a virtual environment representing
the New York City’s Pennsylvania Train Station populated
by autonomous virtual pedestrians in order to simulate the
movement of people [22]. Paris [20] also proposed a vir-
tual environment representing a train station populated by
autonomous virtual passengers, in order to characterise the
levels of services inside exchange areas. However, the focus
of these approaches is computer animation and virtual re-
ality, so the virtual environment usually plays the role of a
simple background scene in which agents mainly deal with
its geometric characteristics. Indeed, the description of the
virtual environment is often limited to the geometric level,
though it should also contain topological and semantic in-
formation for other types of applications. Therefore, most
interactions between agents and the environment are most
of the time simple, permitting only to plan a path in a 2D or
3D world with respect to free space and obstacle regions [5].

The path planning issue, which consists of finding an ob-
stacle free path between two distinct positions located in
a VGE, has been extensively studied. An excellent survey
of this topic is available in [12]. The computational effort
required to find a path, using a search algorithm such as
A* [18] or Dijkstra [13], increases with size of the search
space [2]. As a consequence, path planning on large scale
geographic environments can result in serious performance
bottlenecks. However, representing the virtual environment
using the hierarchical approach allows a reduction in the
size of the search space as well as the problem complexity
in path planning [8]. Two recent hierarchical triangulation-
based path planning approaches are described in [4], namely
Triangulation A* and Triangulation Reduction A*, which
are relevant to our work. TA* makes use of the Delaunay
Triangulation (DT) technique to build a polygonal represen-
tation of the environment without considering the semantic
information. This results in an undirected graph connected
by constrained and unconstrained edges, the former being
traversable and the latter not. TRA* is an extension of TA*
and abstracts the triangle mesh into a structure resembling a
roadmap. Like our method, both TA* and TRA* are able to
accurately answer path queries for agents since they make
use of the DT technique. However, the abstraction tech-
nique used by TA* and TRA* is notably different from our
work. They aim to maximise triangle size whereas we aim
to topologically abstract the IVGE by merging triangles into
convex polygons. We also handle semantically enriched en-
vironment descriptions including qualification of space and
terrain characteristics while both TA* and TRA* assume a
homogeneous flat environment. Logan and colleagues pro-
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posed a bounded A* algorithm based on a 2D raster-based
representation of the virtual environment [14]. However,
in contrast with Logan’s approach, our method relies on a
3D exact space representation of virtual geographic environ-
ments informed with semantics. Moreover, Jagadeesh and
colleagues et al. proposed a hierarchical path planning al-
gorithm specific to road networks [9]. This algorithm can
hardly be used to support the navigation of autonomous sit-
uated agents of various extents such as pedestrians, bikes,
boats in virtual geographic environments.

The lack of efficient planners which are able to deal with
large scale geographic environments while taking into ac-
count the geometric, topologic, and semantic characteristics
of the space motivated us to propose a novel approach based
on the concept of Informed VGE (IVGE).

3. SPATIAL REPRESENTATION AND GIS

DATA
GIS data are mainly represented in two forms [19]: raster

and vector formats. The raster format subdivides seman-
tic information into regular squares or square regions repre-
senting discrete, contiguous land areas. This approach gen-
erally presents averaged quantitative data, whose precision
depends on the subdivision size. The vector format exactly
locates semantic information with arbitrary complex geo-
metric shapes. This approach generally presents one quali-
tative object per defined shape.

The VGE exploitation [7] of these data is generally done in
two ways. First, the grid method [16] is the direct mapping
of the raster format, and can also be applied to the vector
format (Figure 2(c)). The advantage of this discrete method
is that multiple semantic data layers are easily merged in
the same geometric representation [23]: the locations where
data can be stored are predefined by the grid cells. The main
drawback of this method is the problem of localisation accu-
racy [1], which makes it difficult to position information that
is not aligned with the subdivision. Another disadvantage of
the grid approach is that its memory complexity depends on
the chosen cell resolution, which makes it difficult to repre-
sent large environments with fine precision. This method is
mainly used for animation [22] or large crowd simulation [17]
because of the fast data access it provides.

Second, the exact geometric subdivision method consists
of subdividing the environment in convex cells defined by
the original vector format. The convex cells can be ob-
tained by several algorithms, among which the most popular
is the Constrained Delaunay Triangulation (CDT) [10]. The
CDT produces triangles while keeping the original geomet-
ric shapes whose boundaries are named constraints (Figure
2(b)). The first advantage of the exact subdivision is that it
preserves the input geometry, allowing accurate visualisation
of the environment at different scales. Another advantage is
that the memory complexity of this approach only depends
on the number of shapes, not on the environment’s extent
and subdivision as is the case for grids. The main drawback
of this approach is the difficulty of merging multiple seman-
tic data for partially overlapping shapes. This method tends
to be used for crowd microscopic simulation [11] where the
motion accuracy is fundamental.

Both VGE representations can be enhanced by an ab-
straction process [21]. The first goal of an abstraction is to
improve the performance of the algorithms based on the en-

(a) Original environment. (b) Cells obtained by CDT.

(c) Cell decomposition by uniform grids with two resolutions.

Figure 2: The two common cell decomposition tech-
niques used to represent environments.

vironment description, such as path planning, by reducing
the number of elements used to describe the environment.
The usual abstraction model for grids is mainly geometric
(Figure 3(a)): the quadtree groups four boxes of the same
kind to create a higher-level cell [22]. When considering the
exact decomposition, an abstraction is generally based on
topological properties rather than on purely geometric ones.
Indeed, the exact cell subdivision generates connected trian-
gles which can be manipulated as the nodes of a topological
graph. This graph can then be abstracted by grouping the
nodes, producing a new graph with fewer nodes [21]. For ex-
ample, Figure 3(b) shows an abstraction which is only based
on the nodes’ number of connections c: isolated (c = 0),
dead-end (c = 1), corridor (c = 2), and crossroad (c ≥ 3).
A topological graph can be used for spatial reasoning, like
path planning, thanks to traversal algorithms. These algo-
rithms benefit of the abstraction by traversing first the more
abstracted graph, and then by refining the computation in
the sub-graphs until reaching the graph of the finest spa-
tial subdivision. This exploitation creates a new need for an
abstracted graph which is less prevalent in literature: the
minimal information necessary to make a decision must be
available at all levels. For example, if the width of a path
is relevant for a path planning algorithm, this information
must be accessible in all the abstracted graphs; if not, the
evaluation would be greatly distorted compared to a non-
abstracted graph.

Two kinds of information can be stored in the description
of an IVGE. Quantitative data are stored as numerical val-
ues which are generally used to depict geometric properties
(like a path’s width of 2 meters) or statistical values (like a
density of 2.5 persons per square meter). Qualitative data
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(a) Grid abstraction using a
three levels quatree.

(b) topological graph represen-
tation of a CDT.

Figure 3: Abstraction examples for two kinds of en-
vironment descriptions.

are introduced as identifiers which can be a reference to an
external database or a word with arbitrary semantics, called
a label. Such labels can be used to qualify an area (like a
road or a building) or to interpret a quantitative value (like a
narrow passage or a crowded place). An advantage of inter-
preting quantitative data is to reduce a potentially infinite
set of inputs to a discrete set of values, which is particularly
useful to condense information in successive abstraction lev-
els to be used for reasoning purposes.

The resulting topological graph can be improved in two
ways. First, qualitative information from the arcs of the
graph are propagated to the nodes, which allows, for ex-
ample, deduction of the internal parts of the buildings or
of the roads in addition to their outline. Second, we pro-
pose a novel approach of information extrapolation using a
one-time spatial reasoning process based on a geometric ab-
straction. This second technique can be used to fix input
elevation errors, as well as to create new qualitative data
relative to elevation variations. These data are stored as
additional semantics bound to the graph nodes, which can
subsequently be used for spatial reasoning.

4. COMPUTATION OF IVGE DATA
We propose an automated approach to compute the IVGE

data directly from vector GIS data. This approach is based
on five stages which are briefly described in this section
(Figure 4): input data selection, spatial decomposition, maps
unification, geometric abstraction, and finally the informed
graph generation. In this section we briefly introduce these
stages since a more detailed description of our IVGE model
is provided in [21].

4.1 Input data selection
The first step of our approach is the only one requiring hu-

man intervention. It consists of selecting the different vector
data sets which are used to build the IVGE. The only restric-
tion concerning these data sets is that they must respect the
same scale. The input data can be organised into two cat-
egories. First, elevation layers contain geographical marks
indicating absolute terrain elevations. As we consider 2.5D
IVGE, a given coordinate cannot have two different eleva-
tions, making it impossible to represent tunnels for example.
This said multiple elevation layers can be specified, and the
model can merge them automatically. Second, semantic lay-

Figure 4: The five stages to obtain an IVGE from
GIS data. All the stages are automatic but the first.

ers are used to qualify various types of data in space. Each
layer indicates the physical or virtual limits of a given set of
features with identical semantics in the geographic environ-
ment, such as roads or buildings. The spatial extents can
overlap between two layers, and the model is able to merge
the information.

4.2 Spatial decomposition
The second step consists of obtaining an exact spatial de-

composition of the input data in cells. This process is en-
tirely automatic, using Delaunay triangulation, and can be
divided into two parts in relation to the previous phase.
First, an elevation map is computed, corresponding to the
triangulation of the elevation layers. All the elevation points
of the layers are injected in a 2D triangulation, the eleva-
tion being considered as an attribute. This process pro-
duces an environment subdivision composed of connected
triangles (Figure 5(a)). Such a subdivision provides infor-
mation about coplanar areas: the elevation of any point in-
side a triangle can be deduced using the elevation of the
three measured verticies. Second, a merged semantics map
is computed, corresponding to a constrained triangulation
of the semantic layers. Indeed, each segment of a seman-
tic layer is injected as a constraint which keeps track of the
original semantic data using additional attributes. The ob-
tained map is then a constrained triangulation merging all
input semantics (Figure 5(b)): each constraint represents as
many semantics as the number of input layers used to build
it.

4.3 Maps unification
The third step to obtain our IVGE data consists of uni-

fying the two maps obtained in sub-section 4.2. This phase
can be depicted as the mapping of the 2D merged seman-
tic map (Figure 5(b)) on the 2.5D elevation map (Figure
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(a) Triangulated elevation map (2.5D). (b) Merged semantics map (2D). (c) Unified map (2.5D).

Figure 5: The two processed maps (a, b) and the unified map (c).

5(a)) in order to obtain the final 2.5D merged semantics
map (Figure 5(c)). First, preprocessing is carried out on
the merged semantics map in order to preserve the eleva-
tion precision inside the unified map. Indeed, all the points
of the elevation map are injected in the merged semantics
triangulation, creating new triangles. Then, a second pro-
cess elevates the merged semantics map. The elevation of
each merged semantics point P is computed by retrieving
the corresponding triangle T inside the elevation map, i.e.
the triangle whose 2D projection contains the coordinates
of P . Once T is obtained, the elevation is simply computed
by projecting P on the plane defined by T using the Z axis.
When P is outside the convex hull of the elevation map,
then no triangle can be found and the elevation cannot be
directly deduced. In this case, we use the average elevation
of the points of the convex hull which are visible from P .

4.4 Geometric abstraction
Geographic environments are seldom flat. Therefore, it is

important to consider the terrain shape elevation when de-
scribing a geographic environment. Quantitative elevation
data are stored in the GIS which is suitable for calculations.
However, spatial reasoning such as path planning often needs
to manipulate qualitative information. For example, when
considering a slope, it is obviously simpler and faster to qual-
ify it using an attribute such as gentle and steep slope rather
than using numerical values. Hence, it is easy to decide that
gentle slopes are crossable and steep slopes are not. How-
ever, when dealing with large scale geographic environments,
qualifying the terrain’s shape, including its light variations,
may be a complex task. To this end, we propose a geometric
abstraction process that uses geometric data to group cells
and to extract the terrain’s elevation information from spa-
tial areas. The geometric abstraction relies on a coplanarity
criterion which is assessed by computing the difference be-
tween the normal vectors of two neighbouring cells or groups
of cells. In order to compute the normal vector of a group,
we adopt the area-weight normal vector [3] which takes into
account the unit normal vectors of its composing cells as
well as their respective surfaces.

4.5 Informed graph generation
The unified map now contains all the semantic informa-

tion of the input layers, along with the elevation information.

This map can be used as a topological graph, where each
node corresponds to the map’s triangles, and each arc to the
adjacency relations between these triangles. Then, common
graph algorithms, especially graph traversal, can be applied
to this topological graph. One of these algorithms retrieves
the node, and so the triangle, corresponding to given 2D
coordinates. Once this node is obtained, it is possible to
extract the data corresponding to the position, such as the
elevation, using the 2.5D triangle and the semantics infor-
mation. Many other algorithms can be applied, such as path
planning or graph abstraction, but they are out of the scope
of this paper and will not be detailed here.

5. TOPOLOGIC ABSTRACTION
In Section 4, we presented our work on the generation

of informed virtual geographic environments using an exact
spatial decomposition scheme which subdivides the environ-
ment into convex cells organised in a topologic graph struc-
ture. However, inside large scale and complex geographic
environments (such as a city for example), such topologic
graphs can become very large. The size of such a topologic
graph has a direct impact on paths’ computation time. In
order to optimise the performance of path computation, we
need to reduce the size of the topologic graph representing
the IVGE. The aim of the topologic abstraction is to provide
a compact representation of the topologic graph suitable for
situated reasoning and enabling fast path planning. How-
ever, in contrast to the geometric abstraction which only en-
hances the description of the IVGE with elevation semantics,
the topologic abstraction extends the topologic graph with
new layers. In each layer (except for the initial layer which
is called level 0), a node corresponds to a group of nodes of
the immediate lower level (Figure 6). Indeed, the topologic
abstraction simplifies the IVGE description by combining
cells (triangles) in order to obtain convex groups of cells.
Such a hierarchical structure evolves the concept of Hierar-
chical Topologic Graph in which cells are fused in groups and
edges are abstracted in boundaries. To do so, convex hulls
are computed for every node of the topologic graph. Then,
the coverage ratio of the convex hull is evaluated as the sur-
face of the hull divided by the actual surface of the node.
The topologic abstraction finally groups a set of connected
nodes if and only if the group ratio is close to one. Let G
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be a group of cells, C be the convexity rate, and CH(G)
be the convex hull of the polygon corresponding to G. C is
computed as follows:

C(G) =
Surface(G)

Surface(CH(G))
and 0 < C(G) ≤ 1 (1)

Indeed, the convex property of groups needs to be preserved
after the topologic abstraction. This ensures that an entity
can move freely inside a given cell (or group of cells), and
that there exists a straight path linking edges belonging to
the same cell (or group of cells). Figure 7 illustrates an
example of the topologic abstraction process and the way
it reduces the number of cells representing the environment.
Figure 7(a) depicts the initial exact spatial decomposition of
a complex building which yields 63 triangular cells. Figure
7(b) presents 28 convex polygons generated by the topologic
abstraction algorithm. The optimisation rate of the number
of cells representing the environment is around 55%.

Figure 6: The topologic graph extraction from space
decomposition and extension into different levels us-
ing the topologic abstraction.

(a) (b)

Figure 7: Illustration of the topologic abstraction
process with a strict convex property (C(gr) = 1);
(a) the exact space decomposition using CDT tech-
niques (63 triangular cells) ; (b) the topologic ab-
straction (28 convex polygons)

6. HIERARCHICAL PATH PLANNING
In this section, we present our hierarchical path planning

algorithm (HPP for short). We then provide a computation
analysis of the algorithm complexity which aims to point
out the contribution of our algorithm. Finally, we propose
a path enhancement method in order to optimise the com-
puted paths for more realistic moving agents.

6.1 Algorithm
Let us consider the topologic graph extracted from the

exact spatial decomposition before highlighting the useful-
ness of the topologic and semantic abstractions. Since cells
are convex, it is possible to build an obstacle-free path by
linearly connecting positions located at two different bor-
ders belonging to a given cell. Thus, it is also possible to
use borders, represented by edges in the graph, to compute
obstacle-free paths between different locations in the envi-
ronment. Since the topologic graph structure is hierarchical,
each node at a given level i (except at level 0) represents a
group of convex cells or abstract cells of a lower level i − 1.
Hence, our approach can be used to compute a path linking
two abstract nodes at any level.

Let us consider a hierarchical topologic graph G composed
of i levels. Nodes belonging to level 0 are called leaves and
represent convex cells produced by the exact spatial decom-
position. Nodes belonging to higher levels (i > 0) are called
abstract nodes and are composed of groups. Given a start-
ing position, a final destination, and a hierarchical topologic
graph G composed of i levels, the objective of our algorithm
is to plan a path from the current position to the destination
using G. The algorithm starts from the highest level of the
hierarchy and proceeds as follows:

• Step 1: Identify the abstract nodes to which the start-
ing position and the final destination belong.
Two cases need to be considered:

– Case 1: Both are in the same abstract node k at
level i.
Proceed to step 1 with the groups (at level i− 1)
belonging to node k.

– Case 2: They are in different abstract nodes k
and j at level i. Proceed to step 2.

• Step 2: Compute the path from the abstract node k
to the abstract node j.
For each pair of consecutive nodes (s, t) belonging to
this path, two cases are possible :

– Case 1: Both are leaves. Proceed to step 4.

– Case 2: Both are abstract nodes. Proceed to step
3.

• Step 3:

– If the starting position belongs to s then identify
to which group gs of s it belongs and proceed to
step 2, in order to compute the path from the
abstract node gs to the closet common boundary
with the abstract node t. Else proceed to step 2 in
order to compute the path from the center of the
abstract node s to the closet common boundary
with the abstract node t.
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– If the final destination position belongs to t then
identify to which group gd of t it belongs and pro-
ceed to step 2, in order to compute the path from
the closet common boundary with the abstract
node s to gd. Else proceed to step 2 in order to
compute the path from the closet common bound-
ary with the abstract node s to the centre of the
abstract node t.

• Step 4: Once in a leaf, apply a path planner algo-
rithm (we used the Djkstra and A* algorithms) from
the starting position to the final goal using the convex
cells which belong to the informed graph.

The strategy adopted in this algorithm is to refine the
path planning when getting closer to the destination. The
algorithm starts by planning a global path between the start
and the destination abstract nodes (step 1). Then, for each
pair of successive abstract nodes, it recursively plans paths
between groups (of lower levels) until reaching leaves (steps
2 and 3). Once at leaves (convex cells at level 0), the algo-
rithm proceeds by applying a path planning algorithm such
as Dijkstra and A* (step 4). Hence, at level i, the path plan-
ner exploration is constrained by the nodes belonging to the
path computed at level i + 1.

Moving agents can use this algorithm in order to plan
paths within the IVGE. The path computed in step 2 is ac-
tually a coarse-grained path whose direction is only indica-
tive. Since the path is refined in a depth-first way, agents
can perform a local and accurate navigation inside an ab-
stract node without requiring a complete and fine-grained
path computation towards the final destination. The lower
levels’ sub-paths (related to other abstract nodes) are com-
puted only when needed, as the agent moves. Such a just in
time path planning approach is particularly relevant when
dealing with dynamic environments. Classic path planning
approaches use the entire set of cells representing the en-
vironment and compute the complete path between a start
and a final positions. These classical approaches suffer from
two major drawbacks : 1) the computation time of a path
is considerable since it involves all the cells composing the
environment; 2) the planned path may become invalid as a
consequence of changes in the environment. An interesting
property of our hierarchical path planning approach is the
optimization of calculation costs over time. Indeed, the en-
tire path is only computed for the most abstracted graph,
which contains a small number of abstract nodes compared
to the informed graph (convex cells at level 0). In addi-
tion, our approach provides a just in time path planning
which can accommodate a dynamic environment. Further-
more, this hierarchical path planning is adapted to any type
of agents, whenever we are able to generate the abstracted
graphs taking into account both the geographic environment
and the agents’ characteristics.

6.2 Complexity analysis
In order to highlight the outcomes of our approach, let

us compare the computation cost of our hierarchical path
planning with the standard path planning. Let G0(V0, E0)
be the graph representing the virtual environment at level 0,
which corresponds to cells produced by the spatial decompo-
sition process. Let V0 correspond to the set of vertices and
E0 correspond to the set of edges at level 0. Let |V0| = N
be the number of nodes of the graph G0. Let us consider

a starting position s and a destination position d located
in the virtual environment. The computation cost of the
shortest path between s and d at level 0 (represented by the
graph G0) is denoted by C0(N) and is given by the following
equation:

C0(N) = O(N ∗ ln(N)) (2)

Let us now compare C0(N) with the computation cost of
our hierarchical path planning algorithm which relies on the
hierarchical topologic graph with k levels. To this end, we
need to raise some assumptions for the sake of simplification.
First, let us assume that the topologic abstraction process
may be thought of as a function h which abstracts a topo-
logic graph Gi−1 and builds a new topologic graph Gi. The
function h can be written as follows:

h(Gi−1(Vi−1, Ei−1)) = Gi(Vi, Ei) with 0 ≤ i ≤ k − 1 (3)

Let li be the abstraction rate between two successive levels
i − 1 and i (with 0 ≤ i ≤ k − 1). Since the abstraction
process aims to reduce the number of nodes at each new
level, we have li > 1 + ε (with 0 ≤ i ≤ k − 1) as illustrated
in equation 4.

li =
|Vi−1|

|Vi|
with li > 1 + ε and ε > 0 (4)

Second, let us suppose that the kth level of our hierar-
chical topologic graph is composed of m nodes. N which
corresponds to the number of nodes of the graph G0 can be
expressed using equations 3 and 4 as follows:

N = m ∗ lk−1 ∗ ... ∗ l0 (5)

N ≥ m ∗ (1 + ε)k with k > 0 and ε > 0 (6)

N = m ∗

k−1∏

i=0

(li) with k > 0 and m > 0 (7)

Let lAvg be the average value of li (with 0 ≤ i ≤ k − 1).
Using lAvg, equation 7 becomes:

N = m ∗ lkavg with k > 0 and m > 0 (8)

Let us replace the term N in equation 2 by its value in
equation 8:

C0(m) = O(m ∗ lkavg ∗ ln(m ∗ lkavg)) (9)

Equation 9 can be developed as follows:

C0(m) = O(m ∗ ln(m) ∗ lkavg + m ∗ lkavg ∗ ln(lkavg)) (10)

Let Nbk be the number of nodes composing the computed
path at level k. The computation cost of Nbk is given by
the following equation:

Nbk = O(m ∗ ln(m)) with k > 0 and m > 0 (11)

The hierarchical path planning algorithm involves the com-
putation of the shortest path at level k and the refinement of
the path linking each pair of successive nodes at lower levels.
Therefore, the shortest path from s to d corresponds to the
computation of Nbk at level k and its refinement through the
lowest levels. Such a shortest path is denoted Ck and has a
computation cost which can be computed by the following
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equations:

Ck(m) = Nbk ∗

k−1∑

j=0

ljavg (12)

Ck(m) = Nbk ∗
lkavg − 1

lavg − 1
(13)

The term Nbk in equation 13 is replaced by its value ex-
pressed in the equation 11 as follows:

Ck(m) = O(m ∗ ln(m) + m ∗
lkavg − 1

lavg − 1
) (14)

Let us compare the computation costs of standard path
planning approaches (equation 10) and our hierarchical path
planning approach (equation 14). First, it is obvious that
the first term m∗ ln(m) in equation 10 is inferior to the first
term m ∗ ln(m) ∗ lkavg in equation 14 since the abstraction

rate lkavg > 1. Second, in a similar way, the second term

m∗(lkavg −1/lavg −1) in equation 10 is inferior to the second

term m ∗ lkavg ∗ ln(lkavg) in equation 14. In conclusion, the
hierarchical path planning algorithm along with the hierar-
chical topologic graph that we propose is at least ln(lkavg)
orders of magnitude faster than standard path planning ap-
proaches.

6.3 Path Optimisation
The topological abstraction only groups together adjacent

cells or groups of cells with respect to the convexity criterion.
While this approach is efficient to reduce the size of the
topologic graph, it gives up the optimality of the computed
path. Indeed, paths are optimal in the abstract graph but
not necessarily in the initial problem graph (informed graph
at level 0). In order to improve the quality of the computed
path (i.e., length and visual optimisation), we perform a
post-processing phase called path optinmisation (Figure 8).
Our strategy for path optimisation is simple, but produces
good results. The main idea is to replace local sub-optimal
parts of the computed paths by straight lines. We start from
one end of the path (Figure 8(a)). For each node part of the
computed path, we check whether we can reach a subsequent
node in the path in a straight line. If this is possible, then
the linear path between the two nodes replaces the initial
sub-optimal sequence between these nodes (Figure 8(b)).

(a) (b)

Figure 8: (a) The original computed path ; (b) The
computed path after optimisation.

7. RESULTS
In this section, we present the results of the implemen-

tation of our IVGE generation approach. We also show
how the multi-level graph structure and the semantically-
enriched description of the IVGE can be used to support
agents’ path planning, taking into account both the envi-
ronment’s characteristics and the situated agent archetypes.
Our IVGE generation model is efficient and can process an
area such as the center part of Quebec City, with one eleva-
tion map and five semantic layers, in less than five seconds
on a typical computer (Intel Core 2 Duo processor 2.13Ghz,
1G RAM). The resulting unified map approximately con-
tains 122, 000 triangles covering an area of 30km2. The nec-
essary time to retrieve the triangle corresponding to a given
coordinate is negligible (less than 10−4 seconds). The ge-
ometric abstraction produces approximately 73, 000 groups
of cells in 2.8 seconds.

Figure 9 illustrates two paths linking two locations situ-
ated in the IVGE. Figure 9(a) shows a path planning (coloured
in yellow) which avoids obstacles such as buildings, walls
which are coloured in black, but does not take into account
the terrain characteristics. Therefore, this path crosses an
area coloured in red which represents a steep slope. In Fig-
ure 9(b), the algorithm has generated a path which respects
both the terrain and the obstacles in the IVGE. Indeed, the
steep slopes (initially coloured in red) are avoided since they
are now considered as obstacles (coloured in black). This
path is longer, but it fully respects the constraints of the
environment and the slope of the terrain.

In a multi-agent geo-simulation an agent may not aim at
reaching a particular position but rather a particular area in
the IVGE. This type of path planning answers the question:
how to find a path to reach a specific area while respecting
the environment’s constraints? The semantic information
(building, house, marina, wall of the old city, etc.) inte-
grated in the IVGE description helps answer such a ques-
tion. Thanks to the topological graph and using the Di-
jkstra algorithm the system computes the shortest path to
reach a specific area located in the IVGE. If the semantics
associated with the visited node correspond to the target
area’s characteristics, then the algorithm stops and the path
is generated. To illustrate path planning towards a target
area qualified by one or several semantics (instead of a tar-
get position), we propose the following example: a tourist
who moves using a wheelchair is located inside the old city
of Quebec. This tourist wants to visit an attraction spot
called the marina. Here, the marina is not identified by
coordinates (x, y, z), but rather by semantic information.
A path that only avoids the obstacles of the environment
(buildings coloured in black) but crosses steep slopes areas
(coloured in red) is obviously not acceptable for this tourist.
Figure 9(c) shows the computed path to reach the marina
(the marina is coloured in blue at the top of the figure).
This path avoids steep slopes (coloured in black) as well as
obstacles situated in the IVGE (buildings coloured in black)
and reaches a place identified by the semantic information
(marina).

We have formally demonstrated how our hierarchical path
planning algorithm allows for the enhancement of the path
planning computation cost in our IVGE. Indeed, our hier-
archical path planning algorithm, along with our IVGE’s
hierarchical structure, is faster than standard path planning
approaches.
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(a) (b) (c)

Figure 9: Path planning in the IVGE (the computed path is coloured in yellow). (a) path computed with no
regard for the terrain shape; (b) path computed with regard for the terrain shape; (c) Search path to get to
a place (marina) in the IVGE (place described by semantics).

Finally, in order to highlight the outcomes of the path
optimisation process, we randomly selected 19 starting and
destination positions in the IVGE. For each pair of positions,
we compared the original computed path length with the
optimised path length. Figure 10 depicts the comparison of
the non optimised computed path length and the optimised
path length. It shows how the optimisation process reduces
the computed path length by an average of 16%.

Figure 10: Optimised versus non-optimised paths
lengths.

8. DISCUSSION
In order to reduce the search space, we proposed a hierar-

chical topologic graph that groups convex cells and groups
of cells. Hence, each abstract node at level i contains a
subset of this graph at level i − 1, composed by at least
one node or abstract node. The extraction of this hierar-
chical topologic graph only requires an acceptable one-time
computation cost and a low memory overhead. Despite the
reduction of the number of nodes, this technique creates two
application-dependent issues that must be addressed: hier-
archical traversal cost and Information richness.

First, the hierarchical traversal cost increases with each
grouping, which might limit the performance of the search
space reduction brought by the hierarchical representation.
Indeed, despite of the number of levels of the hierarchal
topologic graph, the path planning process provides moving
agents with a set of convex cells (belonging to level 0) to pass

through in order to reach the final destination. This means
that the path planning process must inevitably traverse the
hierarchical topologic graph from its top to its bottom in
order to compute such a set of cells.

Second, the information richness decreases with each group-
ing level, which could lead to useless additional abstraction
levels that may not improve the decision making of the hier-
archical path planning algorithm. Indeed, the more poten-
tial sub-paths an abstract node contains, the less its choice
influences the path planning process. Therefore, the deter-
mination of the number of topologic abstraction levels must
be carefully analysed with respect to these two critical issues
in addition to the application requirements.

Another important aspect of our IVGE is its capability
to represent geographic environments which are distributed
in space. Indeed, thanks to the hierarchical structure of
the topologic graph, our model is capable of representing
portions of geographic environments which are not adjacent
in space. For example, consider the problem of traveling
by car from Quebec city (QC, Canada) to New York (NY,
USA). We need to compute the shortest (minimum distance)
path from a given address in Quebec city, let us say 312
Marie-Louise, to a given address in New York city, let us
say 1213 4th Avenue, Brooklyn. Given a detailed descrip-
tion of the geographic environment showing all roads anno-
tated with driving distances, a classic planner can compute
such a travel route. However, this might be an expensive
computation, given the large size of the description of the
geographic environment. This problem may be solved in a
three steps process. First, we compute the path from 312
Marie-Louise to a major highway leading out of Quebec city.
Second, we compute the path from Quebec to the bound-
aries of New York. Third, we compute the path from the
incoming highway to 1213 4th Avenue, Brooklyn. Assuming
that the second path is mostly composed of highways and
can be quantified (distance and travel time), it is easy to
model this path using a conceptual node in our hierarchi-
cal topologic graph. A conceptual node allows for linking
spatially distributed geographic environments and hence al-
lows us to accurately compute optimal paths with respect
to these environments’ characteristics.
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9. CONCLUSION AND FUTURE WORKS
In this paper, we proposed an accurate and automated

approach for the generation of semantically-enhanced and
geometrically-accurate virtual geographic environments us-
ing GIS data. This novel approach offers several advantages.
First, the description of the IVGE is realistic since it is based
on standard GIS data. This description is also quite accurate
because it is produced by an exact spatial decomposition
technique which uses data in a vector format. Hence, this
description preserves both the geometric and the topological
characteristics of the geographic environment and enables a
graph-based description of the virtual environment. The
topologic approach goes beyond grid-based techniques by
combining semantic information merging with the accuracy
of vector-based representations. The main outcome of such
a semantically-enhanced and geometrically-accurate virtual
geographic environment concerns agents’ situated reasoning
capabilities such as path planning in large-scale and complex
geographic environments. We proposed a hierarchical path
planning algorithm (using Dijkstra and A* ) which takes ad-
vantage of our IVGE model to provide paths which take into
account the agents’ and environment’s characteristics.

We are currently working on further improvements of the
IVGE’s description by integrating enriched knowledge rep-
resentations (called the environment knowledge) using Con-
ceptual Graphs aimed at assisting situated agents’ interac-
tions with the IVGE and helping them achieve their goals.
The goal of the environment knowledge integration is to ex-
tend the agents’ knowledge about their surrounding envi-
ronment. The above-mentioned contributions of our model
offer new opportunities for many applications in a variety of
application domains including the entertainment industry
(games and movies), security planning and crowd manage-
ment (planning events involving large crowds), and environ-
ment monitoring in natural environments using spatially-
aware sensor networks.
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