
Evaluation of IMT-Advanced Scenarios Using the
Open Wireless Network Simulator

Sebastian Max Daniel Bültmann Ralf Jennen Marc Schinnenburg
Communication Networks (ComNets) Research Group PSI Transcom GmbH

Faculty 6, RWTH Aachen University Telecommunications
Aachen, Germany Düsseldorf, Germany

{smx|dbn|jen}@comnets.rwth-aachen.de MSchinnenburg@psi.de

ABSTRACT

With the commence of the IMT-Advanced (IMT-A) submis-
sion and evaluation process, the vague term “4th generation
wireless networks” moves towards existing standards, tech-
nologies and hardware. A significant part of the evaluation
process is based on the system level simulation of reference
scenarios.

In this paper, we present how the open Wireless Net-
work Simulator (openWNS), developed in the last 5 years at
the department of Communication Networks (ComNets) at
RWTH Aachen University, can be used to study protocols
of wireless networks. Due to the complexity of IMT-A can-
didate systems, the features of openWNS are described by
means of the lightweight WiFiMAC. This module provides
the functions of IEEE 802.11, including amendment n.

On this basis, the following details of the simulator are ex-
plained: (a) the modular simulation framework for protocol
stack development, (b) the WiFiMAC module, (c) simula-
tor calibration to ensure the reliability of the results and (d)
the simulation of urban-micro scenarios based on the IMT-A
evaluation guidelines.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: [Wireless
Communication]

General Terms

Algorithms, Performance, Design, Experimentation

Keywords

Wireless Networks, IMT-Advanced, Simulation

1. INTRODUCTION
At the time of writing this paper, the radiocommunication

sector of the International Telecommunication Union (ITU)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2010 March 15-19, Torrelmolinos, Malaga, Spain
Copyright 2010 ICST, ISBN 78-963-9799-87-5.

has started its certification process of radio access technolo-
gies as IMT-Advanced (IMT-A). Among the key require-
ments for certification are performance capabilities that sig-
nificantly exceed those of the current 3rd generation wireless
networks. Evaluation of the performance is not done by the
ITU-R itself, but by evaluation groups out of industry and
academia - for example, ComNets is a member of the WIN-
NER+ evaluation group [25].

Evaluation of the candidates is guided by the ITU-R re-
port M.2135 [15] which describes in detail the test environ-
ments and deployment scenarios. Several performance mea-
sures have to be evaluated by system simulation; hence, the
demand for an IMT-A compliant wireless network simulator
is obvious.

The open Wireless Network Simulator (openWNS) is cur-
rently on its way to become IMT-A compliant to fill this gap.
Furthermore, it shall be used to research complements and
extensions which are not part of the candidate specifications,
e. g. other radio access technologies, cross-layer optimisation
or deployment concepts.

The paper at hand describes how openWNS is designed
for the performance evaluation of wireless communication
networks. After shortly reviewing other existing simula-
tors, Section 2 introduces the simulation platform. Then,
Section 3 explains the openWNS framework for protocol
stack development, referred to as Functional Unit Networks
(FUNs) [22, 23]. To exemplify this framework, Section 4
details the WiFiMAC module which implements the IEEE
802.11n-2009 protocol. This module is chosen because 802.11
is both simple enough to be used as an example and power-
ful enough to show the concepts from Section 3. Afterwards,
the WiFiMAC’s validation is discussed in Section 5. Finally,
Section 6 explains the built-in support for the generation,
execution and evaluation of large simulation campaigns.

1.1 Related Work
System simulators for the performance evaluation of wire-

less communication systems are available for more than two
decades. In this section, a current view on simulation tools
with special respect to wireless network simulation is given.

According to [16], the most prominent among them are,
in descending order, ns-2 [3] and its successor ns-3 [4], Glo-
MoSim [26, 2], QualNet [21] and OPNET [6]. Additionally,
a big number of other (open-source) simulators are avail-
able, some of them developed for special purposes, e. g. in
the scope of a research project.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8681
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8681

1.1.1 ns-2 and ns-3

The development of ns-2 started as early as 1989 as REAL
simulator. The first release of ns-2 was available in 1996.
One drawback of ns-2 turned out to be the lack of wire-
less transmission modelling and detailed channel models. In
2006, after 10 years of research and development the team
around ns-2 decided to start with a complete rewrite of the
simulator. In comparison to ns-2, ns-3 aims at providing
better support for modularity of components, scalability of
wireless simulations, integration and reuse of external code,
tracing and statistics.

As of the 21th October 2009, the current stable release
is ns-3.6. Interestingly, many similarities can be found be-
tween the ns-3 and the openWNS: The programming lan-
guages (C++ and Python), a high degree of modularisation
using Object-Oriented Programming (OOP) and the focus
on wireless networks.

Currently, ns-3 supports as wireless link layer the IEEE
802.11 protocol, including an implementation of the amend-
ments b, e and parts of n and s. A model to simulate
WiMAX networks is currently planned. No indication is
given respecting enhanced physical layer technologies like
beamforming and Multiple Input Multiple Output (MIMO).

The ns-3 is released as open-source under the GNU Gen-
eral Public License (GPL) (version two); hence, the source
code of any derived and distributed extension or modifica-
tion must be made public.

1.1.2 GloMoSim

The Global Mobile Information Systems Simulation Library
(GloMoSim) is built using the discrete-event simulation lan-
guage parsec, which supports parallelisation of the simula-
tion to handle large scenarios. This enables the simulation
of very large scenarios with more than 1000 nodes in reason-
able time by using multi-processor systems.

The GloMoSim protocol suite focuses on wireless net-
works; however, only the basic IEEE 802.11 MAC imple-
mentation is available as link layer together with a Bit Error
Rate (BER) model that supports Modulation and Coding
Schemes (MCSs) with data rates up to 18 Mb/s.

The license of the GloMoSim restricts its usage to edu-
cation and non-commercial research; the reason for this is
that GloMoSim’s successor, QualNet, is a commercial prod-
uct. Further development and support of GloMoSim seems
to be ceased.

1.1.3 QualNet

Whereas ns-2, ns-3 and GloMoSim are freely available,
QualNet is a closed-source commercial tool distributed by
Scalable Network Technologies (SNT).

Major customers are from the telecommunication indus-
try which use the simulator to predict the performance of
wireless, wired and mixed-platform networks. For this pur-
pose, SNT offers several closed-source model libraries that
can be used to extend the capabilities of QualNet towards
current network standards. For example, regarding wireless
link layer protocols, there are modules available not only for
IEEE 802.11a/b/g, but also for WiMAX, Zigbee and cellular
networks based on GSM or UMTS. These modules have to
be bought in addition to the QualNet simulation platform.

1.1.4 OPNET

Similar to QualNet, OPNET is a commercial simulator,

offered by OPNET Technologies. While OPNET’s structure
and modules are very similar to QualNet – e. g. support
of UMTS – its licensing options include a university pro-
gram for teaching and non-commercial research. With this
program, chosen technology modules are delivered with the
source code, so that own protocol improvements and exten-
sions can be made. A lot of these extensions, e. g. for mesh
networks, are available free for download on the OPNET
webpage [6].

In contrast to this, some of the developed modules are
released to restricted customer groups only. For example,
OPNET Technologies has founded a “WiMAX Model De-
velopment Consortium” which had several internal releases
from September 2005 to July 2008. OPNET states that
this model supports IEEE 802.16-2004 and IEEE 802.16e-
2005 [8].

1.2 Licensing & Availability of openWNS
Typically, during system simulation obtained results must

be evaluated, reviewed and defended. This was one of the
reasons to release openWNS as open source.

Whereas most other open source simulation tools are re-
leased under the GPL for openWNS the Lesser GPL (LGPL)
license was chosen. Compared to the GPL the LGPL addi-
tionally allows for closed source extensions. Still, all modifi-
cations to the openWNS libraries themselves must be made
open source. This relaxation intends to alleviate the adop-
tion of openWNS within the academical research community
and the industry.

The home page of the openWNS can be found at [5]. The
web page contains an installation guide, the documentation,
including user and developer manuals, the web-based bug-
tracking, FAQs and the online frontend of the code version
management system.

2. SIMULATION PLATFORM
The simulation platform of openWNS includes the core

components of an event-driven stochastic simulation tool
and is the basis for the simulation framework and simulation
modules (see Figure 1). It is written in C++ and is heav-
ily based on the Boost libraries [1] which provide already
many features of the upcoming C++ standard [7]. open-
WNS includes multiple modules for different protocol layers
as runtime plugins. While this paper focuses on the WiFi-
MAC module a more detailed description of the simulation
platform (e. g. the pseudo-random number generator, event
handling, etc.) and available modules (e. g. different traf-
fic generators, TCP/IP, WiMAX, OFDM(A)) can be found
in [12].

2.1 Configuration
The Python programming language is used for configura-

tion of simulation scenarios, as shown on the left hand side
of Figure 1). By chosing a programming language instead of
a data representation language such as XML, instruments
like loops, functions, inheritance, polymorphism and encap-
sulation are available. Especially during the setup of large
scenarios with complex node types, this saves time and re-
duces errors.

Each simulation module is accompanied by reasonable de-
fault configurations. This allows users to setup their first
simulations quickly and then start changing parameters in-
crementally.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8681
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8681

��������	
�����
	��

��������	
��	����

�	����	��	
�
����������	
��	���

�	

�������	
 ��������	

�	������
�	������

��������

������ !

"��#$�

"��

�%�&�
����	�

�
	
�
�
	

�

��

"��
�%�����

�
��

�

�	����"��
�	����"��

��������

������ !

"��#$�

"��

�%�&�
����	�

�
	
�
�
	

�

��

"��
�%�����

�
��

�

�	'����()���	������	
�*��+�

����	�����

�������$
���
���
%�����%�����	

$�,"+�	��+���

�	��
�� �	��
��

�$�-

�.� �.� ,,,

���������	
�"(��

���������	

��������%�������

���
���%+�������	�����/	������'�������(�+	

$
���������

-�
�	�

.�����'���	
�
��������%�

����	��

��������	
�����
	��

x
x

x
x

x

x
x

�������	

���
��������	��

���	���������	����

���	��������

���	
��
������������

���

Figure 1: The openWNS simulation platform.

2.2 Evaluation
The evaluation subsystem of openWNS provides means to

sort measurements according to the context and compress
the data by statistically processing the measurements during
the simulation on the fly. This is illustrated on the right
hand side of Figure 1.

At compile time the developer defines measurement sources
within the model and also the context information that ac-
companies each measurement (e. g. the node position).

At configuration time the user of the model can decide
on the kind of evaluation that suits his investigation best.
For instance, the user could configure an evaluation for a
Signal to Interference plus Noise Ratio (SINR) measurement
source. Then, the Probability Density Function (PDF) of
false scheduling decisions can be gathered, sorted by the
nodes and the modulation and coding scheme.

The online statistical evaluation saves memory. Further-
more, the clear distinction between the measurement source
and the sorting stages makes it easy for users to quickly im-
plement their desired evaluation while keeping the modules
unchanged.

For publication-quality evaluation, the openWNS provides
an implementation of the Discrete Limited Relative Error
(DLRE) algorithm [24, 13] as evaluation sink. With the
help of the DLRE, not only the confidence intervals of the
mean, but of complete PDFs can be measured. Hence, reli-
able simulation results can be assured.

3. FUNCTIONAL UNIT NETWORKS
The development of a simulator often requires the imple-

mentation of recurring software patterns. The openWNS

provides a framework that makes development of simulation
models and often used parts of protocol stacks easy. This is
achieved by a component-based development approach: Tra-
ditionally, each layer in a protocol stack represents a com-
ponent that can be exchanged depending on the required
functionality, e. g. TCP instead UDP on layer 4 to support
a reliable delivery of data segments.

As proposed in [23], the openWNS takes this idea one step
further: Here, a component – called Functional Unit (FU) –
is a microscopic part of a protocol that implements a single
function. This allows for a high level of reuse; furthermore,
the most common FUs can be collected in a toolbox. Sec-
tion 3.2 describes the Layer Development Kit (LDK) of the
openWNS, as an example of such a toolbox.

In the end, a protocol stack is built of multiple connected
FUs that make up a Functional Unit Network (FUN). For
example, Figure 2 shows a small FUN composed of FUs to
buffer data, handle acknowledgements (ARQ) and segment
frames (SAR). Furthermore, the figure indicates that all FUs
provide a set of methods to handle data flow, intra layer
flow control and FU management within a FUN. This FU
interface is described in the following sections.

3.1 Functional Units
If FUs are supposed to be composed and connected in an

arbitrary way, the necessity for generalised interfaces arises.
How should FUs be organised to support a wide range of dif-
ferent tasks as demanded by current and future protocols?
How can these units be connected in a generic way to sup-
port the configuration of larger systems based on such units
only?

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8681
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8681

Compound Handler Flow Control

Buffer

ARQ

SAR

Multiplexer

Command Type

Specifier

ARQ

SAR

Buffer

onData

sendData wakeup

isAccepting

Figure 2: An exemplary Functional Unit Network (FUN)

The authors of the initial paper on FUNs identified four
interfaces which are at least necessary to realize such an
architecture [23]. These interfaces of an FU are depicted
in Figure 3a. In the following sections these interfaces are
described in more depth.

3.1.1 Data Handling Interface

The most fundamental requirement for FUs is the ability
to handle data. The basic data unit that is transmitted be-
tween FUs is referred to as compound. For now a compound
can be seen as a chunk of data of variable size. FUs as
part of a protocol stack may receive compounds for process-
ing before and after such a compound has been transmitted
over the air-interface. The first case is called outgoing data
flow, while the latter case is referred to as incoming data
flow. To support differentiation of the two directions the
interface provides two methods: sendData(Compound) and
onData(Compound) for compounds in the outgoing and in-
coming flow as depicted in Figure 3b.

3.1.2 Flow Control Interface

Every FU has only a limited capacity to store compounds
and often FUs do not need to store compounds at all. How-
ever, the physical layer introduces a bottleneck, limiting
the amount of information transmitted and thus the rate
at which compounds can be handled. Thus the need for an
intra layer flow control of outgoing compounds arises: FUs
must have the ability to prevent other units from deliver-
ing compounds to them, when they decide not to accept
additional ones. The implementation of this flow control
mechanism is realized with two methods

• isAccepting(Compound)

• wakeup()

Before each sendData call the FU wishing to send data must
make sure the target FU is accepting via the isAccepting

method (see Figure 3b). The lower FU is thus able to stop
the data flow if it cannot accept any more compounds. The
wakeup of a FU is called by lower FUs to indicate that the
lower (calling) FU is accepting data again. A good example
for this is a Stop-And-Wait ARQ FU: the FU implementing
the Stop-And-Wait ARQ is not accepting data while it is
waiting for the acknowledgement of a transmission. After

��������	
�����

	�	������

�	�	��	��
��� �
���������

������

(a) Generic interface.

��������	
�����

����
���	���

�����	�	 �����������

������

�������

�	�������	�	

��
��
��

��
��
��	
��

��
���

����
��	

��

(b) Logical interfaces towards upper and
lower FUs.

Figure 3: Functional Unit interface.

the ARQ has received the acknowledgement for the trans-
mission it can change its state to accepting again and will
in turn call the wakeup method of the upper FU to signal its
state change.

Note that intra layer flow control is only applied for out-
going flows. Flow control for incoming flows is basically
the control of data rates between communication partners;
hence, the implementation of a flow control protocol using
explicit and/or implicit information exchange between the
data source and the sink is needed.

3.1.3 Management Interface

The management interface of a FU offers the necessary
functionality to manage the composition and configuration
of a FUN. Since this paper does not focus on the man-
agement of FUs, the interface presented in Figure 3b does
not show the complete set of functionality which is currently
available. Two methods have been chosen as an example:

• connect(FunctionalUnit)

• onFUNCreated()

The connect method takes another FU as argument which
should be connected to the FU in question. Special contain-
ers to support multiplexing and demultiplexing of data when
the protocol stack is in full operation are maintained by this
method.
onFUNCreated is a hook which is called by the surrounding

framework of a FU to signal the successful creation of a FUN
to the FU. Any special tasks the FU may need to undertake
to get into a proper state for operation can be handled here.

3.1.4 Custom Interface

All aforementioned interfaces are generic interfaces of a
FU which need to be supported by each FU in order to

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8681
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8681

ensure proper working as part of the described framework.
However, it can be beneficial for FUs to offer additional in-
terfaces. These interfaces are summarised under the Custom
interface.

3.2 Layer Development Kit
Although existing protocols differ significantly from each

other, several basic building blocks appear in each; e. g. the
buffer to store outgoing data. The FUN architecture pro-
vides the framework to implement these building blocks as
FUs that can be configured by the user according to the
specific protocol requirements.

The openWNS includes the LDK which contains several
different FUs that are unit-tested and easily configurable.
Furthermore, these FUs may be used as starting points for
more specialised implementations. Currently, the LDK in-
cludes FUs for the following tasks:

• Automatic Repeat Requests (ARQs): The following
ARQ strategies are implemented and many parameters
such as window sizes, retransmission timeouts or field
lengths of sequence numbers may be configured.

– Stop and Wait

– Selective Repeat

– Go Back N

– Cumulative ACK

• Buffers: The implementations for buffers have bounded
capacity and can either drop data in an overflow situ-
ation or use the FU flow control interface to stop the
data flow.

• Multiplexing: There are FUs that allow for Many-to-
One, or One-To-One connections in the outgoing di-
rection of FUs.

• Flow Separation: A flow separator is the base function-
ality for implementing Quality of Service (QoS) aware
FUNs. Compounds are categorised into different flows
which then are processed by a dedicated FU or Sub-
FUN within the flow separator.

• Flow Gates: Should be used in conjuction with flow
separators. Gates give control on the flow control of
distinct flows, e.g. in high load situation block all best-
effort traffic.

• Concatenation: Multiple compounds are concatenated
in the outgoing data path and incoming compounds
are restored.

• Segmentation And Reassemblys (SARs): Both fixed
and variable segment sizes are supported.

• Finite State Machine: Allows to build complex FUs.
The users implementation is provided by a state ma-
chine.

• Probing: By inserting probing FUs into the FU the
user may gather measurement results very quickly. There
are statistic probes available that measure packet sizes,
packet delays, incoming and outgoing throughput, er-
ror rates, etc.

4. THE WiFiMAC MODULE
To demonstrate the benefits of the simulation framework

and the LDK toolbox the simulator module “WiFiMAC” is
presented in this section. This module implements func-
tions of the standard IEEE 802.11 for Wireless Local Area
Networks (WLANs) so that it can be used for the eval-
uation of IMT-A scenarios. This module was chosen for
presentation for several reasons: First, its Medium Access
Control (MAC) function defined as the Distributed Coordi-
nation Function (DCF) is based on Carrier Sense Multiple
Access with Collision Avoidance (CSMA/CA). This algo-
rithm is sufficiently well-known so that a functional descrip-
tion can be omitted. Second, multiple amendments change
the standard towards current and future demands. Within
the openWNS, the modular FUN architecture requires only
small and local changes to include the amendments, which
becomes visible when comparing the FUNs of the “legacy”
IEEE 802.11 MAC and the one including the enhancements
from amendment n. Third, the standard IEEE 802.11 with
its outdoor range of approximately 200m (using the IMT-
A Urban Micro pathloss model and 30 dBm transmission
power) is the “smallest” radio access technology applicable
to the small scale IMT-A scenarios.

4.1 The Basic WiFiMAC
Figure 4a shows the WiFiMAC FUN in a configuration ac-

cording to IEEE 802.11-2007. From a functional viewpoint,
the FUs in the FUN can be sorted into two groups: The
lower FUs, everything below the TXOP, are responsible for
the timing of the MAC, i. e. when to give a compound to the
Physical Layer (PHY) for transmission. All FUs above and
including the TXOP act independently from the timing of
the channel access.

Clearly, the different functions of the IEEE 802.11 MAC
can be found in the FUN:

• The Transmission Queue is a size-limited buffer that
stores outgoing compounds.

• The StopAndWait FU is derived from a similar FU
available in the LDK and adopted to the special re-
quirements of the IEEE 802.11 ARQ: The retransmis-
sion timer expires if no reception-start indication is
received from the PHY within a constant delay, sig-
nalling the start of the Acknowledgement (ACK).

• The RateAdaptation, which can be configured using
several different strategies, e. g. based on Packet Er-
ror Rate (PER) statistics, SINR measurements or a
constant configuration.

• The TXOP allows to transmit several compounds in
a row without repeating the time-consuming backoff,
realizing the Transmission Opportunity (TxOP) pro-
cedure.

After the TXOP FU, a compound switch (available in the
LDK) sorts the compounds according to different keys:

• Compounds that represent ACK frames or belonging
to a TxOP are transmitted after a constant delay, the
Short Interframe Space (SIFS).

• Compounds with a size below a configurable thresh-
old use the DCF, which implements the CSMA/CA as
defined in the standard.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8681
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8681

MAC SAP

Constant Overhead: MAC

Header

Transmission Queue

ARQ::StopAndWait

Rate Adaptation

TXOP

DCF
Constant Wait: SIFS

Size < Thres Size > Thres ACK TXOP

RTS / CTS

RTS NOT RTS

PHY SAP

RA Strategy

(a) WiFiMAC in the IEEE 802.11-2007 configura-
tion. Dotted FUs are taken directly from the LDK
toolbox, solid FUs are taken from the toolbox and
specialised for the WiFiMAC.

MAC SAP

Constant Overhead: MAC

Header

Receiver-Sorted

Transmission Queue

ARQ::BlockACK

Rate Adaptation

TXOP

DCF
Constant Wait: SIFS

Size < Thres Size > Thres ACK TXOP

RTS / CTS

RTS NOT RTS

PHY SAP

A-MPDU Frame

Aggregation

MIMO-enabled RA Strategy

(b) WiFiMAC in the IEEE 802.11n configuration.
Only the dashed FUs differ from the IEEE 802.11-
2007 implementation.

Figure 4: FUNs of the WiFiMAC data link layer according to IEEE 802.11.

• The remaining compounds are stored in the RTS/CTS
FU which precedes the transmission with the hand-
shake of Request To Send (RTS)/Clear To Send (CTS)
frames; only the RTS is transmitted using the DCF.

Flow control in this FUN is implemented entirely based on
the operation of the DCF FU: Until the channel is idle and
the FU’s backoff has counted to zero, its interface does not
accept any new compounds, which is propagated up to the
Transmission Queue. After the backoff has reached zero, the
FU sends a wakeup to the upper FUs, which finally reaches
the buffer and thus initiates the transmission.

This transmission is only aborted if the RTS/CTS hand-
shake is used and the CTS is not received: In this case, the
RTS/CTS FU drops the stored compound and signals the
transmission failure to the ARQ FU, using the specialised in-
terface. Thus, the responsibility of retransmissions is solely
at the ARQ.

4.2 Extensions for IEEE 802.11n
The amendment n of IEEE 802.11 increases the through-

put of the standard beyond 100 Mb/s measured at IP layer.
To achieve this, several PHY improvements are incorpo-
rated, most importantly the MIMO capability with up to
four parallel streams.

To deliver the gains of the PHY improvements to the ap-
plication layer, an efficiency improvement of the MAC is re-
quired. For this aim, the amendment introduces two types of
frame aggregation methods and extends the block acknowl-
edgement procedure. Both functions can be found in spe-
cialised FUs that are integrated into the IEEE 802.11-2007
FUN, as given in Figure 4b:

• The BlockACK FU implements a selective reject ARQ,
including one outgoing queue for transmitted, not ac-

knowledged compounds and several incoming queues
for out of order receptions.

• The A-MPDU Frame Aggregation FU implements ag-
gregation of multiple compounds such that a single
decoding error does not compromise the complete ag-
gregation container. The simpler aggregation type, A-
MSDU, can be easily implemented by inserting an ag-
gregation FU from the LDK before the Transmission
Queue.

Two other optional functions conclude the differences of
the two configurations: The single-queue buffer of the basic
configuration is replaced by the Receiver-Sorted Transmis-
sion Queues FU, which manages one buffer per receiver. In
this way, the block acknowledgement and the frame aggrega-
tion can operate more efficiently as the probability for mul-
tiple frames in a row targeted for one receiver is increased.
The receiver-sorted queue contains a strategy which is re-
sponsible for the selection of the next queue.

The remaining difference extends the ability of the rate
adaptation strategy to select more than one spatial stream
if the number of antennas at the transmitter and receiver
and the expected SINR allow for this.

Obviously, the FUN framework enables a straightforward
inclusion of the features of the amendment n into the ex-
isting FUN without major structural changes. This allows
for the assessment that the inclusion of future amendments,
e. g. those of the current task group ac, is possible with sim-
ilar efforts and that the simulator can be timely adapted to
changes in the standardisation process.

4.3 Other MAC Extensions
Some of the existing IEEE 802.11 hardware, especially

Access Points (APs), support simultaneous transmissions

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8681
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8681

MAC SAP

Forwarding

...

PHY SAP

Path Selection

Source Address 1 Source Address n

...

Constant Overhead: MAC

Header

Transmission Queue

ARQ::StopAndWait

Rate Adaptation

TXOP

DCF
Constant Wait: SIFS

Size <

Thres

Size >

Thres
ACK TXOP

RTS / CTS

RTS
NOT

RTS

RA Strategy

Transceiver 1

Constant Overhead: MAC

Header

Transmission Queue

ARQ::StopAndWait

Rate Adaptation

TXOP

DCF
Constant Wait: SIFS

Size <

Thres

Size >

Thres
ACK TXOP

RTS / CTS

RTS
NOT

RTS

RA Strategy

PHY SAP

Transceiver n

Figure 5: The WiFiMAC FUN realizing path-selection (for
IEEE 802.11 amendment s) and multi-transceiver operation.

using two or more different transceivers, tuned to differ-
ent frequency channels. This is for example used to sup-
port Stations (STAs) at 2.4GHz and 5.5GHz at the same
time. A multi-transceiver capability is even more important
in the case of IEEE 802.11 based Wireless Mesh Networks
(WMNs): One transceiver, tuned to 2.4GHz, is responsible
for the last hop to the mobile STAs, whereas another (or
even several other) transceiver relays data on 5.5GHz in the
mesh backbone.

The modularity and the standardised FU interface allow
for a simple extension of the WiFiMAC towards multiple
transceivers. As shown in Figure 5, the FUN of the MAC can
be replicated as many times as needed. When a compound
enters the MAC, a Forwarding FU determines, according
to a path selection table, which next hop needs to be used
and sets the appropriate source address of the transceiver.
Similarly, if a compound is received by the Forwarding FU
that has not reached its final destination, it is relayed ac-
cordingly. The population of the path selection table is done
by a separate management FU.

4.4 The WiFiMAC PHY Layer
As a part of its framework, the openWNS simulator pro-

vides a Radio Interference Simulation Engine (RISE), which
models the peculiarities of the wireless channel: pathloss
(including stochastic Line of Sight (LOS)/Non-LOS mod-
els), spatially correlated random shadowing, fast fading and
of course the calculation of interference during simultaneous
transmissions.

The RISE accepts at its interface the start and end points
of transmission events; similarly, it indicates the end of a
transmission to receiving nodes, together with the calculated
SINR.

To model the capabilities of an IEEE 802.11 a/g or n PHY,
a convergence FUN between the RISE interface and the dis-
cussed MAC is required. This FUN contains the following
FUs, see Figure 6:

• A PreambleGenerator delays every compound and pre-
fixes a special preamble compound, modelling the PHY
preamble and header. This compound is used at the
receiver to signal the start of a transmission (e. g. to
the ARQ that waits for a pending ACK) and to model
the successful signal synchronisation.

Preamble Generator

DeAggregation

Channel State

Frame Synchronization

CRC

Error Modelling

TxDurationSetter

PHY SAP

RISE SAP

Figure 6: The WiFiMAC PHY Layer FUN

• The DeAggregation FU splits, in case the A-MPDU ag-
gregation is used, the aggregated compound into mul-
tiple segments so that the SINR (and thus the error
probability) is calculated separately for each segment.
In this way, the ability of A-MPDU aggregation to de-
code frames in the aggregation container although a
decoding error has corrupted one segment is modelled.

• A TxDurationSetter calculates from the compound length
and the selected MCS the transmission duration.

• The ChannelState implements the IEEE 802.11 chan-
nel state detection, comprising the physical- and the
virtual clear channel assessment.

• Finally, three FUs model decoding errors of incom-
ing compound based on the indicated SINR: First, an
ErrorModelling FU calculates the PER based on the
SINR, the selected MCS, the number of spatial streams
and receive antennas and the compound length (de-
tailed description and further analysis can be found
in [20, 19]; the MIMO model is described in [14, 18]).
Then, a CRC FU drops compounds according to the
PER. Finally, a FrameSynchronization FU models the
capture effect as described in [17].

5. SIMULATOR VALIDATION
As with every other nontrivial software, programming er-

rors may occur during the development phase. However,
to assure sound simulation results, validation of the imple-
mentation using black-box testing is performed: Simulation
results of reference scenarios are compared against results
available from reviewed literature. To ensure comparability
of the results, all details of the reference scenarios must be
available, which is often not the case in results created by
closed-source simulators or simulator extensions.

Therefore, we have selected the well known analytical
IEEE 802.11 DCF model from [10] (refined in [11]) and have
implemented it in Matlab. While it is possible that this im-
plementation also contains errors, the probability to archive
the same incorrect results using two fundamentally different
approaches is low.

The limit of the analytical model in comparison to the
openWNS is the restriction to scenarios where all STAs are

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8681
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8681

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of STAs

M
e

a
n

 S
e

rv
ic

e
 D

e
la

y
 (

s
)

Model: No Aggregation

Simulator: No Aggregation

Model: 5 Frames

Simulator: 5 Frames

Model: 10 Frames

Simulator: 10 Frames

(a) No spatial multiplexing.

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of STAs

M
e

a
n

 S
e

rv
ic

e
 D

e
la

y
 (

s
)

Model: No Aggregation

Simulator: No Aggregation

Model: 5 Frames

Simulator: 5 Frames

Model: 10 Frames

Simulator: 10 Frames

(b) 4x4 MIMO.

Figure 7: Comparison of the mean service delay at saturation according to [11] and simulated by the openWNS.

in mutual reception range of each other, i. e. the effect of hid-
den nodes (or even rate adaptation) is not included. Hence,
the reference scenario consists of a single AP, closely sur-
rounded by STAs with saturated uplink traffic sources.

A key result from [11] is the derivation of an expression for
the mean service delay in a saturated network, dependent on
the number of STAs and the PHY parameters. By setting
the correct values for the frame and preamble durations, it
is possible to apply the model even for the amendment n.
The mean service delay measurements are easily obtained
by inserting a Delay Probe FU (available in the LDK) in
the FUN directly below the transmission queue. This probe
adds a time stamp to outgoing compounds; the peer FU
at the receiver can thus calculate the service delay of the
compound.

Figure 7 shows the mean service delay with increasing
number of STAs and different aggregation lengths. The two
Figures 7a and 7b differ in the number of antennas used
for MIMO transmission, and thus in the number of spatial
streams: While Figure 7a uses the common 1x1 setup, the
results from Figure 7b assume a 4x4 MIMO configuration.

All results generated by the openWNS show a precise
match of the graph given by the analytical model. Hence,
the most important FUs of the WiFiMAC (ARQ, RTS/CTS,
DCF, A-MPDU Frame Aggregation) and their combination
into the FUN as given in Figure 4b reflect the model cor-
rectly.

The testing framework of the openWNS supports the setup
of system tests, which performs the described validation au-
tomatically by comparing freshly generated simulation re-
sults with stored reference values. In this way it is possible
to ensure the correctness of existing code if new functional-
ity is added and FUs are changed during the development
of new protocol features.

6. SIMULATION OF IMT-A SCENARIOS
The ITU-R report M.2135 [15] contains an in-depth de-

scription of test environments and deployment scenarios for
evaluation of IMT-A candidate technologies. The report de-
scribes thirteen performance measures; three of them have to
be evaluated by system simulation: Cell spectral efficiency,
cell edge user spectral efficiency and Voice over IP capac-
ity. Furthermore, each evaluation has to be done in five de-

for params.numChannels in [1, 2, 3, 4, 5]:

for params.numAntennas in [1,4]:

for params.seed in range(1,11):

params.write()

Figure 8: Campaign setup using Python.

ployment scenarios, ranging from an indoor hotspot to rural
macro-cells. The scenarios are defined by the device capa-
bilities (e. g. height, number of antennas, maximum trans-
mission power, receiver noise figure) as well as the channel
model, user distribution and user mobility.

In the following, the procedure how to simulate IMT-A
scenarios is explained, showing how the user can benefit from
the available simulation and evaluation framework. As a
complete evaluation of the scenario types and performance
measures would exceed the scope of this paper, we use as
an example the evaluation of the downlink cell spectral effi-
ciency in the urban micro scenario.

The used radio access technology is IEEE 802.11 (includ-
ing amendment n) as described in Section 4.2; the evaluation
should assess the impact of the number of antennas (1 or 4)
and channels (1 to 5).

6.1 Campaign Setup
In the openWNS terminology, a set of parameters with

different values together with a base configuration is named
a “campaign”. In our case, the campaign parameters are
the number of antennas and channels as given above, plus
(a) the random number generator seed to generate several
different “drops”, i. e. scenarios that differ in the positions of
the STAs, as required by the evaluation guidelines, and (b)
different values for the offered traffic per STA.

The starting point for the setup is a campaign configu-
ration file that defines the required parameter sweeps. As
the programming language Python is used for the simulator
configuration, all language constructs can be employed. The
simple Python fragment given as Figure 8 creates 5 · 2 · 10 =
100 different simulations.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8681
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8681

Figure 9: Screenshot of the openWNS graphical evaluation frontend “Wrowser”.

6.2 Cluster Simulations
With a duration of 2 to 9 h per simulation (depending on

the number of channels: less channels result in more inter-
ference calculations and thus more runtime), the campaign
requires approximately 16 days of processor time.

One of the most advanced features of the openWNS sim-
ulation platform is its support for cluster computing. Cur-
rently, openWNS offers an interface to the Sun Grid Engine
(SGE), which allows for executing the simulations of a cam-
paign in parallel on as many cores as available. Thus, by
using a cluster with 100 cores, the simulations are finished
after 9 h.

After completion, simulation results can be written into
a Postgresql database, so that data mining methods can be
used (e. g. slicing, dicing, aggregation) for the evaluation.

6.3 Campaign Evaluation
Collecting results, extracting measurements and generat-

ing parameter plots is often very time consuming and error
prone. The openWNS offers the Wrowser (an acronym for
W ireless network simulator Result Browser, see [9]). which
solves this problem and lets users focus on the research
rather than on the scripts that collect their measurements.

As soon as a simulation is finished, the Wrowser can be
used to access the results from the central database. Wrowser
is aware of all the simulation parameters and aggregated pa-
rameter plots can be generated within a few steps. Figure 9
shows the GUI, plotting the cumulative probability func-
tion of the STAs’ throughput, depending on the number of
channels and antennas. Results for drops with the same pa-
rameter values are automatically aggregated into one graph.

The Wrowser supports the export of the plots as comma-
separated value files and Matlab programs, so that further
processing of selected results is possible. With a little knowl-
edge of Matlab, publication-quality graphs are generated in
few minutes. For example, Figure 10 shows the results of
the simulation campaign, where the carried traffic per STA
is converted to the cell spectral efficiency by dividing the
results by the number of 20MHz-channels and cells in the

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Channels

C
e

ll
S

p
e

c
tr

a
l
E

ff
ic

ie
n

c
y
 [

b
/s

/H
z
/C

e
ll] 1x1

4x4

Figure 10: Downlink cell spectral efficiency of IEEE 802.11n-
2009 in the IMT-A Urban Micro scenario with different an-
tenna and channel configurations.

scenario. As the results are averaged over multiple drops,
the Wrowser is able to add confidence intervals to the mean
values. Here, the 0.95-confidence interval is plotted.

The cell spectral efficiency decreases with an increase of
channels. The reason for this is the following: although the
throughput is increased with the help of more channels, the
bandwidth is not used efficiently enough to compensate for
the increase of the denominator of the spectral efficiency.
Furthermore, the step from a 1 × 1 to a 4 × 4 configuration
only achieves twofold spatial efficiency increase.

7. CONCLUSION
The paper at hand provides a complete overview of open-

WNS: First, the FUN architecture which facilitates a rapid
prototyping of current and future protocol stacks is pre-
sented. The architecture is illustrated using the WiFiMAC
as an example – especially the implementation of the MAC
enhancements of IEEE 802.11n-2009. Second, the builtin

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8681
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8681

support to generate, configure, execute and evaluate large-
scale simulation campaigns as required by the IMT-A eval-
uation criteria is shown.

A description of all aspects of the current openWNS would
require significantly more space than available for this pa-
per. For example, the presentation of the modules for the
other radio access technologies that are currently under de-
velopment – WiMAX and LTE-Advanced – is much more
complex than the description of the WiFiMAC. Hence, we
refer again to the online documentation that can be found
at [5].

8. ACKNOWLEDGEMENTS
The development and release of openWNS would not have

been possible without the support, hard work and endless
efforts of a large number of diploma thesis workers and PhD
students. We are particularly grateful to our colleagues Ma-
ciej Mühleisen, Ralf Pabst, Arif Otyakmaz, Klaus Sambale,
Rainer Schoenen and Matthias Malkowski for their dedica-
tion and contribution to openWNS. Finally, we would like
to thank Prof. Walke who made the work on this simulator
possible.

9. REFERENCES
[1] Boost C++ Libraries. Web Page

http://www.boost.org/ (Retrieved 2009-10-15).

[2] Global Mobile Information Systems Simulation
Library (GloMoSim). Web Page,
http://pcl.cs.ucla.edu/projects/glomosim/

(Retrieved 2009-10-15).

[3] ns-2. Web Page, http://www.isi.edu/nsnam/ns/
(Retrieved 2009-10-15).

[4] ns-3. Web Page, http://www.nsnam.org/ (Retrieved
2009-10-15).

[5] open Wireless Network Simulator (openWNS). Web
Page, http://www.openwns.org (Retrieved
2009-10-15).

[6] OPNET. Web Page, http://www.opnet.com/
(Retrieved 2009-10-15).

[7] TR19768 Technical Report on C++ Library
Extensions.

[8] WiMAX (IEEE 802.16) Specialized Model.
Description available at http://www.opnet.com/
solutions/brochures/wimax_model.pdf (Retrieved
2009-10-15).

[9] Wireless network simulator Result Browser (Wrowser).
Web Page, http://launchpad.net/openwns-wrowser
(Retrieved 2009-10-15).

[10] G. Bianchi. Performance analysis of the IEEE 802.11
distributed coordination function. IEEE Journal on
selected areas in communications, 18(3):535–547, 2000.

[11] G. Bianchi and I. Tinnirello. Remarks on IEEE 802.11
DCF performance analysis. IEEE Communications
Letters, 9(8):765–767, 2005.

[12] D. Bültmann, M. Mühleisen, K. Klagges, and
M. Schinnenburg. openWNS - open Wireless Network
Simulator. In 15th European Wireless Conference,
Aalborg, Denmark, May 2009.

[13] F. Schreiber, C. Görg. Stochastic Simulation: a
simplified LRE-algorithm for Discrete Random
Sequences. AEÜ, 1996.

[14] D. Gore, J. Heath, R.W., and A. Paulraj. On
performance of the zero forcing receiver in presence of
transmit correlation. Information Theory, 2002.
Proceedings. 2002 IEEE International Symposium on,
pages 159–, 2002.

[15] ITU-R. M.2135 : Guidelines for evaluation of radio
interface technologies for IMT-Advanced. Technical
report, ITU, 2008.

[16] S. Kurkowski, T. Camp, and M. Colagrosso. Manet
simulation studies: The Incredibles. SIGMOBILE
Mob. Comput. Commun. Rev., 9(4):50–61, 2005.

[17] J. Lee, W. Kim, S. Lee, D. Jo, J. Ryu, T. Kwon, and
Y. Choi. An experimental study on the capture effect
in 802.11a networks. In Proceedings of the second
ACM international workshop on Wireless network
testbeds, experimental evaluation and characterization,
pages 19–26, Montreal, Quebec, Canada, 2007.

[18] J. Mirkovic. Design and Performance Analysis of
MIMO Based WLANs. PhD thesis, RTWH Aachen
University, Department of Communication Networks,
Dec 2008.

[19] G. Orfanos. Development and Performance Evaluation
of an MAC Protocol for MC-CDMA Wireless LANs
with QoS Support. PhD thesis, RWTH Aachen
University, Department of Communication Networks,
2006.

[20] G. Orfanos, J. Habetha, and W. Butsch. Error
probabilities for radio transmissions of MC-CDMA
based W-LANs. In Vehicular Technology Conference,
2005. VTC 2005-Spring. 2005 IEEE 61st, volume 3,
pages 1706–1710 Vol. 3, 2005.

[21] Scalable Network Technologies. Qualnet. Web Page,
http://www.scalable-networks.com/ (Retrieved
2009-10-15).

[22] M. Schinnenburg, F. Debus, A. Otyakmaz,
L. Berlemann, and R. Pabst. A framework for
reconfigurable functions of a multi-mode protocol
layer. In Proceedings of SDR Forum 2005, page 6, Los
Angeles, U.S., Nov 2005.

[23] M. Schinnenburg, R. Pabst, K. Klagges, and B. Walke.
A Software Architecture for Modular Implementation
of Adaptive Protocol Stacks. In MMBnet Workshop,
pages 94–103, Hamburg, Germany, Sep 2007.

[24] F. Schreiber. Time efficient simulation: the
LRE-algorithm for producing empirical distribution
functions with limited relative error. AEÜ, 38, 1984.

[25] WINNER: Wireless World Initiative New Radio+.
Web Page,
http://projects.celtic-initiative.org/winner+

(Retrieved 2009-10-15).

[26] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: A
Library for Parallel Simulatin of Large-scale Wireless
Networks. In 12th Workshop on Parallel and
Distributed Simulations (PADS’98), May 1998.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8681
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8681

