
SSALeaping: Efficient Leap Condition Based Direct
Method Variant for the Stochastic Simulation of Chemical

Reacting System

Davide Cangelosi
Department of Computer Science

University of Pisa
Pisa, Italy

cangelo@di.unipi.it

ABSTRACT

The τ -leaping methods are very known solutions for acceler-
ating the Gillespie’s Stochastic Simulation Algorithm in the
simulation of well-stirred chemically reacting systems. In
this paper, we propose a new variant of the stochastic simu-
lation algorithm, that we call SSAL, which lays in the middle
between the Gillespie’s Direct Method and a τ -leaping. Es-
sentially, SSAL works as a standard Direct Method. How-
ever, it uses the typical Leap Condition to incrementally
build leaps, avoiding at the same time the risk of getting
into negative populations. We compare SSAL with one
of the most known and efficient τ -leaping methods, named
Modified τ -leaping. We provide for both of them a detailed
theoretical asymptotic analysis and some experimental tests
upon three realistic biological models.

Categories and Subject Descriptors

I.6.8 [SIMULATION AND MODELING]: Types of Sim-
ulation—Monte Carlo

General Terms

ALGORITHMS, THEORY, EXPERIMENTATION, PER-
FORMANCE

Keywords

τ -leaping, Stochastic Simulation Algorithm, SSALeaping,
Leap Condition, Direct Method

1. INTRODUCTION
The stochastic simulation of well-stirred chemically react-

ing systems has emerged as one of the most attractive chal-
lenge topics in the multidisciplinary area known as Systems
Biology. In systems of living cells, few molecules can play
fundamental roles in the processes governing many cellular

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2010 March 15–19, Torremolinos, Malaga, Spain.
Copyright 2010 ICST, ISBN 78-963-9799-87-5.

activities. The population of these molecular species often
exhibits random fluctuations. In other words, starting from
the same initial conditions the system can evolve in many
different ways. The inherent randomness in the possible
evolutions can only be captured taking into account the fact
that reactions are discrete and stochastic events. This is the
core of the stochastic approach to the chemical kinetics.
The traditional way of the stochastic approach is to set up
and solve the Chemical Master Equation (CME) of the sys-
tem. Unfortunately, in many cases the CME is difficult to
handle because an equation is necessary for each possible
state (which is finite or infinite). Therefore, in 1976 Gille-
spie formulated a Monte Carlo procedure, called Stochastic

Simulation Algorithm (SSA) [16]. This algorithm computes
a single possible random evolution (realization, simulation)
of the system state, despite of the infinite possibilities. The
generated trajectory is an exact (probabilistically correct
and theoretically founded) random description of the state
evolution of the chemical system over time. SSA simulates
the system evolution as a sequence of reactions. The critical
point is to determine when will the next reaction occur and

what reaction it will be. Gillespie proposed two equivalent
formulations of SSA to answer to those questions: the Direct

Method (DM) [17] and the First Reaction Method (FRM)
[16]. DM is the first focus of this paper, we will survey it in
the next section.
In general, when the populations of certain species and/or
the number of reactions in the system are large, SSA requires
a huge amount of steps and the performance slow down. To
improve efficiency of SSA a number of methods have been
proposed. Some maintain exactness, and they mainly speed
up the selection of the next reaction [10, 21, 11]. Others
sacrifice exactness using more sophisticated techniques [13,
24, 1, 23, 2, 4]. Among the seconds, the so called τ -leaping
methods have been proved themselves very fast and accu-
rate solutions, also when they are applied on realistic models
[6]. The τ -leaping methods will be the second focus of this
paper.
The original τ -leaping method [13] substituted the notion
of reaction time with the notion of leap. A leap is a time
interval within which hopefully many reactions fire. In gen-
eral given a time interval τ ′, there is no way to predict the
reactions firing in τ ′ without run the simulation. However,
the τ -leaping overcomes the problem ground on a condition
of the reactions activity, called Leap Condition. The leap
condition enables to estimate the number of occurrences of

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8665
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8665

a given reaction into the considered leap as a value taken
from a Poisson distribution, this step is known as Leap Ap-

proximation. The state evolution advances from one state to
the next, applying cumulatively all the reaction occurrences
computed in the leap approximation step. So substantial
gain in simulation speed can be achieved if each leap fires
many reactions [13].
Unfortunately, sometimes an uncontrolled application of the
leap approximation can lead some population to become
negative. To solve this problem some authors provided in-
teresting solutions [24, 8, 1]. One of the most known and
efficient τ -leaping method is the Modified τ -leaping (MTL)
[1, 3]. This method uses a new user defined parameter to
split the set of reactions of the system. The division is use-
ful to separate and manage differently, reactions that po-
tentially risk to overdraw some of its reactants, from the
others. Moreover, MTL shifts from the Gillespie’s DM to
the τ -leaping and viceversa according to a condition that
depends on a further user defined parameter that we will
survey in the next section.
In this paper we propose a new efficient stochastic simula-
tion algorithm, called SSAL, which combines the advantages
of Gillespie’s Direct Method and of the τ -leaping. SSAL ba-
sically works as a standard DM but it verifies efficiently if
the leap has to be interrupted or not. If it is the case, SSAL
starts a new leap, otherwise, it computes a new pair (τ, j)
reusing the same propensities and the sum of the preceding
step. Moreover, the careful verification of the leap condition
makes it impossible that some population becomes negative
as we will prove later on.
This paper is organized as follows. In Sec. 2, we introduce
some basic notation, we overview DM and MTL. We intro-
duce our SSAL and its asymptotic time complexity analysis
in Sec. 3. In Sec. 4, we test the accuracy and the performance
of SSAL and we compare it with the MTL on three realis-
tic biological models. Some concluding remark are given in
Sec. 5.

2. BACKGROUND
Consider a system with N species {S1, · · · , SN} interact-

ing through M different chemical reactions {R1, · · · , RM}.
Assume that the system is well-stirred, that it is confined
in a constant volume V and in thermal (but not chemical)
equilibrium [14]. The system state is the multivariate ran-
dom variable X(t) = x = {x1, · · · ,xN}. We write xi(t), or
more precisely xi, to indicate the number of molecules of
species Si in the system at time t. Given an initial value
X(t0) for the state, the problem is determining the value of
X(t) at any later time t. The evolution in time of the state
of a chemical system is consequence of chemical reactions.
In the stochastic formulation of chemical kinetics, chemi-
cal reactions are distinct, essentially instantaneous physi-
cal events involving two basic types. Unimolecular, written

S1

cj
→ Product(s), occurs as a result of processes internal to

a single molecule with kinetic parameter cj , and bimolecu-

lar, written S1 + S2

cj
→ Product(s) of two (distinct or not)

molecular species occurs as a result of a collision. Any re-
action Rj is characterized by two quantities. The first is
the state change vector νj ≡ (ν1j , · · · , νNj), where νij is
the change in the population of Si, caused by Rj . In other
words, if the system is in state x and one Rj reaction oc-
curs, the system immediately jumps to state x + νj . The

second quantity is the propensity function aj , also written
aj(x), which is defined so that aj(x)dt gives the probability
that the reaction Rj will occur in the next infinitesimal time
interval [t, t + dt).

2.1 Stochastic Simulation Algorithm: DM
To simulate a system exist two historical approaches: the

deterministic approach and the stochastic approach. The de-
terministic approach regards the time evolution of X(t) as
a continuous and wholly predictable process, the value of
the ith Xi(t) can be computed by set up and solve a set of
coupled, first order, ordinary differential equations, called
Reaction Rate Equations. In macroscopic systems, with a
large number of interacting molecules, the randomness of
this behavior averages out so that the overall macroscopic
state of the system becomes highly predictable. It is this
property of large scale random systems that enables a de-
terministic approach to be adopted; however, the validity of
this assumption becomes strained in conditions as we exam-
ine small-scale cellular reaction environments with limited
reactant populations. The stochastic approach of chemical
kinetics is simply a consequence of taking seriously the fact
that reactions in a system of molecules in thermal equilib-
rium occur in an essentially random manner. It regards the
time evolution of a system as a kind of random-walk process
which is governed by the Chemical Master Equation. As
we already mentioned, the difficulties to handle the CME
enabled the more simple strategy of advance the state evo-
lution through single realizations. Now we survey the core
of this method.
SSA moves the system forward in time by determining when
will the next reaction occur and what reaction it will be. In
the DM formulation the time τ is an exponential random
variable with mean (and standard deviation) 1/a0, where

a0(x) =
∑M

j=1 aj(x), whereas, the index j is a statistically
independent integer random variable with point probabili-
ties aj/a0. Formally, DM defines the probability at time t
that the next reaction in the considered volume V will oc-
cur in the infinitesimal time interval (t + τ, t + τ + dτ), and
this reaction will be Rj . It denotes this probability with the
following P (τ, j | x(t))dτ .

P (τ, j | x(t))dτ = aj(x)e−a0(x)τdτ (1)

As pointed out in [16], one way to generates a pair from Eq. 1
is to draw two independent uniformly distributed random
samples r1and r2 in the unit interval U(0, 1), taking

τ =
1

a0(x)
ln

(1

r1

)

(2)

and

j = the smallest integer such that

j
∑

j′=1

aj′(x) > r2a0(x).

(3)
Giving M reactions and kinetic constants, N species, one
initial state X(t0) and a stop time TIME, DM generates
one possible random evolution of the state performing the
elementary steps summarized in Algorithm 1. The algorith-
mic time complexity of DM is computed and analyzed as
following. The costs are:

1. Caj
, to compute M propensity functions aj ,

2. Ca0
, to sum M propensity aj and obtain a0,

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8665
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8665

Algorithm 1 Direct Method

while t < TIME do
for j=1 to M do

Compute aj(x)
end for
Compute a0

Generates r1 and r2 in U(0, 1) and generate values for
τ and j according to Eq. 2 and Eq. 3
t← t + τ ; x← x + νj ;
print (t,x)

end while

3. C2r, to generate the two uniformly distributed random
numbers r1 and r2,

4. Cτ , to find the next occurring time τ ,

5. Cj , to find the next reaction to fire,

6. Cupdate, to update the system state and the simulation
time.

To simplify we assume that multiplication, division, sum,
comparison, assignment and random number generation have
the same unitary cost. So the costly operation within a sin-
gle step are [5]:

1. Caj
of order of magnitude Θ(M),

2. Ca0
of order of magnitude Θ(M),

3. Cj of order of magnitude O(M).

According to the preceding costs and orders of magnitude,
Eq. 4 summarizes the asymptotic time complexity for DM.

TDM (M, N, n) = (Caj
+ Ca0

+ C2r + Cτ + Cj + Cupdate)n

= Θ((M + M + 1 + 1 + M + 1)n)

= Θ(Mn),

(4)

where n is the number of steps of the simulation.

2.2 Modified τ-leaping and Efficient τ Formula
The idea of the τ -leaping is that the simulation can be

divided into contiguous subintervals, or leap. Substantial
speed up can be achieved if many reactions can fire into a
leap and if the leap computation can be done expeditiously
[13]. The key constructs of the τ -leaping are the Leap Condi-

tion and the Leap Approximation. Suppose that the system
is in state x at time t, the leap condition states the exis-
tence of a time value τ ′, such that, during the time interval
[t, t + τ ′], every propensity function remains approximately
constant to the value aj(x) at time t. The first leap con-
dition formulation [13] required that, for every reaction Rj ,
the absolute fractional change ∆aj(x)/aj(x) during the leap
never exceeded a user-defined tolerance parameter ε � 1.
Mathematically it is written as follows.

| aj(x(t+τ ′))−aj(x(t)) |≤ max{εaj(x(t)), 1} j = 1, · · · , M.
(5)

The tolerance parameter ε determines the efficiency and the
result accuracy of a τ -leaping method based on the preced-
ing leap condition. Indeed, if we reduce the value of ε, we
admit fewer changes in the propensity functions. This means

shorter leaps, higher simulation time, but also greater accu-
racy. The Leap Approximation, instead, approximates the
number of times a given reaction Rj fires during the leap
as the Poisson distributed random variable Pj(ajτ

′). Ac-
cording to Pj(ajτ

′), a τ -leaping method generates a random
sample kj for each reaction Rj . So the state of the system
at time t + τ ′ can be obtained from x at time t by apply-
ing the formula X(t + τ ′) = x +

∑M

j=1 νjkj , where νj is

the state change vector. As the larger τ ′, the larger values
for Pj(ajτ

′) and kj , it is therefore important estimating the
largest τ ′ consistent with the leap condition. In literature
the procedure to select the largest τ ′ is named the τ -selection

procedure[13, 12]. One of the most accurate, easier to imple-
ment and fast to execute has been recently proposed by Cao
et. al in [3]. The underlying strategy of this procedure is to
bound the relative change in molecular populations in such
a way that the relative changes in the propensity functions
are all bounded by the value εaj . Cao et al. reformulated
the leap condition definition as follows.

| xi(t + τ ′)− xi(t) |≤ max{εixi(t), 1} i ∈ Irs. (6)

In Eq. 6 Irs denotes the set of indices of the species par-
ticipating as reactant to at least one reaction, whereas, the
values εi are selected to approximatively bound by ε the rel-
ative changes in all the propensity functions [3]. This means
that the leap condition formulation in Eq. 6 implies that re-
viewed in Eq. 5.
Unfortunately, using the above procedure, sometimes the se-
lected τ ′ can induce too large changes and the population of
some reactant with few molecules can become negative. The
analysis of the phenomenon revealed that negative popula-
tion arise for two main reasons. Being the Poisson distribu-
tion unbounded, a sample kj generated in the leap approx-
imation can exceed the maximum number of times that Rj

can fire before consuming one of its reactants. Than since
each propensity function change gets estimated separately,
two reactions sharing a common reactant, acting together
may overdraw that reactant [24, 8, 1, 22]. To deal with
negative populations, some methods substitutes the Pois-
son distribution with a bounded one, such as a Binomial or
a Multinomial distribution [22, 8, 22]. These methods se-
lect the maximum number of firings of Rj permitted during
the leap, and they force the next state changes to remain
bounded according those Lj ’s. Some issues pointed out in
[1] for the binomial τ -leaping methods have been resolved in
[1] proposing the Modified τ -leaping (MTL). MTL became
one of the most known and efficient method, for this reason
it is one of the focus of this paper. Below we survey it in
detail.
MTL introduced the integer value Lj(x), that denotes the
maximum number of times a reaction Rj can fire before ex-
hausting one of its reactants. Lj(x) is function of the state
x and the state change vector νj , as we recall in Eq. 7.

Lj(x) = min
i∈Irs

[xi

| νij |

]

. (7)

Given a new user-defined parameter, named nc, MTL splits
the reaction set into two sets: the critical set Jc and the non
critical Jnc. It puts a reaction Rj in Jc if Lj(x) < nc or in
Jnc if Lj(x) > nc. The division allows to MTL to handle
differently the critical and the non critical reactions. The
non critical reaction set Jnc serves to generate the largest
τ ′ consistent with leap condition in Eq. 6 according to the

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8665
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8665

Formula 8.

τ ′ = min
i∈Irs

{ max{εxi/gi, 1}

|
∑

j∈Jnc
νijaj(x) |

,
max{εxi/gi, 1}

2

∑

j∈Jnc
ν2

ijaj(x)

}

(8)

MTL shifts to DM for a number q of steps if τ ′ is smaller than
p 1

a0(x)
, where q and p are two others user-defined parame-

ters and 1/a0(x) is the mean waiting time for the next firing
reaction. The critical set Jc is managed differently. MTL
imposes that at most one critical reaction can occur during
the leap. It first determines the occurrence of the next crit-
ical reaction τ ′′ and then it compares the times t + τ ′′ and
t + τ ′. If t + τ ′′ < t + τ ′ then MTL reduces the leap time
assigning τ ′ = τ ′′, then it selects the next critical reaction
jc setting kjc = 1 and kj = 0 for all j ∈ Jc/jc. For all
j ∈ Jnc it generates the samples kj according to Pj(ajτ

′).
If t + τ ′′ > t + τ ′ MTL sets kj = 0 for all j ∈ Jc and it
generates kj = Pj(ajτ

′) for all j ∈ Jnc.
Schematically, giving M reactions and kinetic constants, N
species, one initial state X(t0) and a stop time TIME, four
user-defined parameter nc, ε, q and p, MTL performs the el-
ementary steps in Algorithm 2. Below, we analyze the algo-
rithmic time complexity of MTL. The costs are:

1. Caj
and Ca0

, the same costs seen for DM,

2. CL, involves both the costs for the computation of the
M quantity Lj and to split the reaction set,

3. Cτ ′ , the cost for τ -selection formula Eq. 8,

4. CDM , the cost to execute q DM steps,

5. Cτ ′′ , the cost to compute the firing time of the next
critical reaction,

6. Cτ ′<τ ′′ , the cost to compute the leap approximation
in case no critical reactions fires during the leap,

7. Cτ ′≥τ ′′ , the cost to compute the leap approximation
in case the next critical reaction fires during the leap,

8. Cneg and Cupdate, respectively, the cost of the N checks
to find eventual negative populations and the cost to
apply the formula xi ← xi +

∑M

j=1 νijkj and t← t+τ .

The above costs have the following order of magnitude.

1. Caj
and Ca0

are Θ(M).

2. CL is Θ(M) because Lj must be computed M times,
and for each reaction it performs at least one division
and one comparison to decide if it is critical or not.

3. Cτ ′ is Θ(N + M). The τ -selection formula finds the
minimum among N tentative leap times, that is one
for each species in Irs, this is O(N). Then as the max-
imum number of multiplications of each propensity aj

in
∑

j∈Jnc
νijaj(x) or

∑

j∈Jnc
ν2

ijaj(x) of Eq. 8 is at
most equal to the number of the reactants of Rj , Eq. 8
needs at most Θ(M) propensity multiplications. This
is Θ(M).

4. CDM is Θ(Mq).

5. Cτ ′′ is O(M) because for | Jc |= M the firing time of
the next critical reaction requires to sum at most M
propensities for a0c.

Algorithm 2 Modified τ -leaping

while t < TIME do
for j=1 to M do

Compute aj(x)
end for
Compute a0

for j=1 to M do
Compute Lj according to Eq. 7
if Lj < nc then

Jc ← Jc ∪ j
else

Jnc ← Jnc ∪ j
end if

end for
if Jnc 6= {} then

Compute τ ′ according to Eq. 8
else

τ ′ ←∞
end if
repeat

if τ ′ < (p · 1
a0

) then
temp← t
Execute q DM steps

else
if Jc 6= {} then

Compute τ ′′ = 1
a0c(x)

ln
(

1
r1

)

else
τ ′′ =∞

end if
if τ ′ < τ ′′ then

for all j ∈ Jc do
kj ← 0

end for
for all j ∈ Jnc do

kj ← Pj(ajτ
′);

end for
else

τ ′ ← τ ′′

jc ← j′ such that
∑

j′∈Jc
aj′(x) > r2

∑

j∈Jc
aj

kjc ← 1
for all j ∈ Jc/jc do

kj ← 0
end for
for all j ∈ Jnc do

kj ← Pj(ajτ
′);

end for
end if
temp← t
t← t + τ
xi ← xi +

∑M

j=1 νijkj

for j from 1 to N do
if xi < 0 then

xi ← xi −
∑M

j=1 νijkj

t← t− τ ;
τ ′ = τ ′/2

end if
end for

end if
until t = temp
print (t,x)

end while

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8665
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8665

6. Cτ ′<τ ′′ and Cτ ′≥τ ′′ are ΘM . They are mutually exclu-
sive, and both compute M values kj ’s. To simplify we
assume that the Poisson random number generation is
O(1).

7. Cneg and Cupdate are O(N) and Θ(M) because MTL
checks at most N values of the state to find negative
populations and it computes at most M unitary oper-
ations, one for each kj , respectively.

For readability, in Eq. 9 we group together some of the above
costs and we named the group CTLEAP .

CTLEAP = Cτ ′′ + max{Cτ ′<τ ′′ , Cτ ′≥τ ′′}+ Cneg + Cupdate

(9)
Now, considering the orders of magnitude introduced above
and assuming that M and N are of the same magnitude,
we obtain the time complexity in Eq. 10. The values n′,
n′′ and n′′′ denote the number of shifts to DM during the
simulation, the number of leap and the number of reactions
fired in all the shifts to DM, respectively. Eq. 10 summarizes
the time complexity for MTL.

TMTL(M, N, n′, n′′) = (Caj
+ Ca0

+ CL + Cτ ′)(n′ + n′′)+

(CDMn′ + CTLEAP n′′) = Θ(M((q + 1)n′ + 2n′′))

= Θ(M(n′′′ + n′′))

= Θ(Mn′′′ + Mn′′).

(10)

In Eq. 10 Mn′′′ regards the part of complexity of the shifts to
DM, whereas Mn′′ regards the part of the τ -leaping. As the
efficiency of MTL depends very much by the sum n′′′ + n′,
we compare MTL and DM according to distinct values of
n′′′ + n′. If the sum n′′′ + n′ is of order of magnitude of n,
the time complexity for MTL is Θ(Mn), and MTL and DM
coincide. Instead, if n′′′ + n′ is of order of magnitude n

M
,

it results that TMTL(M, N, n′, n′′) = Θ(n) < TDM(M, N, n)
and this means that asymptotically MTL performs better
than DM.

3. OUR PROPOSAL: SSALEAPING (SSAL)
As already mentioned in Sec. 1 and confirmed by the anal-

ysis in the previous section, substantial gain in simulation
speed can be achieved by MTL if each leap fires many re-
actions and few shifts occur (i.e. the n′′ and n′′′ are small).
Apart the optimistic case, it can happen that n′′ and n′′′

are not so small. In other words, MTL can frequently shifts
to DM, continuing to perform some of the extra operations
identified with the costs CL, Cτ ′ , Cτ ′≥τ ′′ , Cneg and Cupdate.
When frequent shifts to DM occur, the burden introduced
by these extra operations can slow down the performance.
This can lead MTL to be slower than DM as well. In par-
ticular, when M and N are large. The minimum number
of reactions to fire in a leap that guarantee a good speed
up of MTL with respect to DM is fixed by the parameter
p. However, this parameter is an heuristic and an arbitrary
constant. To deal efficiently with the bad cases described
above we propose a new method, that we call SSALeaping

or SSAL for short. The idea of SSAL is very simple. SSAL
generates values for τ and j according to Eq. 2 and Eq. 3,
then it updates the system state X(t) according to the state
change vector νj and it checks if the changes in some popu-
lation breaks down the leap condition in Eq. 6. If it is the

case, SSAL recomputes all propensities and a0, otherwise,
for the next generation of the values τ and j it reuses the
same aj and a0. The extra cost payed for the verification of
the leap condition is small compared to the extra costs seen
for MTL. The verification also allows to builds leap adap-
tively, and it makes impossible that some species population
becomes negative. To do that the property used by SSAL is
described in the next subsection.

3.1 No Negative Populations
We consider a reaction Rj and we solve the inequality
| aj(x + νj′)− aj(x) |> εaj(x), that is, if the leap condition
for Rj is violated. To consider the most general case we
identify the maximum state change that a propensity func-
tion aj(x) can undergo when a reaction Rj′ fires. Below we
list all possible representative cases for Rj with their relative
maximum changes.
The first case is when Rj is the unimolecular reaction Rj :

S1

cj
→ Product(s). For the unimolecular reaction the maxi-

mum change of the propensity aj(x) happens for ν1j′ = −2.

| aj(x + νj′)− aj(x) | > εaj(x)

| (x1 − 2)cj − x1cj | > εx1cj

2 > εx1

2

ε
> x1

(11)

Here, the leap condition of Rj can be violated when x1 <
2/ε.

The second case is for the bimolecular reaction Rj : 2S1
cj
→

Products. In this case, the maximum change of the propen-
sity for Rj happens for ν1j′ = −2 and we have the following
inequality.

| aj(x + νj′)− aj(x) | > εaj(x)

|
(x1 − 2)(x1 − 3)

2
cj −

x1(x1 − 1)

2
cj | > ε

x1(x1 − 1)

2
cj

| (x1 − 2)(x1 − 3)− x1(x1 − 1) | > εx1(x1 − 1)

| −4x1 + 6 | > εx1(x1 − 1)

The absolute value | −4x1 + 6 | has two distinct cases. If
−4x1 + 6 ≥ 0 we resolve in the following way.

| −4x1 + 6 | > εx1(x1 − 1)

−4x1 + 6 > εx1(x1 − 1)

εx2
1 − (ε− 4)x1 − 6 < 0

x1 < 2.

(12)

The leap condition of Rj can be violated when x1 < 2.
Instead, if −4x1 + 6 < 0 we treat it as follows.

| −4x1 + 6 | > εx1(x1 − 1)

4x1 − 6 > εx1(x1 − 1)

εx2
1 − (ε + 4)x1 + 6 < 0

2 ≤ x1 <
(ε + 4) +

√

((ε + 4)2 − 24ε)

(2ε)

(13)

Finally, consider Rj : S1 + S2
cj
→ Products, we have two

interesting state change cases: ν1j′ = −2, ν2j′ = 0 and
ν1j′ = −1, ν2j′ = −1. In the first case the result is the

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8665
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8665

following.

| aj(x + νj′)− aj(x) | > εaj(x)

| (x1 − 2)x2cj − x1x2cj | > εx1x2cj

| −2x2 | > εx1x2

2

ε
> x1.

(14)

Instead, the second case results as follows.

| aj(x + νj′)− aj(x) | > εaj(x)

| (x1 − 1)(x2 − 1)cj − x1x2cj | > εx1x2cj

| −x1 − x2 + 1 | > εx1x2

The absolute value | −x1 − x2 + 1 | has two distinct cases.
If −x1 − x2 + 1 < 0 we resolve in the following way.

| −x1 − x2 + 1 | > εx1x2

x1 + x2 − 1 > εx1x2

εx1x2 − x1 − x2 + 1 < 0

x1(εx2−1) < x2 − 1

x1 <
x2 − 1

(εx2 − 1)

(15)

Instead, if −x1 − x2 + 1 ≥ 0 we treat it as follows.

| −x1 − x2 + 1 | > εx1x2

−x1 − x2 + 1 > εx1x2

x1(εx2 + 1)− x1) < −x2 − 1

x1 = 0

x2 = 0

(16)

Next we give one numerical example to show how to use the
bounds defined above.
Suppose to have ε = 0.03, a unimolecular reaction Rj : S1

cj
→

Product(s) and x1 = 10. Assume that a reaction Rj′ fires
and ν1j′ = −1. Than if we check the leap condition on Rj ,
we obtain the following result.

| aj(x + νj′)− aj(x) | ≤ εaj(x)

| (x1 − 1)cj − x1cj | ≤ εx1cj

| (9− 10 | ≤ 0.03 ∗ 10

1 ≤ 0.3

Now 1 ≤ 0.3 is false, so the leap condition for Rj is violated,
but as we expect x1 = 10 < 66 = 2/ε. Similar examples can
be provided for any reaction.
Summarizing, Formulas 11-16 give the thresholds under which
any state change, involving a population xi, violates the leap
condition of some reaction of which the species Si is reac-
tant.
In addition an important observation about those thresholds
is the following. The leap condition is violated frequently,
when species with small populations are involved in fast re-
actions. In those cases, fast reactions occur frequently and
their firing violates the leap condition many times because
they change the population of species with few molecules. In
literature exist some discussions about the worst case con-
ditions for τ -leaping methods. Cao et al. [9, 4] stated that
τ -leaping methods still have difficulty in effectively handling
the situation when multiple time and population scale co-
exist, particularly when a species with a small population is
involved in a fast reaction. Harris et al. [18] say that small

reaction subnetworks (e.g. reversible reactions) that have
small populations and large rate constants are the main bot-
tlenecks for explicit leaping algorithms. In summary, small
numbers and stiffness are considered the conditions causing
worst cases.
This broadly accepted conclusions are undoubtedly true, but
the Formulas 11-16 tell us more. They confirm numerically
the above discussions providing also numerical thresholds
under which a population lays into what is often named
small number population.

3.2 Optimizations and Comparisons
SSAL uses some algorithmic optimization that we sum-

marize below. The first is on the leap condition. We re-
formulate the leap condition by substituting εixi to value
max{εixi, 1} in Formula 6 yielding

| xi(t + τ ′)− xi(t) |≤ εixi(t) i ∈ Irs. (17)

Here, Irs is the set of species of the system that act as re-
actant at least in one reaction. Additionally, we introduce
the constraint that if the leap condition of a given reaction
is violated after the firing of a reaction Rj′ , SSAL aborts
the current leap maintaining Rj′ the last fired reaction. In
this way, any leap fires at least one reaction. This makes
Formulas 6 and 17 equivalent.
The second optimization increases efficiency in the selection
of the reaction to fire. This optimization is the core of the
Logarithm Direct Method (LDM) [20]. LDM accumulates
the partial sums of the propensities and it stores them in
an array A. The ordered sequence of partial sums enable
a binary search that finds the position j such that subtotal
satisfies A[j] < a0r2 < A[j + 1].
Our algorithm depicted in Alg. 3 takes as inputs M reactions
and kinetic constants, N species, one initial state X(t0), a
stop time TIME and a tolerance parameter ε. Given a re-
action Rj , we define the set Reactants(Rj) as the indices
i ∈ {1, · · · , N} such that νij < 0 and the set Products(Rj)
as the indices i ∈ {1, · · · , N} such that νij > 0. We also
define the set ((Reactants(Rj)∪Products(Rj))∩ Irs), that
is the set of reactants or products species of the reaction Rj

that are also reactants of at least one reaction.
Now, as we did for DM and MTL we provide the algorith-

mic time complexity and the asymptotic analysis of SSAL.
The costs of a single step are:

1. Caj
, Ca0

, C2r, Cτ ,Cupdate, the same of DM

2. Ccopy, the cost to make a copy of the state X(t).

3. Cj , the cost for the binary search,

4. CLeap, the cost to verify the leap condition in For-
mula 17.

The costs are of the following order of magnitude.

1. Caj
, Ca0

, C2r, Cτ ,Cupdate are the same as for DM.

2. Ccopy is Θ(N) because the state has N elements.

3. Cj is Θ(log2 M).

4. CLeap is O(1) because checking the leap condition in-
volves few arithmetic operations for each reactant and
product of the fired reaction. Each reaction involves
at most four species.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8665
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8665

Algorithm 3 SSALeaping

while t < TIME do
Compute a1(x)
for j=2 to M do

Compute aj(x)
A[j]← A[j − 1] + aj(x)

end for
a0 ← A[M − 1]
Store a copy of x(t)
OK ← true
τ ′ ← 0
while t + τ ′ < TIME and OK = true do

Generate r1 and r2 in U(0, 1) and generate values for
τ according to Eq. 2. Through binary search find j
according to Eq. 3.
x(t + τ ′ + τ)← x(t + τ ′) + νj ;
τ ′ ← τ ′ + τ ;
for all i ∈ ((Reactants(Rj) ∪ Products(Rj)) ∩ Irs)
do

if | xi(t + τ ′)− xi(t) |> εixi(t) then
OK ← false

end if
end for

end while
t← t + τ ′

print (t,x)
end while

For SSAL, a leap is a time interval between two consecutive
violations of the leap condition. A leap involves one or more
steps. Because for each step, SSAL pays the costs C2r, Cτ ,
Cj , Cupdate and CLeap, whereas, for each leap, SSAL pays
the costs Caj

, Ca0
and Ccopy, we denote the number of steps

with n and the number of leap with k. Eq. 18 summarizes
the asymptotic time complexity for SSAL.

TSSAL(M, N, n) = (Caj
+ Ca0

+ Ccopy)k + (C2r + Cτ + Cj+

+ Cupdate + CLeap)n

= Θ((M + M + N)k + (log(M) + 1)n)

= Θ(Mk + log(M)n).

(18)

Now we are able to compare the complexity of SSAL with
the complexity given for DM and MTL.
In the worst case k = Θ(n), the complexity of SSAL and
DM coincide. If we consider n′′′ + n′′ = Θ(n), the complex-
ity of SSAL and MTL coincide. Without loss of generality,
suppose that k and n′′ are of the same order of magnitude.
In this case, theoretically SSAL performs better than MTL

if it holds the inequality n′′′ > log(M)n
M

. Whereas MTL per-
forms better than SSAL otherwise. In other words, SSAL
performs better than MTL if the number of reactions fired

by MTL when it shifts to DM exceeds the bound log(M)n
M

.

4. NUMERICAL EXPERIMENTS
The asymptotic analysis estimates theoretical information

about efficiency, costly operations and relations among those
operations and simulation parameters. However, to give a
more pragmatic comparison of SSAL, MTL and DM we in-
vestigated how efficiency changes in practice. We provided
experimental tests that consider different model parameters

taken from realistic biological models. Our tests are made
upon the Decaying-Dimerizing, Map Kinase Cascade and
LacZ/LacY models, which span from four up to hundreds
of reactions. In the LacZ/LacY model the cell volume is
assumed to grow in time. The population of two species are
randomly determined from two Normal random variables,
and the mean values of these variables grow together with
the volume of the cell. To the best of our knowledge, existing
toolkits that implement MTL (i.e. Stochkit), even though
extensible, they do not allow to specify those model features
yet. For this reason, we realized our C language implementa-
tions of DM, MTL and SSAL and we used those implemen-
tations to simulate LacZ/LacY and the others models. All
experiments run on a WINDOWS XP personal computer
with a 3.0 GHz CPU and 1 Gbyte memory. For each ex-
periment, we collected the final states of a selected species
taken from 1000 independent simulations. We estimate the
accuracy of the results by computing first the histogram and
the Kolmogorov distances [7] between 1000 samples of DM
and MTL or SSAL. Then we compare those distance values
with the so called self distance [7], interpreting the compar-
ison as follows. The closer to the self distance a distance
value is, the more accurate the method who has generated
that samples will be. We performed the mean and variance
of the histogram and Kolmogorov self distances according
to the formulas given in [7]. The mean and variance for
the histogram self distance are 0.079 and 0.49 respectively.
Whereas for the Kolmogorov self distance are 0.0389 and
0.00136 respectively.
Then in order to cover the most large possible range of cases
and parameters, we repeated experiment considering dif-
ferent ε values. For each test we take the values for: (ε),
CPU Time (CPUTimeSSAL/MTL), number of reactions
fired per leap for SSAL and for MTL (m′/m′′), histogram
distance (HDSSAL/HDMTL) and Kolmogorov distance
(KDSSAL/KDMTL). Whereas, only for MTL, we con-
sider: (ε), the number of MTL shifts to DM (n′), the number
of leap and reaction fired (n′′′ + n′′), the number of execu-
tions of the branch (τ ′ < τ ′′), the number of executions of
the branch (τ ′′ < τ ′).

4.1 Decaying-Dimerizing Model
This first test model is taken from [12]. It consists of three

species S1, S2 and S3 (N=3) and four reactions (M=4). A
monomer S1 reversibly dimerises to an unstable form S2,
which can convert to a stable form S3. We simulate the
model using the following stochastic coefficients: c1 = 1.0,
c2 = 0.002, c3 = 0.5 and c4 = 0.04 and the initial state
X(t0) = (x1 = 4150, x2 = 39565, x3 = 3445). We set upped
also stop time TIME = 10, nc = 10, q = 100 and p = 10.
To run 1000 independent simulations, DM required 43.625
seconds. Table 1 and Table 2 summarize the results for
SSAL and MTL. Table 1 shows that m′ is greater than m′′

for small values of ε. In particular for ε = 0.004. As we
can see, SSAL fired m′ = 18.53 reactions, whereas MTL
only m′′ = 3.65. It can be also noted from Table 2 that,
for small ε values, MTL computes a lot of shifts. Being
log(M)n

M
= 279036

2
= 139138 and n′′′ ≈ n′ ∗ q, we have that

n′′′ > log(M)n
M

for any value ε ≤ 0.001. Although theoreti-

cally for n′′′ > log(M)n
M

SSAL ought to perform better than
MTL, for this specific biological model, the CPU time of
MTL results always smaller than the CPU time of SSAL

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8665
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8665

Table 1: Results comparison between SSAL and MTL for 1000 independent simulations for the Decaying-
Dimerizing reactions. Accuracy have been taken for the values X0(10.0).

ε CPUT ime SSAL/MTL m′/m′′ HDSSAL/HDMTL KDSSAL/KDMTL
0.0 58.75/51.26 1.0/1.0 0.518/0.544 0.035 / 0.04

0.001 59.9/51.29 1.5/1.0 0.518 / 0.542 0.029 / 0.035
0.004 44.3/43.87 18.53/3.65 0.56 / 0.502 0.046 / 0.028
0.01 42.37/9.32 91.87/78.29 0.494 / 0.54 0.037 / 0.025
0.03 43.39/1.2 698.36/699.57 0.482 / 0.558 0.05 / 0.047
0.06 43.48/0.37 2247.2/2258.4 0.56/ 0.594 0.077 / 0.114
0.1 42.6/0.2 4231.3/4107.6 0.646/0.78 0.103 / 0.191

(CPUTimeSSAL > CPUTimeMTL), as we can see in Ta-
ble 1. This happens because the model involves only four
reactions, so it takes the same time to SSAL to compute
and sum M = 4 propensity functions and to verify the leap
condition. For the same reason, the CPU time of SSAL and
DM almost coincide for ε > 0.004.
Apart for ε = 0.1, the histogram and Kolmogorov distances
are very close to the histogram and Kolmogorov self dis-
tances provided.

Table 2: MTL statistics for the Decaying-Dimerizing
reactions for 1000 independent run.

ε n′′′ + n′′ n′ tau1 < tau2 tau2 < tau1
0.0 279036.8 2790.85 0 0

0.001 279000.0 2790.5 0 0
0.004 76264.4 613.69 14943.8 0
0.01 3564.1 0.21 2562.8 0
0.03 399.2 0.027 399.1 0
0.06 123.1 0.011 123.83 0
0.1 68.39 0.003 68.37 0

4.2 Map Kinase Cascade Model
Recently Chatterjee et. al [6] applied their Binomial τ -

leaping method to the signaling pathway of epidermal growth
factor (EGF) receptor (EGFR) activated mitogen activated
protein (MAP) kinase cascade. EGFRs belong to the recep-
tor tyrosine kinase (RTK) family of receptors and play an
important role in many physiological processes among which
cell proliferation. This biological model involves 106 species
and 296 reactions. The reaction set, initial amount and ki-
netic coefficients have been taken from the web site http://

www.dion.che.udel.edu/multiscale/software.html. Ad-
dditionally, we set upped stop time TIME = 0.1, nc = 10,
q = 100 and p = 10. To run 1000 independent simulations,
DM required 209.53 seconds. Table 3 and 4 summarize the
results for SSAL and MTL. Table 3 shows that m′ is greater

than m′′ for ε ≤ 0.01. Then being log(M)n
M

= 8.2∗60237
296

=

1668.7 and n′′′ ≈ n′ ∗ q, we have n′′′ > log(M)n
M

for ε ≤ 0.01.

Although theoretically when n′′′ < log(M)n
M

MTL ought to
perform better than SSAL, Table 3 shows that SSAL per-
forms better than MTL in that range as well. This happens
because the extra costs of MTL requires substantial compu-
tational extra time for M = 296 and N = 106. In Table 4
this has a peak in correspondence of ε = 0.001. SSAL is
almost one order of magnitude faster. Here, MTL executes
tau1 < tau2 = 3515.7 times the τ -leaping branch, but the
number of reaction fired in each of these leap is very small.
This means that MTL computes τ ′ for M = 296, but un-

fortunately often the leap fires only one reaction. This case
is a realistic example of the impact of the extra operations
of MTL in the simulation time. Again the accuracy is very
close to the self distances both for SSAL and MTL.

Table 4: MTL statistics for the Map Kinase Cascade
reactions for 1000 independent run.

ε n′′′ + n′′ n′ tau1 < tau2 tau2 < tau1
0.0 60237 608.9 0 0

0.001 22266.1 189.87 3515.7 0.82
0.004 10742.3 88.58 2018.6 1.94
0.01 3725.3 22.24 1435.6 136.86
0.03 853.3 0.65 625.3 223.5
0.06 588.4 0.63 362.3 221.8
0.1 465.2 0.65 269.12 224.49

4.3 LacZ/LacY Model
This model was first introduced by Kierzek et al. in [19]

but we consider the model reviewed in [22]. It consists of
23 species (N=23) and 22 reactions (M=22), details and
kinetic parameters can be found in those references. In this
model the cell volume is assumed to grow in time according
to the formula V (t) = V0(1 + t/Tgen). The initial cell vol-
ume is V0 = 10−15 liter and Tgen = 2100 seconds. Than the
population of the two species RNAP and Ribosome are ran-
domly determined from the two Normal random variables
N(35 ∗ (1 + t/2100), 3.5) and N(350 ∗ (1 + t/2100), 35). The
mean values of these variables grow together with the vol-
ume of the cell so that the concentrations of these molecules
remain constant [24]. We simulate this system in the time
interval [300 − 330] because test in [0-300] takes too much
time. In fact, 1000 independent simulations of DM required
4840 seconds and n = 6.409324e6 . For this reason, we sim-
ulated DM in the interval [0,300], we have taken the state
of the simulation at time t = 300 and we used it as ini-
tial state for the SSAL and MTL simulations. MTL used
the parameters: nc = 10, q = 100 and p = 10. For this
model 1000 independent simulations of DM in the interval
[300-330] required 2053.1 seconds. Table 5 and Table 6 sum-
marize the results for SSAL and MTL. Table 5 shows that
the number of reaction fired m′ is greater than m′′ for each
value ε. In particular, for ε = 0.03 the number of reactions
fired in a leap for SSAL averages at m′ = 10.75, instead, for
MTL it is m′′ = 1.056. For the LacZ/LacY model, we have
log(M)n

M
= 4.45∗2877222

22
= 581983.5 and n′′′ ≈ n′ ∗q. Whereas

it results that n′′′ > log(M)n
M

for ε ≤ 0.03. Again CPU times
show that SSAL performs better than MTL for any value
ε in the table. In particular, SSAL is four times faster for

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8665
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8665

Table 3: Results comparison between SSAL and MTL for 1000 independent simulations for the Map Kinase
Cascade reactions. Accuracy have been taken for the values X2(0.1).

ε CPUT ime SSAL/MTL m′/m′′ HDSSAL/HDMTL KDSSAL/KDMTL
0.0 219.7 / 274.9 1.0 /1.0 0.476 / 0.462 0.04 / 0.049

0.001 45.77 / 434.0 6.37 /2.7 0.472 / 0.454 0.029 / 0.033
0.004 30.64 / 242.3 12.3 /5.6 0.48 /0.466 0.022 / 0.03
0.01 20.7 / 175.32 27.89 /16.67 0.454 / 0.478 0.043 / 0.021
0.03 16.29 / 88.5 59.68 /70.59 0.45 / 0.452 0.037 / 0.046
0.06 15.5 / 64.98 85.18 /102.38 0.522 / 0.518 0.049 / 0.041
0.1 14.59 / 52.48 106.1 /129.5 0.486 / 0.528 0.038 / 0.058

Table 5: Results comparison between SSAL and MTL for 1000 independent simulations for the LacZ/LacY
reactions. Accuracy have been taken for the values Xtrrbslacy(330).

ε CPUT ime SSAL/MTL m′/m′′ HDSSAL/HDMTL KDSSAL/KDMTL
0.0 1962.5/2546.8 1.0/1.0 0.36/0.28 0.03/0.21

0.001 1500.0/2534.0 1.5/1.0 0.35/0.34 0.023/0.026
0.004 1545.7/2555.9 1.58/1.0 0.362/0.358 0.034/0.024
0.01 1550.2/2503.8 1.5/1.0 0.36/0.358 0.024/0.022
0.03 670.9/2768.1 10.75/1.056 0.362/0.358 0.039/0.057
0.06 573.4/1809 33.29/28.05 0.372/0.37 0.038/0.026
0.1 546.9/682.4 77.28/76.15 0.402/0.378 0.026/0.028

ε = 0.03. Accuracy of the results in Table 5 are very similar
for SSAL and MTL. Table 6 shows that for small ε MTL

Table 6: MTL statistics for the LacZ/LacY reactions
for 1000 independent run.

ε n′′′ + n′′ n′ tau1 < tau2 tau2 < tau1
0.0 2877222 28772.6 0 0

0.001 2871591 28716.3 0 0
0.004 2880443 28736.8 0 0
0.01 2723601 28738.6 0 0
0.03 2724048 27064 14621.7 125.4
0.06 102529.3 10.8 99298.2 2405.4
0.1 37771 0.097 35386.5 2409.7

shifts to DM, while in the other cases the simulation turns
into the branches tau1 < tau2 and tau2 < tau1. We omit
the negative population branch in all the tables because no
negative populations occurred for the parameters chosen for
the models.
Now, we conclude by providing in Table 7 and Table 8 the
speed-up of SSAL against DM and MTL respectively. The
speed-up is taken by dividing the CPU Time of a method for
the CPU Time of SSAL. Table 7 shows that, apart for some
ε in the Decaying-Dimerizing model, SSAL performs bet-
ter than DM. While Table 8 confirms that SSAL performs
better than MTL in the non trivial cases.

Table 7: Speed-up between SSAL and DM.
ε Decay −Dimer MapKinase LacZ/LacY

0.0 0.74 0.953 1.046
0.001 0.73 4.577 1.368
0.004 0.98 6.838 1.328
0.01 1.029 10.122 1.324
0.03 1.005 12.86 3.06
0.06 1.003 13.518 3.58
0.1 1.024 14.361 3.75

Table 8: Speed-up between SSAL and MTL.
ε Decay −Dimer MapKinase LacZ/LacY

0.0 0.872 1.251 1.297
0.001 0.856 9.482 1.68
0.004 0.99 7.907 1.65
0.01 0.219 8.469 1.615
0.03 0.027 5.432 4.125
0.06 0.008 4.192 3.154
0.1 0.004 3.596 1.247

5. CONCLUSIONS
We proposed SSAL, a new method which lays in the mid-

dle between the direct method (DM) and a τ -leaping. SSAL
adaptively builds leap and stepwise updates the system state.
Differently from MTL, SSAL neither shifts from τ -leaping to
DM nor pre-selects the time leap τ ′. Additionally whereas
MTL prevents negative populations taking apart critical and
non critical reactions, SSAL generates sequentially the reac-
tions to fire verifying the leap condition after each genera-
tion. We proved that a reaction overdraws one of its reac-
tants if and only if the leap condition is violated. Therefore,
this makes it impossible for the population to become neg-
atives, because SSAL stops the leap generation in advance.
In order to compare SSAL with existing methods, we focused
on the Modified τ -leaping (MTL) and the direct method
(DM). For them we provided the time complexity and a de-
tailed asymptotic analysis. These allowed to abstract from
many implementation details and model specifications, and
it highlights both the bottleneck operations and the specific
features of the model that make these methods inefficient.
We showed that in the worst case, the complexity of MTL
and SSAL reduce themselves to that of DM. Instead, SSAL
performs better than MTL if the number of reactions fired

sequentially by MTL exceeds the bound log(M)n
M

.
We also integrated the analysis with some numerical ex-
periments to test how the above methods work in practice.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8665
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8665

We run our implementations of SSAL, DM and MTL upon
the Decaying-Dimerizing, the Map Kinase Cascade and the
LacZ/LacY models. Results substantially agrees with the
theoretical analysis provided. They showed that for MAPK
and LacZ/LacY and for ε > 0 our SSAL implementation
performs better than the two implementations of MTL and

DM. Additionally, they highlighted that n′′′ > log(M)n
M

is the
main range emerged for two of the three realistic biological
models considered. In this range SSAL performs better than
MTL.
However, the biological models tested in our experiments
are not representative for all possible classes of models. For
instance, we have not provided experiments with biological
models in the class of stiff systems (systems with very fast
and stable reactions), for which very efficient methods exist.
In conclusion, results confirmed that SSAL is very promis-
ing to simulate realistic biological models even though, for
the future, further analysis, experiments and comparisons
are necessary to investigate as many as possible biological
cases and methods.

6. REFERENCES
[1] Y. Cao, D. T. Gillespie, and L. R. Petzold. Avoiding

negative populations in explicit poisson tau-leaping. J.

Chem. Phys., 123:4104, August 2005.

[2] Y. Cao, D. T. Gillespie, and L. R. Petzold. The
slow-scale stochastic simulation algorithm. J Chem

Phys, 122(1), January 2005.

[3] Y. Cao, D. T. Gillespie, and L. R. Petzold. Efficient
step size selection for the tau-leaping simulation
method. J Chem Phys, 124(4), January 2006.

[4] Yang Cao, Daniel T. Gillespie, and Linda R. Petzold.
Adaptive explicit-implicit tau-leaping method with
automatic tau selection. The Journal of Chemical

Physics, 126(22), 2007.

[5] Y. Cao, H. Li, and L. Petzold. Efficient formulation of
the stochastic simulation algorithm for chemically
reacting systems. J Chem Phys, 121(9):4059–4067,
September 2004.

[6] A. Chatterjee, K. Mayawala, J. S. Edwards, and D. G.
Vlachos. Time accelerated Monte Carlo simulations of
biological networks using the binomial tau-leap
method. Bioinformatics, 21(9):2136–2137, 2005.

[7] Y. Cao and L. Petzold. Accuracy limitations and the
measurement of errors in the stochastic simulation of
chemically reacting systems. Journal of Computational

Physics, 212(1):6–24, 2006.

[8] A. Chatterjee, D. G. Vlachos, and M. A. Katsoulakis.
Binomial distribution based tau-leap accelerated
stochastic simulation. J Chem Phys, 122(2), January
2005.

[9] Y. Cao and L. Petzold. Slow-scale tau-leaping method.
Computer Methods in Applied Mechanics and

Engineering, 197(43-44):3472–3479, 2008.

[10] Cristian Dittamo and Davide Cangelosi. Optimized
parallel implementation of Gillespie’s First Reaction
Method on graphics processing units. Computer

Modeling and Simulation, International Conference on,
0:156–161, 2009.

[11] Michael A. Gibson and Jehoshua Bruck. Efficient
exact stochastic simulation of chemical systems with
many species and many channels. J. Phys. Chem. A,

104:1876–1889, 2000.

[12] D. T. Gillespie and L. R. Petzold. Improved leap-size
selection for accelerated stochastic simulation. J. Chem.

Phys., 119:8229–8234, October 2003.

[13] D. T. Gillespie. Approximate accelerated stochastic
simulation of chemically reacting systems. Journal of

Chemical Physics, 115(4):1716–1733, 2001.

[14] Daniel T. Gillespie. Stochastic simulation of chemical
kinetics. Annual Review of Physical Chemistry,
58(1):35–55, 2007. PMID: 17037977.

[15] D. Gillespie. Formal Methods for Computational

Systems Biology, volume 5016/2008, chapter Simulation
Methods in Systems Biology, pages 125–167. Springer
Berlin / Heidelberg, May 2008.

[16] Daniel T. Gillespie. A general method for numerically
simulating the stochastic time evolution of coupled
chemical reactions. Journal of Computational Physics,
22(4):403–434, December 1976.

[17] D. T. Gillespie. Exact stochastic simulation of coupled
chemical reactions. The Journal of Physical Chemistry,
81(25):2340–2361, 1977.

[18] L. A. Harris, A. M. Piccirilli, E. R. Majusiak, and
P. Clancy. Quantifying stochastic effects in biochemical
reaction networks using partitioned leaping. Physical

Review E, 79:051906, 2009.

[19] A. M. Kierzek, J. Zaim, and P. Zielenkiewicz. The
Effect of Transcription and Translation Initiation
Frequencies on the Stochastic Fluctuations in
Prokaryotic Gene Expression. Journal of Biological

Chemistry, 276(11):8165–8172, 2001.

[20] Hong Li and Linda Petzold. Logarithmic direct
method for discrete stochastic simulation of chemically
reacting systems. July 2006.

[21] James M. Mccollum, Gregory D. Peterson, Chris D.
Cox, Michael L. Simpson, and Nagiza F. Samatova.
The sorting direct method for stochastic simulation of
biochemical systems with varying reaction execution
behavior. Computational Biology and Chemistry,
30(1):39–49, February 2006.

[22] M. F. Pettigrew and H. Resat. Multinomial
tau-leaping method for stochastic kinetic simulations.
The Journal of Chemical Physics, 126(8):084101, 2007.

[23] Asawari Samant, Babatunde Ogunnaike, and Dionisios
Vlachos. A hybrid multiscale monte carlo algorithm
(hymsmc) to cope with disparity in time scales and
species populations in intracellular networks. BMC

Bioinformatics, 8(1):175, 2007.

[24] Tianhai Tian and Kevin Burrage. Binomial leap
methods for simulating stochastic chemical kinetics.
The Journal of Chemical Physics, 121(21):10356–10364,
2004.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8665
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8665

