
Tool Support for Transformation from an OWL Ontology to
an HLA Object Model

Özer ÖZDİKİŞ
OYAK Technology

Teknokent, Galyum Blok, Kat:1,
No:23 ODTU-Ankara TURKEY

+90 535 922 46 40

oozdikis@oytek.com.tr

Umut DURAK
TUBITAK-SAGE

PK.16 06261 Mamak
Ankara TURKEY

+90 312 590 91 76

udurak@sage.tubitak.gov.tr

Halit OĞUZTÜZÜN
Middle East Technical University

Computer Engineering Dept.
Ankara TURKEY

+90 312 210 55 87

oguztuzn@ceng.metu.edu.tr

ABSTRACT

Designing simulation architectures based on domain models is a

promising approach. Tools to support transformation of

formalized domain models to design models are essential.

Ontology languages offer a way of formally specifying the

domain knowledge. We adopt a user-guided approach to model

transformation, where the source is an OWL ontology and the

target is an HLA Object Model, in particular, a federation object

model (FOM). This paper presents a flexible transformation tool

that enables the user to define transformations in terms of

mappings from OWL constructs to HLA Object Model Template

(OMT) constructs. The overall objective is to facilitate ontology-

based model-driven development in distributed simulation.

Categories and Subject Descriptors

I.6.7 [Simulation Support Systems]

General Terms

Design

Keywords

Ontology based simulation, model driven development, High

Level Architecture, object models.

1. INTRODUCTION
In the context where distributed simulation architectural design

and model driven development meet, the issue of transformation

of domain models to platform-specific object models arises. A

domain model, which captures knowledge from an area of

interest, is an outcome of domain analysis. The approach that is

based on the use of model transformations from a domain model

to design models of varying levels of detail, and finally to code is

known as Model Driven Development (MDD) or Model Driven

Engineering (MDE). OMG’s Model Driven Architecture (MDA)

[10] and ISIS’ Model Integrated Computing (MIC) [11] are

particular manifestations of MDD/MDE.

Ontologies have recently gained popularity for representing

domain knowledge for ease of both human understanding and

machine processing [17][6]. Using ontologies as domain models

is known as ontology based domain engineering [4]. In applying

ontology based domain engineering to simulation development,

we envision to derive reusable simulation components and

artifacts.

A domain model ideally reflects all the stakeholders’ views of

the problem area. Further, we hold that tool-supported

methodologies are required to bring the simulation developer’s

point of view into life. Our present focus is on tool support for

flexible transformations from a domain ontology, which can be

regarded as a representation of a simulation conceptual model

[16], into an HLA object model.

OWL is an ontology language [15][7], which enjoys popularity

due to “semantic web”. When it comes to transforming an

available OWL ontology into some target model, the “one size

fits all” approach does not work. Because every domain model

may require a different transformation procedure depending on

the context, data types, conventions, and even the personal

preferences of the simulation developer.

The tool provides a user interface to configure mappings from

OWL constructs to HLA OMT constructs. Then, mapping

definitions are applied on a given OWL ontology (formalizing a

domain model), and consequently an HLA Object Model, in the

form of an XML document [8], is produced.

1.1 Related Work
France and Rumpe [5] discuss how modeling techniques can be

effectively leveraged during software development. Moreover,

they note that, "there is a growing realization that MDE requires

semantic-based manipulation of models". We believe our work

takes some steps along this direction.

Tolk in [19] draws attention of the HLA based distributed

simulation community to MDA and points out that employing

MDA will enable HLA implementers to improve their products

by making better use of the commercial technology.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

SIMUTools 2010 March 15–19, Torremolinos, Malaga, Spain.

Copyright 2010 ICST, ISBN 78-963-9799-87-5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8678
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8678

Miller and Fishwick [12] identify the potential benefits of

ontologies for modeling and simulation. In [20], Tolk also

stresses the importance of conceptual data models, which can be

parts of ontologies, in simulation development. He argues that in

a simulation consisting of several participating systems,

ontologies can be used to describe their services and information

exchange capabilities to satisfy M&S composability and

interoperability.

The work by Rathnam and Paredis [18] also addresses the use of

ontologies in constructing HLA-based distributed simulations. In

their work, the object models, namely, the FOM of a federation

and the SOMs of the federates, are represented as ontologies.

The mappings between individual SOMs and the FOM are also

represented as an ontology. By means of these mappings, the

reusability of existing federates in a new federation is facilitated.

That approach requires the user design his ontology specific to

HLA standards. In our work the ontology captures the simulation

conceptual model in a more abstract way, in that it is not specific

to HLA or any other simulation standard. HLA-specific

information is provided by the transformations from the ontology

to the object model.

In a previous study [14], we achieved to provide tool support for

user-guided model transformation from ontology to the object

oriented design for the simulation software, in the form of a

UML class diagram. This present effort is built upon the premise

that the domain knowledge that is standardized in the form of a

common ontology can be utilized to derive a representation of the

information shared among the participants in a distributed

simulation.

1.2 Background
This effort builds up a weak analog to the levels of abstraction

that are identified in OMG’s MDA [10] while developing a tool

support for model driven simulation development. MDA presents

the abstraction levels of system development as follows: The

computation independent viewpoint as the first abstraction level,

focuses on the environment in which the system of interest will

operate in and on the required features of the systems [5]. The

platform independent viewpoint focuses on the aspects of system

features that are not likely to change from one platform to

another. We expect ontologies to possess both computation

independent or platform independent viewpoints depending on

their design purpose and content. The next step is platform

specific viewpoint which is regarded as the last level of

abstraction before the executable code. It specifies how that

system utilizes a particular platform.

The idea is that domain knowledge which is captured at a

conceptual level will be used to generate the models towards the

executable assets as automated as possible utilizing model

transformation practices. This effort tries to build a tool to allow

the simulation engineer to guide the transformation from

conceptual model which is represented by an OWL ontology, to

an asset towards executable code, which is an Object Model.

Object Models are regarded as HLA specific interface models

which then can also be transformed to Federation Design Data

[21].

Our transformation process can be located in reference to the

four-layer metamodeling hierarchy of OMG’s Meta Object

Facility (MOF) [13]. MOF is defined as the extensible model

driven integration framework for defining, manipulating, and

integrating metadata and data in a platform independent manner.

It provides a meta-metamodel at the top level, which is called

M3 layer of the four-layer metamodeling hierarchy. Any M3-

layer meta-metamodel can be used to define more specific

metamodels at M2 layer, such as the HLA Object MetaModel

(HOMM). A fully-fledged metamodel for the HLA Object Model

is provided as a part of the Federation Architecture Metamodel

(FAMM) [21]. We have used a scaled down version of HOMM.

FAMM employs metaGME, the meta-metamodel provided in

GME, a (meta)modeling environment supporting MIC. Object

Models conforming to the HOMM (thus, to the HLA OMT

standard) are at layer M1. Finally, the M0 layer includes the

objects and interactions created during federation execution as

instantiations of the Object Model.

A specific ontology can be viewed as conforming to a metamodel

(which plays the role of a grammar for an ontology language,

such as OWL). Our ontology modeling hierarchy is based on

Eclipse Metamodel Framework (EMF) [2]. The meta-metamodel

at M3 layer in EMF is called Ecore. IBM implemented an

Integrated Ontology Development Toolkit (IODT) for ontology

driven development built on EMF [9]. IODT includes a library

called EMF Ontology Definition Metamodel (EODM) which is

an implementation of the OMG’s Ontology Definition

Metamodel [3]. EODM has OWL parsing, serialization, and

reasoning features.

In the transformation, we have an ontology model as our source

and the HLA Object Model as our target. Our approach

facilitates the definition of the mappings between the EODM and

HOMM at M2 layer. These mappings are applied to a given

OWL ontology to generate an HLA Object Model. The modeling

layers which are used in this transformation are shown in Figure

1.

In the following sections, available OWL constructs of the source

and OMT constructs of the target are introduced. The tool that

was developed to configure the mapping from source to target is

presented. Finally, our ongoing work on a case study and future

work are commented upon.

Figure 1. Relations between the modeling layers

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8678
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8678

2. THE OWL-TO-OBJECT MODEL

TRANSFORMATION
Our tool lets the user configure the transformations as

appropriate. A transformation configuration is composed of

mapping groups, mappings and constraints.

A mapping group is a collection of mappings from some specific

OWL constructs to some OMT constructs. In other words, a

mapping group includes the specification of source OWL

constructs and mappings to apply on these constructs. Source

constructs can be OWL classes or OWL properties. The user can

define constraints on the source OWL constructs, so that the

mappings in the mapping group are applied only on the desired

subset of source constructs.

Following the description of the source constructs, the user must

specify, in terms of mappings, how to use them in the

transformation. Depending on the source-target combinations, the

user can define four types of mappings in a mapping group: to

Object Class, to Attribute, to Interaction Class and to Parameter.

A mapping is the prescription of how the target OMT construct

should be built using the source OWL construct.

Figure 2 shows a screenshot from the tool. It enables the user to

define several mapping groups with several mappings inside.

The boxes labeled OC, IC, AT and PR represent four different

mapping types regarding OMT constructs.

Constraints can be defined to restrict the entities to be evaluated

in a specific mapping group or mapping. Constraints are actually

condition-value pairs applied on an OWL construct. While

evaluating an OWL construct in a mapping group or mapping,

these condition-value pairs are used to check if that construct is

selected and should be processed. As an example, if the user

wants to define some mappings on a specific subset of source

OWL objects, he must define a new mapping group, then define

a constraint for that mapping group to specify the interested

OWL objects, and finally define his mappings in that mapping

group so that they are applied only on the specified source OWL

objects.

The last step of the transformation is the validation of the

resulting model. Since this transformation is a user-guided

transformation, there may be inconsistencies, for example, a

reference to a Dimension that actually does not exist in the object

model. Details of validation are explained in the forthcoming

sections.

2.1 Available OWL Constructs at the Source
An OWL ontology involves Classes, Object Properties, and

Datatype Properties. A Class has a name and possibly super

classes. A Class may be defined as an intersection of, union of or

complement of other classes. Further, a class may have different

types of restrictions, namely, MinCardinalityRestriction,

MaxCardinalityRestriction, CardinalityRestriction,

AllValuesFromRestriction, SomeValuesFromRestriction and

HasValueRestriction. These restrictions define the values

(Restriction.Value) that the Class must take for a Property

(Restriction.Property). A Class may also be an enumeration

class, which includes the list of individuals that are the members

of the class. A Property has a name, domain and range

information, and possibly super properties. Our tool lets the user

use definitions of Classes, Object Properties, and Datatype

Properties as a source for the mappings to OMT.

2.2 Available OMT Constructs at the Target
According to the IEEE 1516 Standard [8], an OMT model

consists of the definitions of Object Classes and their Attributes,

Interaction Classes and their Parameters, Dimensions, Datatypes,

Transportations, Switches, Time, Synchronizations and User

Supplied Tags. Our primary concern here is the creation of

Object Classes, Attributes, Interaction Classes and Parameters.

These constructs may have references to Datatypes, Dimensions

and Transformations and if these referenced constructs do not

exist in the target Object Model, new Datatype, Dimension and

Transportation definitions will be introduced with default

properties through the transformation process. Details of these

OMT constructs are expected to be edited with an OMT Editor

by the user after the transformation. Switch, Time, User Supplied

Tags and Synchronization definitions are ignored in this process.

The class hierarchy for Object Classes and Interaction Classes

are represented by ���������� properties in our OMT model.

While serializing the model into FOM file, these ����������

properties are replaced with the nested class definitions.

Figure 3 shows the relationships between the OMT objects and

their properties handled during a transformation. Some

properties are allowed to take a value from a predefined value set

(�	�
�� property of an Object Class can be set to “Publish”,

“Subscribe”, “PublishSubscribe” or “Neither”), some can take

any String (like the ���� of an Object Class) and others must

refer to an existing OMT object in the model (�������� property

of an Attribute must be the name of an existing Datatype object).

Figure 2. Overview of the UI

Figure 3. Target OMT Constructs

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8678
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8678

2.3 Mappings from OWL to OMT
Our tool provides an interface to the user to define mappings

between the available OWL constructs at the source and the

OMT constructs at the target, which were defined above.

Mappings can be classified into 4 types regarding the target

constructs. These are

• Mappings to Object Classes

• Mappings to Attributes

• Mappings to Interaction Classes

• Mappings to Parameters

Our tool lets a mapping read the values of the properties of above

OMT constructs from the ontology. The user can also fix the

values in the transformation configuration. For instance, he can

either say “The value for ���������� property of an Object Class

will be taken from the name of the super class of corresponding

OWL Class” or “Attributes of Object Classes whose name begin

with ‘X’ will have �������� ‘HLAboolean’”.

The definitions of these 4 OMT objects may have references to

Datatype, Dimension and Transportation definitions that do not

exist in target Object Model by default. These cases are handled

by adding the definitions for these new OMT constructs with

their default properties. For example, if the transformation

results in an Interaction Class with its �
�����
������� �X’, a

Transportation object with ���� ‘X’ is added to the resulting

Object Model. Details of this Transportation instance are

supposed to be configured later manually by the user.

During the transformation process, mappings to Object Classes

and Interaction Classes are resolved first. As will be explained in

the following sections, new Attributes and Parameters are

introduced to the target model during the resolution of mappings

to Object Classes and Interaction Classes, respectively.

Mappings to Attributes and Parameters are used to set their

further properties like �������� or �	�
��.

2.3.1 Mappings to OMT Object Classes
This mapping type enables the user to define new Object Classes

in the target model. The ���� of the Object Class is taken from

the name of the OWL Class/Property in the source. While

creating new Object Classes, user can also configure mappings

for the properties of these Object Classes. In other words, he can

configure how to set the ����������, �	�
�� and ��������� of

the related Object Classes. Each Object Class can have at most

one super class, and the name of this superclass is represented in

a ���������� property in the target model. The name of the super

class can be taken from the source ontology constructs depending

on the mapping configured by the user as shown in Figure 4.

As an example, the configuration in Figure 4 will be evaluated as

follows: OWL Classes/Properties in the input ontology are

traversed one by one according to the constraint definitions for

the mapping group which includes this mapping. For each valid

OWL Class/Property in the source, an Object Class with same

���� is created in the target Object Model. Moreover, if an

OWL Class/Property named “C” is defined to be the

subclass/subproperty of OWL Class/Property named “ParentC”,

then Object Class “C” will be the subclass of Object Class

“ParentC” in the resulting Object Model.

The other property of an Object Class is �	�
��. �	�
�� can

either be taken from an OWL construct in the source or set to one

of the possible values in a choice list. Figure 5 shows the

configuration panel to define how to set the �	�
�� property of

related Object Classes.

Similar to the �	�
�� property, ��������� can either be taken

from an OWL construct in the source or set to some fix value.

Figure 6 shows an example, which also illustrates the constraint

definitions. The mapping configuration in Figure 6 is processed

as follows: if the OWL Class in the source has an OWL

HasValueRestriction definition on an OWL Property named

“description”, the value of this specific Restriction will be set as

the ��������� of the corresponding Object Class.

Object Classes can have Attributes. In the mapping configuration

for Object Class, user can define where to get the attribute names

for the corresponding Object Classes. If the user configures the

mapping for the attribute names, new Attribute objects with

desired names are generated in the target model. In this same

mapping, user can also set the properties of Attribute objects, i.e.

��������, ����������, ���������������, ����
�	��, �	�
��,

����������, �
�����
������, �
��
� and� ���������� as shown in

Figure 7. However our tool does not allow getting the values of

Attribute properties from the source OWL constructs in this

mapping panel, instead their values are set to some desired fix

values. If the user wants to get Attribute property values from the

OWL ontology, he has to define a new “Mapping to Attributes”

as explained in the following section. The required attribute

mapping flexibility is provided in that mapping type.

Figure 4. Object Class Mapping for subclass relationship

Figure 5. Object Class Mapping for Sharing

Figure 6. Object Class Mapping for Semantics

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8678
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8678

2.3.2 Mappings to OMT Attributes
There may be cases where some Class or Property in the ontology

defines an Attribute with its properties. This mapping type is

used to set the properties of Attributes which were created during

the configuration of “Mappings to Object Classes”. The

transformation for this type of mapping works as follows: OWL

Classes/Properties in the input ontology are traversed one by one

according to the constraint definitions for the mapping group. For

each selected OWL Class/Property named “C”, an Attribute with

name “C” is searched in the target model. For each Attribute

named “C”, the OWL construct defined in the mapping is used to

feed the property values for this Attribute. Figure 8 shows a case

where the �������� of defined Attributes are taken from the

property name of the MaxCardinalityRestrictions defined for the

corresponding OWL Class.

The precondition for this mapping is that the correct Attributes

have already been defined for desired Object Classes. This is

achieved by the Attribute configurations in Object Class

mappings. Thus, “Mapping to Attributes” is just a matter of

feeding the property values to the previously defined Attributes

of Object Classes. One additional feature in this mapping is that

the name of the owner Object Class can be bound to a constraint

in the mapping.

2.3.3 Mappings to OMT Interaction Classes
The mappings for Interaction Classes and Parameters are similar

to the mappings for Object Classes and Attributes. With this

mapping type, new Interaction Classes are added to the target

model. Properties of the Interaction Classes, namely ������������

�	�
���� ������������ �
�����
�������� �
��
�� ���� ��������� are

also configured by either using the source OWL constructs or

selecting values from choice lists. Moreover, if the Interaction

Class needs to have Parameters, user can configure this mapping

to create Parameters with desired names for the corresponding

Interaction Classes. In this mapping window, user can also

choose a �������� for the Parameters from a choice list. If the

�������� for the Parameters are to be taken from some OWL

constructs, the user has to configure a “Mapping to Parameters”.

2.3.4 Mappings to OMT Parameters
Just like for the “Mappings for Attributes”, this mapping

requires that the Parameters are already defined in the target

model through the performance of “Mappings for Interaction

Classes”. This mapping type enables the user to set the OWL

constructs to feed the ��������� and� ��������� for desired

Parameters. During the execution of this mapping, each OWL

class/property in the source ontology is traversed and if a

Parameter with the same OWL class/property name is found, its

��������� ���� ���������� are set with the OWL construct

according to the mapping configuration. Moreover user can

define a constraint on the name of the encapsulating Interaction

Class to apply this mapping.

2.4 Validation of the Model
The last step of the transformation is Object Model validation.

The reason for this step is that the resulting model may not

always be consistent. Especially if the model constructs are to be

taken dynamically from the source ontology, the values set to

these constructs may not be in the allowed range or referred

objects may not exist in the target object model. The validation

checks our tool currently applies include the following:

• Enumerations: Some OMT constructs (namely

sharing, updateType, ownership and order) may get

only some restricted specific values. For example, if

the transformation sets the sharing property of an

Object Class to a value other than “Publish”,

“Subscribe”, “PublishSubscribe” or “Neither”, this

would not be a valid FOM.
• Class hierarchy: An Object Class or an Interaction

Class cannot have multiple super classes.

• Uniqueness: There cannot be two OMT constructs of

the same type with the same name.

• New OMT constructs: Transformation may result in

references to Datatype, Transportation or Dimension

objects which do not exist in FOM. These constructs

are introduced with default property values.

• Dependent properties: The value of a property may

depend on the value of another property of an OMT

construct. For example, if dataType of an Attribute is

“NA”, its updateType, updateCondition and

dimensions must also be “NA” and a transportation

and order must be specified for that Attribute.

3. DISCUSSION
The specific contribution of our work is a tool for ontology based

simulation design. We introduce a user-guided transformation

process to bridge the gap between the domain modeling and

simulation software modeling realms with minimum loss of

information and maximum simplicity. By mapping the OWL and

HLA Object Model constructs on a user interface in a point-and-

click fashion, the knowledge captured in an ontology is

automatically transformed into a FOM. Once the transformations

are defined, subsequent updates to ontology, in so far as they do

Figure 7. Object Class Mapping for Attributes

Figure 8. Attribute Mapping for possible Attribute

properties

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8678
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8678

not disturb the existing input-output patterns, are reflected to the

target FOM without further user involvement. This FOM can be

then used in an HLA simulation environment without any need

for OWL knowledge.

An ongoing case study attempts to generate a FOM from the

Trajectory Simulation Ontology (TSONT) [1]. The FOM will be

for a federation involving simulation of some munition

trajectories. TSONT essentially captures the trajectory

simulation domain knowledge, including mathematical models,

and specifies the functionality required to carry out a simulation.

Currently, the generation of FOM is manual. Our goal is to let

the user configure a transformation to automatically generate the

same FOM.

Current tool design aims at generation of four main OMT

constructs, namely Object Classes, Attributes, Interaction Classes

and Parameters. As explained in Section 2.2, new Datatypes,

Transportations and Dimensions are created with default

properties if necessary. In future releases of our tool, we are

planning to introduce new mapping types to let the user set the

properties of Datatypes, Transformations and Dimensions using

the information in the source ontology.

It is desirable for the tool to be able to read the source data from

multiple ontology files. Multiple ontologies may account for

multiple domains involved in a complicated federation scenario.

These data sources may need to be combined and interpreted to

generate a federation object model.

There are some structural differences between an ontology and

an HLA Object Model. For example, an OWL class may have

multiple superclasses, while an Object Class in FOM may have

only one superclass. If the user configures the mappings which

somehow result in an Object Class with multiple superclasses,

only the last superclass assignment becomes effective.

4. REFERENCES
[1] Durak,U., Oguztuzun,H., and İder,K. 2006 An Ontology for

Trajectory Simulation. Proceedings of the 38th Winter

Simulation Conference, Monterey, CA, USA

[2] EMF, Eclipse Modeling Framework Project,

http://www.eclipse.org/modeling/emf/?project=emf

[3] EODM, EMF Ontology Definition Metamodel,

http://www.eclipse.org/modeling/mdt/?project=eodm#eodm

[4] Falbo, R.A., Guizzardi, G., and Duarte, K.C. 2002 An

Ontological Approach to Domain Engineering. International

Conference on Software Engineering and Knowledge

Enginnering, Ischia, Italy.

[5] France, R., and Rumpe, B. 2007 Model-driven Development

of Complex Software: A Research Roadmap. Proceedings of

the Conference on Future of Software Engineering, (May

23-25, 2007), p.37-54.

[6] Hesse, W. 2005 Ontologies in the Software Engineering

Process. EAI 2005 - Proceedings of the Workshop on

Enterprise Application Integration, Berlin.

[7] Horridge, M., Knublauch, H. , Rector, A., Stevens, R., and

Wroe, C. 2004 A Practical Guide To Building OWL

Ontologies Using The Protégé-OWL Plugin and CO-ODE

Tools, The University of Manchester, Stanford University

[8] IEEE Std 1516.2-2000, 2001, IEEE standard for modeling

and simulation (M&S) high level architecture (HLA) -

object model template (OMT) specification.

http://ieeexplore.ieee.org/xpl/standardstoc.jsp?isnumber=19

791

[9] IODT, Integrated Ontology Development Toolkit,

http://www.alphaworks.ibm.com/tech/semanticstk

[10] Kleppe, A., Bast, W. and Warmer, J. B. 2003. MDA Ex-

plained, the Model Driven Architecture: The Model Driven

Architecture: Practice and Promise. 2nd Ed. Addison-

Wesley, Boston.

[11] MIC, Model Integrated Computing,

http://www.isis.vanderbilt.edu/research/MIC

[12] Miller, J.A., and Fishwick, P.A. 2004 Investigating

Ontologies for Simulation Modeling. Proceedings of the

37th Annual Simulation Symposium (ANSS’04), Arlington,

VA, USA.

[13] MOF, Meta-Object Facility,

http://www.omg.org/mda/specs.htm#MOF

[14] Ozdikis, O., Durak, U. and Oguztuzun,H. 2009 User Guided

Transformation for Ontology Based Simulation Design.

2009 Summer Computer Simulation Conference, Istanbul,

Turkey.

[15] OWL Web Ontology Language Overview,

http://www.w3c.org/TR/2004/REC-owl-features-20040210

[16] Pace, D.K . 2000 Ideas About Simulation Conceptual Model

Development. John Hopkins APL Technical Digest, 21, 3.

[17] Prieto-Diaz, R. 1990 Domain Analysis: An Introduction.

ACM SIGSOFT Software Engineering Notes, ACM Press.

[18] Rathnam, T., and Paredis, C.J.J. 2004 Developing

federation object models using Ontologies. Proceedings of

the 2004 Winter Simulation Conference, Washington, DC,

USA

[19] Tolk, A. 2002 Avoiding another Green Elephent – A

Proposal for the Next Generation HLA based on the Model

Driven Architecture. 2002 Fall Simulation Interoperability

Workshop, Orlando, FL, USA.

[20] Tolk,A., and Turnitsa,C.D. 2007 Conceptual modeling of

information exchange requirements based on ontological

means. Proceedings of the 39th Winter Simulation

Conference, Washington D.C.

[21] Topçu, O., Adak, M. and Oğuztüzün, H. 2008 A metamodel

for federation architectures. ACM Transactions on Modeling

and Computer Simulation, 18,3, (July 2008), 10:1-10:29.

DOI=http://doi.acm.org/10.1145/1371574.1371576

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8678
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8678

