
Simulation of a Large Scale Dynamic Pickup and Delivery
Problem

Esa Hyytiä, Lauri Häme, Aleksi Penttinen and Reijo Sulonen
Aalto University, School of Science and Technology

PO Box 11000, FI-00076 Aalto, Finland
{esa.hyytia,lauri.hame,aleksi.penttinen,reijo.sulonen}@tkk.fi

ABSTRACT

We study a variant of dynamic vehicle routing problem with
pickups and deliveries where a vehicle is allocated to each
service (i.e., trip) request immediately upon the arrival of
the request. Solutions to this problem can be character-
ized as dynamic policies that define how each customer is
handled by operating a fleet of vehicles. Evaluation of such
policies is beyond the grasp of analytical studies and requires
extensive simulations. We present an efficient and modular
simulation tool developed for studying the performance of
a large scale system with different policies under given trip
arrival process. Numerical and analytical observations on
the model are utilized to provide guidelines for solving the
routing problem efficiently, and to support the validation of
the simulation results. Application of the developed frame-
work is demonstrated by several numerical examples, e.g.,
policy parameter optimization, which all give insight on the
viability of this type of transportation system.

Categories and Subject Descriptors

G.4 [Mathematical software]: algorithm design and anal-

ysis; I.6.3 [Simulation and modeling]: Applications

General Terms

Experimentation,Algorithms,Performance

Keywords

Vehicle routing, dial-a-ride problem

1. INTRODUCTION
The dynamic vehicle routing problem with pickups and

deliveries (VRPPD) involves the dispatching of a fleet of ve-
hicles in real time in order to serve customers requesting
transportation of goods or passengers from one location to
another. In general, vehicles can serve more than one re-
quest at the same time. The main applications of this prob-
lem include the transportation of handicapped and elderly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2010 March 15–19, Torremolinos, Malaga, Spain.
Copyright 2010 ICST, ISBN 78-963-9799-87-5.

people in urban areas (dial-a-ride problem, DARP) and the
transportation services of letters and parcels performed by
courier companies (urban courier service problem) [4].

In this type of dynamic routing problems, customer re-
quests are revealed gradually in the course of time and thus
the vehicle routes are subject to modifications as they are ex-
ecuted. Therefore, solutions to dynamic problems are often
characterized as policies specifying the actions in different
situations. Policies attempt to manage the well-known di-

chotomy between the work the vehicle fleet conducts and the
service the passengers obtain, e.g., between the kilometers
the vehicles drive and the mean traveling time. Indeed, an
efficient policy seeks to optimize either of the two aspects, or
some balanced combination of them (cf., Pareto optimality).

In this work, we consider a large scale dynamic vehicle
routing problem with pickups and deliveries where each cus-
tomer is assigned to a vehicle immediately at the arrival
of the request. In this case the solution to the dynamic
VRPPD can be decomposed into two subpolicies: vehicle
allocation, and vehicle routing. For each customer the sys-
tem decides, in on-line fashion, which vehicle takes the cus-
tomer after which the route of the corresponding vehicle is
updated. The vehicle routing part is inherently combinato-
rial by nature (cf., the traveling salesman problem) and, in
many cases, needs to be solved for all vehicles actually before

a vehicle allocation can be made. Furthermore, as we focus
on systems with at least several hundreds of vehicles under
high transportation demand, even a simple policy tends to
induce extensive computations. Thus, evaluation of the per-
formance of different policies requires an efficient simulation
platform tailored particularly for this purpose.

We have developed a modular simulator that is capable
of handling various capacity and time constraints in a large
system at fast speed. Our goal is two-fold. First, we use
the simulator to study this complex transportation system
in general in order to understand, e.g., the trade-off between
the system’s work and the service the passengers experience.
Secondly, we apply the simulator to develop efficient policies
for solving the problem. In this paper we describe the sim-
ulator design, make some fundamental observations on the
dynamics of the problem, and demonstrate how the simula-
tor can be used to improve the heuristic vehicle routing and
allocation policies by tuning policy parameters.

Rest of the paper is organized as follows. In Section 2, the
main concepts of the model are introduced. Vehicle routing
and allocation are studied in Section 3. Section 4 describes
the simulator. In Section 5, a collection of simulation results
are given, and Section 6 concludes the paper.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8701
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8701

1.1 Related work
Most studies related to vehicle routing problems focus on

the static case and relatively few results for dynamic prob-
lems have been reported. The main solution concepts related
to the dynamic VRP, some of which apply to the dynamic
VRPPD, are examined in [20, 11, 8]. Typically a special
case of the problem, namely the online dial-a-ride problem
(OlDARP) without time constraints, is considered [6]. Only
a few analytical results for this problem have been reported.

In [5], it is shown that the competetive ratio1 of any de-
terministic algorithm is at least 2 for minimizing route du-
ration and at least 1+

√
2 for minimizing the sum of service

times. Additionally, an algorithm for the first objective with
competetive ratio 2 is given for the special case of infinite
capacity vehicles, An improved algorithm achieving the com-
petetive ratio of 2 with an arbitrary capacity is given in [1].
In [13], a special case of the OlDARP is studied, in which
only the pickup point is initially revealed. The authors prove
that the competitive ratio for this problem is at least 3 and
also give an algorithm which achieves this.

The first exact algorithm for the dynamic single vehicle
DARP was introduced in [19]. Because of the inherent com-
plexity of the problem, most of the recent studies related
to the dynamic VRPPD resort to heuristic approaches. In
[23], lower bounds and constant-factor policies for the un-
capacitated multiple vehicle version of the problem are pre-
sented. In [21], an algorithm for a real-life multiple vehicle
VRPPD with capacity and time constraints is described. A
specially tailored objective function for a dynamic environ-
ment is used instead of the objective function of the static
problem. Motivated by courier services, a heuristic for a
dynamic uncapacitated VRPPD with time windows is pro-
posed in [17]. The authors report that the total distance
traveled may be reduced by an appropriate waiting strategy.
An improved algorithm is given in [16]. In [7], a tabu search
algorithm for a similar problem is presented and applied to
problems with up to 33 requests. In [22], an algorithm for a
capacitated dynamic VRPPD is proposed. Computational
results indicate that the performance of the algorithm can
be improved by up to 22% when information on future re-
quests is taken into account. Finally, in [9], two algorithms
for an uncapacitated dynamic VRPPD are described. Com-
putational tests show that by estimating future requests, an
improvement of 11-69% can be achieved for both algorithms.

As already stated, this paper focuses on a large scale dy-
namic VRPPD involving at least several hundreds of vehi-
cles. We introduce a general solution concept particularly
tailored for this type of environment and different policies
for handling customers with a sub-second interarrival time.
The effect of the rate of trip requests and the choice of the
solution policy on travel time, distance driven per customer
and waiting time are evaluated by means of computational
experiments. In addition, several analytical observations re-
lated to the level of service and system performance in a
dynamic large scale transportation system are presented.

2. MODEL
We consider an abstract model where trip requests arrive

according to a Poisson process with rate λ [trip/s], and that

1Online algorithm has a competetive ratio α if its perfor-
mance for any input is at most α times worse than that of
an optimal offline algorithm.

for each trip request both the pickup and delivery locations
are uniformly distributed in a finite convex region with area
A (cf. Poisson point process). We have a fleet of n vehicles

each with c passenger seats in order to support the given
transportation demand in online fashion. We assume Eu-
clidean distances between any two points and thus each ve-
hicle uses direct path between the waypoints that define the
route. When a trip request arrives, it is immediately as-
signed to a single vehicle. The chosen vehicle then, at some
point of time, picks up the passenger for delivery to the cor-
responding destination. With c > 1 several passengers can
share a vehicle in time, which allows one to combine trips
and decrease the effort per passenger.

For simplicity, we assume a constant velocity v (e.g., 36
km/h) and a constant (minimum) stop time of tst (e.g., 30
s). After the stop time, passengers can enter and exit the
vehicle until the vehicle starts moving again. The stop time
is assumed to include deceleration and acceleration of the
vehicle. Note that in our trip demand model (Poisson point
process), each stop corresponds to exactly one passenger en-
tering or exiting the vehicle at a time, i.e., passengers do not
share the stops (cf., door-to-door vs. stop-to-stop service).

We study the performance of such a model when the num-
ber of vehicles is large and demand is high with the goal of
developing efficient ways to operate the vehicle fleet. Al-
though the model is presented here in the passenger trans-
portation context, the problem itself covers also other appli-
cations such as on-demand parcel or message delivery [23].

2.1 Heuristic policies
Let α denote the policy, which (i) decides on which vehicle

a new customer is allocated to, and (ii) decides on the vehi-
cle’s route in dynamic fashion based on the current state of
the system. The optimal way to operate a fleet of n vehicles
is a very difficult problem, and to start with, requires defin-
ing a satisfactory balance between the two conflicting goals:
the level of service and the system’s efforts.

In this paper, we limit our approach to policies that can
be expressed in terms of a cost function f(·) in the following
way. A cost function can be evaluated for any given route ξ,
which is defined by a sequence of waypoints, i.e., pickup and
delivery locations. Also existing state information can be
included in the cost function, e.g., in the form of the existing
route of a vehicle, denoted by ξold. Different routes can be
evaluated for each vehicle. The new passenger is allocated to
the vehicle with the lowest cost route. The particular vehicle
also switches to the new route immediately, i.e., the routes
are constantly changing in response to the trip requests.

We investigate the performance of the system with three
simple but intuitive heuristic policies. Let t(ξ) be the route
length (in time) and let d(ξ) be the total remaining travel
time of all customers assigned to the vehicle (waiting for
pickup or traveling in the vehicle) according to the planned
route. For each trip request, the new trip is added to the
route of a vehicle with respect to the following criteria:

• min-RD (minimum route duration) assigns the new trip
to the vehicle which can deliver both the new and its
existing passengers fastest:

f(ξ, ξold) = t(ξ).

• min-∆RD (minimum difference in route duration) chooses
the vehicle (and route) which can serve the new trip

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8701
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8701

request with the smallest additional effort (in time):

f(ξ, ξold) = t(ξ) − t(ξold).

• min-∆ST (minimum difference in system times) repre-
sents the difference between the sum of the passengers’
system (sojourn) times before and after inclusion of the
new trip request:

f(ξ, ξold) = d(ξ) − d(ξold).

Note that global information on the system is utilized only
in the allocation phase; the route evaluation can be done
locally for each vehicle. Note also that min-RD implements
a some kind load balancing between the vehicles.

2.2 Performance

2.2.1 Passenger service level

Given a policy, the stochastic system is, in principle, well-
defined and one can study its various statistics. In a stable
system, each passenger first waits until the assigned vehicle
arrives, and then travels in the vehicle to her destination,
possibly via an indirect zig-zag route due to the other pas-
sengers assigned to the same vehicle. Let the random vari-
able Wi = Wi(α) denote the waiting time of customer i, i.e.,
the length of the time interval from the request until the
passenger enters the vehicle. Similarly, let Ti = Ti(α) de-
note the time customer i spends inside a vehicle (ride time),
and Xi = Xi(α) the total distance she travels. Now,

Wi > tst with probability of 1,
Ti ≥ Xi/v + tst,
Si = Wi + Ti,

where, Si = Si(α) is the sojourn time or latency of cus-
tomer i. We are interested in the mean values, E[W], E[T],
E[S], and E[X] as they describe how efficiently the system
works from the passenger point of view. In particular, the
mean latency E[S] is important as it defines the transporta-

tion capability of the system as observed by the customers.
Note that according to the Little’s result [14], e.g., the mean
number of passengers in the system is λ · E[S].

2.2.2 System performance

In addition to the above metrics, one can study the sit-
uation from the vehicles’ point of view. In our model, the
vehicle is either moving at velocity v, or stopped. Thus, its

activity corresponds to an ON/OFF process. Let B
(j)
i de-

note the duration of the ith leg of vehicle j, and I
(j)
i the

succeeding stopping time, which is at least tst. Assuming
policy α treats all vehicles equally, we can basically focus
on the mean values E[B] and E[I], which provide us all the
long term (average) quantities. Firstly, in a stable system
the average customer flow in and out are equal:

λ =
(1/2)n

E[B] + E[I]
,

where n denotes the number of vehicles and the factor of 1/2
is due to the fact that only every second stop corresponds
to a departing customer. Note that the above assumes that
an empty vehicle stays where the last customer is delivered.
Substituting E[I] ≥ tst and E[B] ≥ 0 in the above yields a
capacity constraint,

λmax ≤ n

2 tst
. (1)

Similarly, the mean number of moving vehicles is given by

E[moving] =
n E[B]

E[B] + E[I]
. (2)

A key performance metric for the system is the mean dis-

tance driven per passenger and denoted by τ . The average
collective velocity of the fleet is nE[B]/(E[B]+E[I])·v [m/s].
Passengers rate was λ [1/s], and thus

τ =
n v E[B]

λ (E[B] + E[I])
, (3)

i.e., the amount of work (in metres) the fleet conducts in
order to fulfil a single trip on average. Note that the τ is
constrained not only by the speed of the vehicles but also by
the time the vehicle is stopped. A useful way of character-
izing the ”resource” of the system is to consider the effective

speed of a vehicle. Assume that the vehicle is under such a
demand that it never stays stopped longer than the mini-
mum time for a passenger to enter or exit the vehicle. Each
passenger requires a pickup and delivery resulting in a de-
lay of 2tst. Given that each vehicle serves on average λ/n
requests per unit time, we have for the effective speed,

veff ≤ v

„

1 − λ2tst
n

«

.

Consequently, the distance driven per passenger is constrained
by the effective speed bound :

τ =
n veff

λ
≤

“n

λ
− 2 tst

”

v. (4)

3. ROUTING AND ALLOCATION
Recall that when a trip is ordered from the system it is

immediately allocated a vehicle that will handle the trip.
This decomposes the policy into two subpolicies, vehicle al-
location and routing. In this paper we limit ourselves to
policies where allocation and routing decisions are based on
cost functions: When a trip request arrives all vehicles com-
pute a candidate route based on a cost function and then
the vehicle with the lowest cost route is selected.

In this case the allocation is simple and scales linearly to
the number of vehicles, but computing the candidate route
is somewhat more demanding. The problem is inherently
combinatorial in nature; when a new trip request arrives
the vehicle needs to combine the new pickup and delivery
with the previously routed requests, i.e., with the existing
route. In principle, this requires enumeration of possible
routes and evaluating the cost function in each one of them.
We assume that the route of a vehicle is simply defined as
the order of (pickup and delivery) waypoints that the vehicle
passes by. Possible routes are limited only by the fact that
a pickup must take place before the corresponding delivery.

In this section we describe two experiments that aim to
shed light on two important questions that arise from our
approach. First, by locking the vehicle and the trip already
at the arrival of the request we achieve several benefits; (i)
decomposition - the vehicles can independently solve their
routing problem without consulting with other vehicles, (ii)
the solution space becomes significantly smaller thus facili-
tating the computational burden, and (iii) customer can be
immediately notified the identity of the vehicle that handles
the request. However, these benefits come with a perfor-
mance cost. This question will be elaborated in Section 3.1.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8701
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8701

In the literature, this kind of routing problems are often
solved by insertion heuristics, in which a new trip is added in
such a way that the relative order of the existing waypoints
is preserved. Although such an approach enables a poly-
nomial running time, the associated performance loss seems
inevitable. Somewhat surprisingly, for large systems the per-
formance loss appears to be neglible, as will be motivated in
Section 3.2 and evaluated by simulations in Section 5.4.

3.1 Immediate allocation
A routing and allocation policy, in which a vehicle is fixed

for each customer at the release time of the request, will not
generally perform as well as a policy in which customers may
be exchanged between vehicles at any instant. This is due to
the fact that the appearance of a new customer may render
some of the existing customer-vehicle assignments subop-
timal. In the following examination, we will estimate the
performance decrement due to immediate allocation policy.

For simplicity, let us study a static vehicle routing prob-
lem involving two vehicles, in which a single service point
chosen randomly from the unit square is associated to each
customer. The goal is to assign the customers to the two
vehicles and generate routes for the vehicles in a way that
the total route length is minimized. We will compare the
difference between (i) the optimal solution, in which all pos-
sible partitionings of customers among the two vehicles are
considered and (ii) a solution based on sequential alloca-
tion, in which the customers are assigned to the vehicles one
by one. In the second method used to model the immedi-
ate allocation policy, the vehicle for which the increase in
the route length is minimized, is selected for each customer.
Comparing the two solutions gives us an idea on how the
immediate allocation method might perform in a dynamic
setting, compared to a solution method in which customers
may be exchanged between vehicles at any instant.

The relative increase in the total route length of the two
vehicles obtained by the sequential allocation method com-
pared to the exact solution is shown in Figure 1. The solid
line represents the sequential allocation method in which
the customers are assigned in a random order. The rel-
ative deviations were computed by means of the formula
P

k
rk/

P

k
ek − 1, where

P

k
rk and

P

k
ek denote the sums

of total route lengths acquired by the random order alloca-
tion and exact offline algorithms in 500 runs. The dotted and
dashed lines represent the corresponding relative deviations
obtained by choosing the best and worst assignment orders
(out of 100 randomized orders for each run) of customers.

The curves in the figure indicate that the difference be-
tween the exact solution and the sequential allocation method
increases with the number of customers. The worst order-
ing produces an increase of approximately 10% on the total
route length for the problem involving seven customers. On
the other hand, with the best ordering of customers, the in-
crease compared to the static solution is less than 0.5% for
each of the studied problems. Generally, it can be stated
that the order in which the customers are assigned to vehi-
cles has a substantial effect on the performance of the se-
quential allocation method. However, even if the customers
were assigned in the worst possible order, the increase com-
pared to the optimal solution is limited to relatively small
values.

In this paper we focus on modeling services in which each
customer is given an instant response and the allocation has

2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Number of customers

R
e

la
ti
v
e

d
e

v
ia

ti
o

n

Random order

Worst order

Best order

Figure 1: Difference between the solutions to a ve-
hicle routing problem with two vehicles obtained by
the exact and sequential allocation methods. The
solid line represents the mean relative increase in
route length, when the customers are assigned to
vehicles in a random order, over 500 runs. The dot-
ted and dashed lines represent the corresponding in-
crease produced by the best and worst assignment
orders of customers (out of 100 orders for each run).

to be executed immediately upon a request. Thus, the al-
location order is defined by the arrival process and cannot
be optimized. Nevertheless, the above results suggest that
by freely exchanging customers among vehicles, only a rel-
atively small improvement in performance can be achieved.
In other words, immediate allocation can be considered as a
relatively efficient method for solving dynamic problems.

3.2 Insertion vs. enumeration
Clearly, in addition to the allocation order, the quality of

the solutions produced by the immediate allocation proce-
dure is strongly dependent on the algorithm used to solve the
route for each vehicle. A complete enumeration algorithm,
as used in the previous experiment, will in general produce
the best possible results with respect to a given routing and
vehicle selection policy. In some situations, however, the
use of such an algorithm may not be feasible since it would
require too much computational work. In the following ex-
periment, the difference between the solutions produced by
an exact single vehicle algorithm and the intuitive insertion
algorithm is evaluated.

More specifically, we will study the effect of problem size
on the difference between the performance of the insertion
algorithm and the exact algorithm. The algorithms are
tested on a static vehicle routing problem involving 1 to
5 vehicles and 1 to 10 customers per vehicle. Similarly as in
the previous experiment, the immediate allocation policy is
used. The total route length obtained by the two algorithms
with respect to the number of customers per vehicle is shown
in Figure 2. Table 1 shows the relative increase in the total
route length acquired by using the insertion heuristic with
10 customers per vehicle.

In general, the results indicate that the performance of the
insertion heuristic decreases as the number of customers per
vehicle increases. Since the curves representing the insertion
and enumeration algorithms converge when the problem size

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8701
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8701

2 4 6 8 10
0

1

2

3

4

5

6

Number of customers per vehicle

T
o

ta
l
ro

u
te

le
n

g
th

N=1

N=2

N=3

N=4

N=5

- Enumeration

-- Insertion

Figure 2: Difference between the total route length
obtained by the enumeration and insertion algo-
rithms. The difference between the algorithms in-
creases with the number of customers per vehicle.

customers per vehicle = 10
number of vehicles 1 2 3 4 5
increase (%) 5.5 4.3 3.9 3.7 3.5

Table 1: Relative increase in the total route length
obtained by comparing the insertion to the enumer-
ation with 10 customers per vehicle. Performance
loss decreases as the number of vehicles increases.

is decreased, the use of the classical insertion heuristic can be
seen to be well motivated in problems in which the number
of customers assigned to a single vehicle is sufficiently small
at any instant. This observation is in line with the fact that
the insertion algorithm is asymptotically optimal. Indeed,
when the number of customers assigned to a single vehicle is
limited to 2 or less, the insertion algorithm goes through all
possible permutations (even if both a pickup and a delivery
node were associated to each customer).

Furthermore, by looking at Table 1, it can be seen that the
gap between the two algorithms is slightly decreased as the
number of vehicles is increased. Thus, it may be suggested
that the insertion algorithm will perform well in problems
in which the number of vehicles is large. We will return to
this question with simulation results in Section 5.4.

4. SIMULATOR DESIGN
In this section we will briefly describe the design of our

simulator tool and some important implementation decisions
that provide us reasonably fast simulation times. As men-
tioned, our goal is to study a system with a large num-
ber of vehicles n (e.g., n = 500) and a high demand of
trips. This means a relatively complicated system with a
huge number of state information and internal constraints
that must be checked constantly throughout the simulation.
Thus, even if the policy deciding on vehicle assignment and
routes was computationally lightweight, simulating the sys-
tem with constant parameters for a sufficiently long time
period can easily take infeasible amount of real time if the
simulator is not implemented efficiently.

− passengers in/out

moving

stopping

at stop

Figure 3: State of each vehicle follows the depicted
pattern. The “stopping” state is deterministic de-
lay that models braking, acceleration and delay due
to the boarding and alighting passengers. Self-
transitions correspond to plan changes.

stoppingat stop at stop stopping idlemoving movingidle

boarding customers boarding customers

exiting customersexiting customers

time

Figure 4: Realization of vehicle’s state as a function
of time. The duration of “stopping” state is a con-
stant, while “at stop” state can have a zero duration.

However, the policies are hardly computationally light.
The core decision each vehicle must do is to decide on route
if a new trip were assigned to it. Unfortunately, the num-
ber of feasible routes (at each point in time) can be very
large. For example, if a vehicle is full and has, say, c = 10
passengers and they can be dropped in 10! = 3628800 differ-
ent orders. Adding the new trip and the passengers already
waiting for a pickup (and delivery) increases the complexity
of the problem even further. Considering that each vehi-
cle must evaluate the routes for all arriving trip requests,
even simulating performance of one policy at a single load
level can be an overwhelming task. Some policies may also
contain parameters to be optimized, which sets even higher
requirements for the simulation speed.

In order to have a maximal simulation speed, we decided
to implement our simulator from scratch using standard C.
This approach has also other benefits: (i) The simulator is
relatively compact as there are no unnecessary features. (ii)
The architecture can be tailored to match our objectives.
(iii) Standard C implementation makes the simulator highly
portable (we are using it in both Linux and Windows sys-
tems). On the downside, we had to re-implement some stan-
dard components available in almost any simulation library
such as pseudo random number generation and event based
scheduling. This, however, is a straightforward task, e.g.,
by following the steps laid out in [15, 2, 12]. Next we will
describe the essential features of our simulator architecture.

4.1 State Description

4.1.1 Passengers

The life of a passenger in our system is very similar to
jobs in a queueing system. Upon arrival a passenger is ei-
ther (i) accepted and assigned to some vehicle, or (ii) rejected.
The accepted customers first (iii) wait for the pickup. Next
the customer (iv) enters the vehicle and the system starts
to actually process her transportation need with the differ-
ence that here it is also possible to conduct “negative work”
by moving the passenger further away from her destination.
Finally, at some point in time, the vehicle reaches the des-
tination and passenger (v) exits the system.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8701
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8701

4.1.2 Vehicles

The number of vehicles in our model is assumed to be a
constant n, and each vehicle is in one of the following three
states: (i) At stop waiting for (more) passengers, (ii) Moving

towards the next waypoint, and (iii) Stopping phase after a
transition.

This is illustrated in Figures 3-4. Note that the state
“stopping” includes braking, acceleration and other unavoid-
able delays per stop. The state“at stop”means the vehicle is
free to go at any moment. Also the bookkeeping of boarding
and alighting passengers occurs in this state. In particular,
the duration of the stoppping state can be zero, except when
the vehicle extends the stay for some reason, e.g., when it is
idle. In addition to this, each vehicle maintains an ordered
list of waypoints (worklist), which defines its current route.
This list can be modified in response to each new customer
with exception of the first waypoint in case the vehicle has
started the corresponding stopping state. This is illustrated
with the self-transitions in Figure 3.

4.2 Policy Architecture
As discussed previously, we define policy α by means of

cost functions. That is, each vehicle is basically asked (to
estimate) how much it costs if a new trip request is assigned
to it. In order to estimate the vehicle specific cost, one
generally needs to consider some set of possible routes. To
this end, the simulator provides an unified interface which
separates the route enumeration and the cost function eval-
uation. Such a cost function f then defines policy α if we
always choose the vehicle and the route which yields the
lowest cost at that point in time. This decision chain is il-
lustrated in Figure 5. We observe a modular design, where
each block can be replaced without modifying the others.

4.2.1 Arrival process

Arrival process module is responsible for generating the
trip requests. In this paper, we assume a Poisson point
process in a circular area, while the simulator design allows
any other more specific arrival process and area.

4.2.2 Policy handler

This module collects the information (cost estimates) from
the vehicles and then assigns the new trip to the most suit-
able vehicle. That is, the vehicle allocation occurs at this
point. Note that the example policies considered in this pa-
per are all such that the global information is only available
at this point. That is, each vehicle independently evaluates
the cost incurred if the given trip is assigned to it. How-
ever, the modular design of the simulator allows that also
the vehicles can take into account global information if seen
relevant in the particular case.

4.2.3 Route enumeration

The simulator provides several options to define the subset
of all routes to be considered upon a new trip request:

1. taxi: New trip is inserted in such a way that no two
trips share the vehicle at the same time.

2. insertion: New trip is inserted in such a way that the
relative order of the existing waypoints is unchanged.

3. all: Consider all orders of the waypoints, exhaustive
and thus the number of potential routes may be huge.

arrival
process

policy
handler

route
enumeration

no global information necessarily

cost
function

− trip − trip
− vehicle

− trip
− vehicle
− route

− time difference
− distance

− insert
− taxi ...

− allevaluate

all vehicles

Poisson
point process

− work load

Figure 5: Modular decision chain from the request
generation to evaluation of the cost function.

Clearly, taxi ⊂ insertion ⊂ all. The taxi subset limits the
performance severely. However, in large scale system with
a large number of vehicles, as we discussed previously and
will also show in numerical experiments, the insertion and
all provide a similar performance level.

With insertion and all, it is important to prune infeasible
routes efficiently. To this end, we have two types of con-
straints: (i) time constraints that are typically deadlines for
arriving to each waypoint, and (ii) capacity and order con-

straints, i.e., a vehicle may not pickup more passengers than
its capacity allows, and pickup must be before the corre-
sponding delivery. The time constraints can be given either
“external”, e.g., one can require that each customer must be
picked up within 10 minutes from the request, or they can
be based on the currently known best route when evaluating
the routes (policy specific).

Assume that while enumerating the routes at some stage
we have fixed the first k waypoints and the task is to choose
the next. If some remaining waypoint x cannot be reached in
time anymore, then all routes with this initial sequence are
infeasible and can be excluded. The same does not hold for
capacity or order constraint. Unlike time, the occupation
can still (and will) decrease. Similarly, the pickup can be
scheduled before the corresponding delivery. In summary,
multiple ways to prune the set of routes efficiently exist, of
which the (potential) time constraints are more “definitive”
due to the nature of time.

4.2.4 Cost function

This function returns some real number corresponding to
the relative cost of the given routing decision. As discussed
previously, with the min-RD policy the idea was to minimize
the planning horizon. Thus, the time instance t(ξ) represent-
ing the time when given vehicle becomes empty is returned
when the cost function is called. Note that the modular de-
sign enables fast prototyping of new policies without a need
to re-implement, e.g., the route enumeration repeatedly.

4.3 Running the simulator
For each simulation run the user must specify (i) the area

and passenger arrival rate, (ii) the number of vehicles, their
capacity, velocity and the stopping time, and (iii) the fleet
operating policy. Additionally one must also decide on the
simulation and warm-up periods. All these parameters can
be conveniently tuned from a command line interface.

By default the simulator outputs a summary report, which
includes all the main performance quantities (essentially to-
tals and mean values). However, when necessary, one can
also enable various log-files to which more detailed informa-
tion during the simulation run is written. The most impor-
tant are perhaps the vehicle log file (actions taken by the
vehicles) and trip log file (per trip information). Based on
these log-files one can obtain, e.g., waiting and travelling

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8701
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8701

trip request rate: 2/s
area: disk with 5km radius
vehicles: 500, each with 10 seats
velocity: 10 m/s
stopping time: 30 s

Table 2: Basic simulation parameters.

time distributions, or study how the direct trip length af-
fects the realized trip length and the number of additional
stops. This type of information is vital when one is, e.g.,
developing better policies.

4.3.1 Validation

Before proceeding further with performance evaluation, it
is important to ensure that the simulator works correctly.
Simulation results to this end are in good agreement, e.g.,
with the following analytical observations, which support
the validity of our implementation:

• Mean trip request length can be computed analyti-
cally (cf., random waypoint mobility model [3, 18, 10]),
which for Table 2 disk area gives about 4527m. This is
used to assess the module generating the trip request.

• Simulating a single vehicle when λ → 0 converges to
a system where each arriving customer observes the
single vehicle idle. Thus, the work the single vehicle
does, assuming a work conservative policy, is two times
higher than the direct trips.

• Similarly, with a low demand, a huge number of vehi-
cles, and a policy that assigns the trip to the nearest
(idle) vehicle yields a system where the ratio of vehicle
kilometres to passenger kilometres approaches one.

• With a high demand and efficient policies the driven
kilometers per passenger approach the bound (4).

4.3.2 Simulation speed

Simulation speed turned out to be more than satisfactory
for our purposes. For example, it takes only about 5 minutes
of real time to simulate a 10 hour time interval with Table 2
parameters using a standard PC. This already corresponds
to a rather high load as an average 72000 passengers are
processed. Further speed improvements can be obtained by
code optimization and multi-threading. Indeed, both our
problem and the design of the simulator lend themselves well
to parallel computation. For example, the vehicle specific
relative costs can be computed in parallel.

5. NUMERICAL ANALYSES
In this section we demonstrate the simulator and inves-

tigate the performance of the defined policies. We use the
simulation parameters defined in Table 2, unless otherwise
mentioned. We omit the specific results of the min-∆RD pol-
icy as it turns out to perform particularly badly in this case
resulting in mean travel times of several hours, but use it
instead as a component of a parameterized policy.

5.1 Warm-up period
When the simulation is started from a state where all ve-

hicles are empty, the initial state has a strong but transient
effect on the behavior of the system. In order to get some

arriving

picked up

delivered

0 20 40 60 80 100
0

20

40

60

80

100

120

time @minD

p
a

s
s
e

n
g

e
r

ra
te
@1
�m

in
D

Figure 6: Mean rate of arriving, picked up and deliv-
ered passengers over 10000 simulation runs starting
from an empty system. The initial transient period
is order of 2 hours.

idea about the length of the initial transient we next ran
10000 experiments using the min-RD policy. The result is
shown in Figure 6, where the initially highest curve cor-
responds to the passenger arriving rate, the middle curve
to the passenger pickup rate, and the lowest to the passen-

ger delivery rate. The pickup rate catches the arrival rate
relatively fast, while it takes a somewhat longer time before
the system’s output rate (alighting passengers) stabilizes. In
particular, we observe that at least a 2 hour warm-up period
should be used in this case. In order to be on a safe side, in
the following experiments we use 10 hour warm-up period.2

Moreover, note that the area between the passenger arriv-
ing rate and the passenger pickup rate curves corresponds to
the mean number of waiting customers in the equilibrium,
E[Nw]. Similarly, the area between the pickup and deliv-
ery rates is equal to the mean number of customers in the
vehicles, E[Nv]. Thus,

E[Nw] =

Z

∞

0

λ − p(t) dt, and E[Nv] =

Z

∞

0

p(t) − d(t) dt,

where p(t) denotes the expected pickup rate at time t, and
d(t) the mean delivery rate at time t. Obviously, E[Nv] is
bounded from the above by the total capacity of the fleet.

5.2 Waiting time distribution
The simulator provides various log-files, from which one

can extract more detailed statistics when necessary. Fig-
ures 7-8 illustrate the empirical waiting time distribution as
observed by the passengers when the fleet is operated ac-
cording to the min-RD and min-∆ST policies. We observe
that the min-RD policy picks up the passengers somewhat
quicker than the min-∆ST. Passenger arrival rate λ = 2/s is
already a rather high demand for the given n = 500 vehicles
to handle (see Section 5.4). Despite of this, the waiting times
are actually reasonable and most passengers are picked up
within 5 minutes, and only very few have to wait more than
15 minutes, as shown in Table 3.

5.3 Latency vs. trip distance
Waiting time does not necessary depend on the trip dis-

tance. In contrast, the latency, i.e., the time from the re-

2Even though in real-life the daily 24 hour rhythm implies
that the trip demand will not be constant for 10 hours.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8701
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8701

min-RD

min-DST

2 4 6 8 10 12 14

waiting time @minD

fr
e

q
u

e
n

c
y

Figure 7: Waiting time distribution for min-RD and
min-∆ST policies with Table 2 parameters. Most pas-
sengers wait only few minutes before the pickup.

min-RD

min-DST

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

waiting time @minD

C
D

F

Figure 8: CDF of the empirical waiting time distri-
bution for min-RD and min-∆ST policies with Table 2
parameters.

quest until the delivery in general correlates strongly with
the trip distance due to the finite velocity of the vehicles.
Figure 9 illustrates how the mean waiting time and latency
depend on the trip distance. The x-axis corresponds to the
direct distance in kilometres. On the y-axis we have both
the waiting time and the latency in minutes. The dashed
line depicts the latency assuming private cars. The min-

∆ST policy clearly outperforms the min-RD. Also note that
min-RD gives a higher priority to long trips as such trips tend
to extend the planning horizon further than the short trips.
This, however, may not always be an optimal strategy, and
indeed, with min-∆ST the situation appears to be more fair.

5.4 Insertion vs. enumeration
In Section 3.2 we motivated that in a large system with

many vehicles there may not be need to enumerate all routes
but a simple insertion heuristic would perform nearly as
well. Figure 10 represents the mean travel time as a function
of load, computed for both the insertion heuristic (dashed
curves) and the full enumeration (markers) with min-RD and
min-∆ST policies. As expected, in this large system with 500
vehicles, the difference between the insertion and enumera-
tion methods is almost negligible. Looking at the distance
driven per passenger metric we observe the same result. We
omit the illustration for brevity.

policy mean tail P{W > t}
E[W] 5min 10min 15min

min-RD 3min 25sec 19.8% 3.8% 0.4%
min-∆ST 3min 54sec 28.8% 2.9% 0.1%

Table 3: Tail probabilities of the waiting time.

Latency: min-RD and min-DST

Direct travel

Walking

Waiting: min-RD and min-DST

0 2 4 6 8
0

5

10

15

20

25

30

direct distance @kmD

m
e

a
n

ti
m

e
@m

in
D

Figure 9: Empirical mean waiting time and latency
(sojourn time) with min-RD and min-∆ST policies con-
ditioned on the direct distance of the trip. Walking
time with 70m/min, and the direct driving time with
a private car are illustrated with dashed lines.

5.5 Policy optimization
Viability of this kind of transportation system depends

on the performance of the applied policies. Simulations are
needed for experimenting with different policies. In this ex-
ample we evaluate the performance of the system with min-

RD and min-∆ST. In addition, we consider a parameterized
policy, where the cost function for a trip request is defined
as

f(ξ, ξold, p) = p ·
`

t(ξ) − t(ξold)
´

+ (1 − p)
`

d(ξ) − d(ξold)
´

,

where the policy parameter p defines the weighting between
the two objectives (i.e., the policy has 100p% of min-∆RD

and 100(1−p)% of min-∆ST) and is subject to optimization.
Clearly, this policy represents a balance between the driven
distance and passenger travel time; min-∆RD attempts to
add the new trip request so that the additional work is as
small as possible, whereas min-∆ST greedily minimizes the
sum of all travel times in the system. Note that min-∆RD

by itself causes excessive delays in this setting (of the order
of several hours) and is not considered here. In optimizing a
policy parameter an efficient simulator is invaluable as each
parameter adds a new dimension to the parameter space.

Figure 11 shows the mean travel time and distance driven
per passenger as a function of load for different values of the
policy parameter p. We observe that even a small increase in
the mean travel time can be efficiently converted into saved
distance and in some cases also the travel time decreases
even below the min-∆ST profile (shown as an opaque box
in the figure). Including an min-∆RD component into the
policy allows us to take into account the additional work
induced by the new trip request. By allocating the trip to a
vehicle that can handle the trip with little additional time
the overall performance can be improved.

To show the results in more traditional form, let us select
the policy with the parameter value p = 0.4 and study its

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8701
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8701

æ æ æ æ æ æ æ æ
æ
æ
æ æ

æ
æ
æ
æ
æ
æ
æ
æ

à à à à à à à à
à
à
à
à
à
à
à
à

à

m
in
-
RD
HIn

se
rti

onL

min-
DST HI

nsertionL

Enumeration

0.0 0.5 1.0 1.5 2.0 2.5
0

5

10

15

20

25

30

35

Offered load Λ @trip�sD

T
ra

v
e

l
ti
m

e
@m

in
D

Figure 10: Travel time as a function of load. Inser-
tion heuristic (lines) provide a scalable way of solv-
ing the routing subproblem without almost any dif-
ference in performance compared to the full enumer-
ation (markers). Full enumeration becomes compu-
tationally infeasible at large load values.

p=0.1

p=0.4

p=0.9

Effective speed bound

0

1

2

Offered

load Λ

@trip�sD1

2

3

4

5

Distance driven

per passenger @kmD

0

20

40
Travel

time

@minD

Figure 11: Performance of the system with different
values of policy parameter p (cf. bound (4)).

performance in detail. Figure 12 shows the distance driven
per passenger as a function of load and compares it to that of
min-∆ST and min-RD. Whereas these comparison heuristics
tend to start moving the vehicles even at low loads our pa-
rameterized policy p = 0.4 performs clearly more efficiently
in this respect. The difference between mean direct distance
and distance driven per passenger is coined as the distance

gain, cf. the figure, and reflects the amount of kilometers
saved per passenger by using this transportation system in-
stead of serving the trip requests by private vehicles. All
policies utilize the available kilometers quite quickly and af-
terwards follow the effective speed bound (4) very closely.

Figure 13 depicts the travel time (including waiting time)
profiles of the compared policies. It can be seen that as soon
as the distance approaches its upper bound the delays start
to increase. min-∆ST shows rather moderate increase in the
travel time, but min-RD performs significantly worse. The
parameterized heuristic p = 0.4 is reasonably good especially

Effective speed bound

Mean direct distance
min-DST

min-RD

p=0.4

Distance gain

0.0 0.5 1.0 1.5 2.0 2.5
0

2

4

6

8

Offered load Λ @trip�sD

D
is

ta
n

c
e

d
ri
v
e

n
p

e
r

p
a

s
s
e

n
g

e
r
@k

m
D

Figure 12: Driven distance per passenger as a func-
tion of offered load. The mean length of requests
is 4.527km, which equals to the driven kilometers
per passenger if private vehicles. Shaded area cor-
responds to the feasible region defined by (4).

min-RD

min-DST

p=0.4

Mean direct distance bound

0.0 0.5 1.0 1.5 2.0 2.5
0

5

10

15

20

25

30

35

Offered load Λ @trip�sD

T
ra

v
e

l
ti
m

e
@m

in
D

Figure 13: Mean travel time. Mean direct distance
bound corresponds to the travel time in a system
where all trips are driven in private vehicles.

at higher loads, which makes it a good compromise between
the two conflicting objectives.

6. CONCLUSIONS
In this paper we have considered a dynamic behicle rout-

ing problem with pickups and deliveries. Our focus was on
systems where a large number of vehicles are needed to sup-
port the transportation demand. As a particular feature of
our system, a vehicle is assigned to each passenger imme-
diately upon the trip request. In this context, we have de-
scribed a specifically tailored simulator framework, that can
be used to evaluate the transportation system and to rapidly
prototype new operating policies for the vehicle fleet. The
main objectives have been efficiency and modularity.

One of the most important design choices for a vehicle
routing policy is the set of routes considered for each trip
request. We have shown, both by means of analysis and sim-
ulation experiments, that in our context it is typically suf-
ficient, without any significant loss in performance, to con-
sider the insertion approach for route enumeration, where

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8701
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8701

the relative order of the earlier waypoints is always kept the
same. That is, it is not necessary to enumerate all the fea-
sible orders of waypoints per trip request and per vehicle,
which indeed can take some time in a large system.

On the other hand, we have also demonstrated the viabil-
ity of this type of transportation system. In general, there is
a well-known trade-off between the work conducted (driven
kilometers) and the level of the service (e.g., mean waiting
times). However, our experiments suggest that if the passen-
gers are willing to accept even a small average delay for their
trips, in form of waiting time and/or a longer route, then the
amount of work can be reduced considerably. That is, the
transportation cost per trip can be reduced significantly.

7. ACKNOWLEDGMENTS
This work was conducted in Metropol project that is sup-

ported by the Finnish Funding Agency for Technology and
Innovation, Finnish Ministry of Transport and Communi-
cations, Helsinki Metropolitan Area Council and Helsinki
City Transport. The authors would like to thank Dr. Samuli
Aalto, Mr. Teemu Sihvola and Prof. Jorma Virtamo for their
invaluable comments while preparing this paper.

8. REFERENCES
[1] N. Ascheuer, S. O. Krumke, and J. Rambau. Online

dial-a-ride problems: Minimizing the completion time.
In STACS 2000 Lecture Notes in Computer Science,
volume 1770, pages 639–650. Springer, Berlin, 2000.

[2] J. Banks, J. S. C. II, B. L. Nelson, and D. M. Nicol.
Discrete-Event System Simulation. Prentice-Hall
International Series in Industrial and Systems
Engineering. Prentice-Hall, third edition, 2001.

[3] C. Bettstetter, G. Resta, and P. Santi. The node
distribution of the random waypoint mobility model
for wireless ad hoc networks. IEEE Trans. on Mobile

Computing, 2(3):257–269, Jul.–Sept. 2003.

[4] J.-F. Cordeau, G. Laporte, J.-Y. Potvin, and
M. Savelsbergh. Transportation on demand. In
Transportation, pages 429–466. Amsterdam:
North-Holland, 2007a.

[5] E. Feuerstein and L. Stougie. On-line single-server
dial-a-ride problems. Theoretical Computer Science,
268:91–105, 2001.

[6] G.Berbeglia, J.-F. Cordeau, and G. Laporte. Dynamic
pickup and delivery problems. European Journal of

Operational Research, 2009. In press.

[7] M. Gendreau, F. Guertin, J.-Y. Potvin, and R. Séguin.
Neighborhood search heuristics for a dynamic vehicle
dispatching problem with pick-ups and deliveries.
Transportation Research Part C, 14:157–174, 2006.

[8] G. Ghiani, F. Guerriero, G. Laporte, and
R. Musmanno. Real-time vehicle routing: Solution
concepts, algorithms and parallel computing

strategies. European Journal of Operational Research,
151:1–11, 2003.

[9] G. Ghiani, E. Manni, A. Quaranta, and C. Triki.
Anticipatory algorithms for same-day courier
dispatching. Transportation Research Part E,
45:96–106, 2009.

[10] E. Hyytiä, P. Lassila, and J. Virtamo. Spatial node
distribution of the random waypoint mobility model
with applications. IEEE Trans. on Mobile Computing,
5(6):680–694, June 2006.

[11] A. Larsen. The dynamic vehicle routing problem. PhD

thesis, Technical University of Denmark, 2000.

[12] P. L’Ecuyer. Random number generation. In Handbook

of Computational Statistics, chapter 2, pages 35–70.
Springer-Verlag, 2004.

[13] M. Lipmann, X. Lu, W. E. de Paepe, R. A. Sitters,
and L. Stougie. On-line dial-a-ride problems under
restricted information model. Algorithmica,
40:319–329, 2004.

[14] J. D. C. Little. A proof of the queueing formula
L = λW . Operations Research, (9):383/387, 1961.

[15] M. Matsumoto and T. Nishimura. Mersenne twister: a
623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Trans. on

Modeling and Computer Simulation, 8(1), Jan. 1998.

[16] S. Mitrovic-Minic, R. Krishnamurti, and G. Laporte.
Double-horizon based heuristics for the dynamic
pickup and delivery problem with time windows.
Transportation Research Part B, 38:669–685, 2004.

[17] S. Mitrovic-Minic and G. Laporte. Waiting strategies
for the dynamic pickup and delivery problem with
time windows. Transportation Research Part B,
38:635–655, 2004.

[18] W. Navidi and T. Camp. Stationary distributions for
the random waypoint mobility model. IEEE Trans. on

Mobile Computing, 3(1):99–108, Jan-Mar 2004.

[19] H. Psaraftis. A dynamic programming approach to the
single-vehicle, many-to-many immediate request
dial-a-ride problem. Transportation Science,
14:130–154, 1980.

[20] H. Psaraftis. Dynamic vehicle routing: status and
prospects. Annals of Operations Research, 61, 1995.

[21] M. Savelsbergh and M. Sol. DRIVE: Dynamic routing
of independent vehicles. Operations Research, 46, 1998.

[22] D. Sáez, C. Cortés, and A. Núñez. Hybrid adaptive
predictive control for the multi-vehicle dynamic
pick-up and delivery problem based on genetic
algorithms and fuzzy clustering. Computers and

Operations Research, 35:3412–3438, 2008.

[23] H. Waisanen, D. Shah, and M. Dahleh. A dynamic
pickup and delivery problem in mobile networks under
information constraints. IEEE Trans. on Automatic

Control, 53:1419–143, 2008.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8701
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8701

