
Towards a Taxonomy of Simulation Tools for

Wireless Sensor Networks
Wan Du, David Navarro, Fabien Mieyeville and Frédéric Gaffiot

Lyon Institute of Nanotechnology (INL), University of Lyon

UMR5270 - CNRS, Ecole Centrale de Lyon, Ecully, F-69134, France

(33) 04 72 18 63 98

{wan.du, david.navarro, fabien.mieyeville, frederic.gaffiot}@ec-lyon.fr

ABSTRACT
Many limitations (e.g. complexity, cost, scalability and capability)
make the analytical methods and physical testbeds improper to
evaluate the performances of wireless sensor networks (WSNs).
Simulations can provide a good approximation at lower cost and
in less time. Hence, a number of simulation tools for WSN have
been developed in the past few years. However, different tools
may emphasize on different features. For example, besides the
general network simulators, some SystemC-based simulators have
been developed recently in order to realize the hardware/software
(HW/SW) co-design of the node at the system-level that also takes
into account its network performances. So it is necessary to study
the existing WSN simulators and to distinguish their different
features. In this paper, we propose a taxonomy that categorizes the
existing simulation tools into four classes according to their
modeling methodologies and their target applications. In order to
prove that the proposed taxonomy is reasonable and
comprehensive, we use it to make a survey of the existing
simulation tools. This study is intended to be broad enough to
cover all the important existing simulation tools. The goal of this
paper is to analyze the WSN simulation tools and help the WSN
designers find an appropriate simulator.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development –
Modeling Methodologies

General Terms
Performance, Design, Experimentation

Keywords
Taxonomy, Wireless Sensor Networks, Simulation, Modeling

1. INTRODUCTION
Wireless sensor networks (WSNs) are normally ad-hoc networks
composed of resource-constrained sensor nodes that can
cooperatively monitor physical or environmental conditions, such
as temperature, sound and acceleration. WSNs have been

employed in a wide range of application domains, such as health-
related deployments, environment monitoring, industry and
military applications [4]. Three techniques have been used to
evaluate the performances of WSN systems: analytical methods
[26], physical testbeds [15] and simulation. However, many
constraints imposed on sensor networks, such as limited
resources, decentralized collaboration and fault tolerance,
necessitate the use of complex algorithms that usually make
analytical methods be impossible [3]. Additionally, although
using the physical testbeds is direct, such studies also suffer some
significant limitations, such as cost and scalability. It is costly and
troublesome to establish a testbed for a network with thousands of
nodes. And some tests may last too long to be repeated many
times. Moreover, the testbed is limited by the experiment
environment, and sometimes it is incapable of presenting a diverse
set of operational scenarios. However, simulation can overcome
these limitations mentioned above, and provide a good
approximation at lower cost and in less time. It also generally
provides an easy-to-use debugging environment and graphic user
interfaces. So, simulation has become a common way to evaluate
performances of WSN systems.

Lots of simulators for WSNs have been developed in the past few
years. But different simulators may be designed to accomplish
different target applications. For example, some are intended to
simulate the performance of communication protocols and some
may be designed to emulate the execution of the binary code. So it
is important to find out their similarities and differences. Based on
an elaborate study of WSN simulations and the existing
simulation tools, we proposed a classification scheme that
categorizes the existing simulation tools into four classes.
According to the taxonomy, a comprehensive study of the existing
simulation tools for WSN is made.

The rest of the paper is organized as follows. In the next section,
we study the requirements of the simulation for WSN. They are
used as metrics to evaluate the existing simulation tools. Section 3
presents a typical model of WSN system. Based on the analysis of
the former two sections, a taxonomy is proposed in Section 4. The
existing simulation tools are classified by using this taxonomy and
an elaborate analysis of them is made in section 5. Section 6
concludes this paper.

2. Requirements of WSN Simulation
WSN is a unique network in the following aspects: restricted
resources (memory, power, and processing ability), big quantity
of nodes, decentralized collaboration, multitasking, heterogeneity
and so on. These features make the development of the simulation
tools for WSN more challenging. By taking into account of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTools 2010 March 15–19, Torremolinos, Malaga, Spain.
Copyright 2010 ICST, ISBN 78-963-9799-87-5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8659
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8659

special characteristics of WSN and the requirements of different
WSN design fields (e.g. communication protocol design,
application design and node system design), we summarized the
following six key requirements that are important to a WSN
simulation framework:

1. Fidelity: The main purpose of the simulation is to model the
real-world system faithfully and predict the system’s
behavior. For WSN, it requires accurate models of the radio
channels, physical environment and node system. Inaccurate
simulation may lead to erroneous conclusions. For example,
an ideal battery model usually treats the battery as a
reservoir of energy from which the energy consumption can
be subtracted. However, this is not accurate as a real battery
that shows non-linear discharge behavior and recovery
effects. It is proved that the accuracy of battery models can
affect the route fluctuations and routing overheads [38].

2. Scalability: Because the nodes are often deployed in large
quantities in many WSN applications, the simulator shall
well support the scalability. The simulation time and
memory usage shall not augment too much as the number of
nodes increases.

3. Energy aware: Power consumption is especially critical for
sensor networks operating on limited power supply, such as
batteries or solar cells. Sensor network designers need to
obtain accurate power consumption and timing figures to
tune their applications before the deployment in real
environments [33]. Therefore, the simulator shall be able to
accurately capture the energy consumption and timing
information of the embedded software and radio
communication at the network level.

4. Extensibility: It shall be easy to modify the existing modules
or integrate some new ones. A careful structure with clean
interfaces and high modularity allows the users to easily add
or change functionality.

5. Heterogeneity Support: Many recently deployed WSN
systems are heterogeneous systems, incorporating a mixture
of elements with widely varying capabilities [14]. So,
modeling different kinds of nodes and managing the
interconnections among them are necessary in WSN
simulations.

6. Graphical user interface (GUI): A good GUI can facilitate
and speed the establishment of the network topology and the
composition of basic modules. It can also allow the quick
visualization of the simulation results. In addition, it
supports to trace and debug the simulation at real time. Non-
specialist users can get an easier control of the simulation by
using GUI.

There is always a tradeoff between fidelity and scalability [8].
Better fidelity involves more complex and detailed modeling.
However, the simulators need more time to deal with the additive
detail. The simulation time may become intolerable if the number
of nodes is very large in some WSN applications. So, the high
level abstraction is sometimes more suitable for implementing the
simulation with proper complexity and little running time, and
their results are detailed enough to answer the design questions at
the early stages of the design flow. For example, at the beginning
of a system design, the need to quickly explore a variety of
alternatives is more important than a detailed result for a specific
scenario. The challenge is to identify which level of detail does
not affect answers to the design questions at hand. In [38] [16],

the authors have explored this question. Many cases have been
studied.

In addition, many methods have been used to deal with the
scalability problem, e.g. component-based design and parallel
simulation. In a parallel simulator, the simulated components are
dispatched over several CPUs, where the sub-programs are
concurrently executed, and the simulation algorithm is responsible
for the synchronization.

3. A Typical Model of WSN System
WSN mainly involves three parts: node system, network and
physical environment. A typical model of WSN system is
presented in Figure 1. In this model, the node system is composed
by two parts: hardware and software. The hardware platform
consists of processing unit, radiofrequency transceiver, sensor and
battery. The software model includes operating system,
middleware, protocol stack, application software implementation
and so on. Nodes are connected with each other by the wireless
network model that holds the network topology and transfers
packets among nodes. It also implements many radiofrequency
channel models. The environment model specifies how the
physical parameters in the environment vary both in spatial and
temporal sense. Environment modeling of WSNs is still at the
beginning of development. A more detailed description of
environment modeling can be found in [23].

Figure 1. A Typical Model of WSN System

Since only few simulators have addressed environment modeling
well, our taxonomy will not treat it as a determinant. We mainly
focus on the node system and network modeling. Simulation has
been used in both node system and protocol designs to help the
designer easily evaluate their new designs. At the beginning, these
two aspects are addressed by different people with different
knowledge and tools. In the context of node system design, the
aim is to design the nodes’ hardware, to implement the software
running on the hardware and to co-simulate the hardware and
software (HW/SW) [13] [34]. In the context of protocol design,
the tools model the protocols, manage the concurrency among
different nodes, and simulate the throughput of the network. The
protocol designers often make simple assumptions to the behavior
of hardware and software, but this may be not detailed enough for
some applications. For example, timing information in instruction
granularity shall be considered to the fast routing lookups [6]. In
addition, it is better to compress the data by processing them in
local CPU rather than transmitting the raw data to the destination
node in some applications, since wireless communication is a
major energy consumer during the system operation [32].

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8659
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8659

Simulations shall be able to help the designer find a balance
between the wireless communication and the local processing.
Therefore, WSN simulations require designers to integrate the
node system and the network simulation together.

4. Taxonomy
A common way to evaluate the WSN system is to add node
models to the network simulators (e.g. NS-2 [22] and OMNeT++
[39]). There are two kinds of node model: node models
implemented by the network simulators and node emulators. Node
emulators refer to the instruction level simulators of the nodes’
microcontrollers with extensions of sensors, transceivers and other
peripherals models.

Besides adding node models to the network simulators, we can
also model the network in the node system design tools (e.g.
SCNSL [11]) or in the node emulator (e.g. Avrora [35]).
Therefore, the existing efforts in WSN evaluation can be divided
into four categories: network simulators with node models
(NSNM), network simulators with node emulators (NSNE), node
system simulator with network models (NSSNM) and node
emulators with network models (NENM).

NSNM emphasizes more on discrete event scheduling, the radio
medium, network modeling and perhaps the sleep duty cycles of
the sensor node. Network modeling is the predominate object.
Many node models implemented by NSNM are simple power and
estimated timing profiles.

NSNE integrates the advantages of both the network simulators
and node emulators. The network simulator provides the detailed
network model. The node emulator gives accurate timing
information of the software execution because they simulate the
system performance with instruction cycle granularity. But the
interconnection between the network simulator and node emulator
may takes much time.

In NSSNM, the node system is often modeled by the hardware
description languages at system level, such as SystemC [19].
NSSNM has a simulation kernel which supports modeling the
concurrency and synchronization among different hardware
components. The system level description language can also
model the software, which allows the HW/SW co-design and co-
simulation. It models the node hardware in different abstraction
level with different degrees of detail (e.g. system level, transaction
level and register transfer level). The level at which the simulation
is performed affects the level at which the software development
can occur and the execution efficiency of the simulator. A
simulator that simulates a particular sensor node platform at the
very low level enables the development of low level software such
as device drivers but at the price of longer simulation time.

The node emulators of NENM can be divided into two different
sets: instruction set simulators (ISS) for special microcontrollers
and emulators designed to emulate the execution of the
application code of an operating system (e.g. TinyOS [17], SOS
[18] and Contiki [5]). They can execute the application code
directly (or with minor modifications). Generally, the network
models in NSSNM or NENM provide less detail than the network
simulator, since the latter always includes lots of protocol
implementations and channel models.

Our taxonomy can be used by WSN designers to find a proper
simulation tool. To do that, first, WSN designers must decide

whether they emphasize particularly on communication protocol
design or node system design. The main features of these two
different designs have been presented in Section 3. Then, the
application or communication protocol must be carefully analyzed
to limit the level of detail in an appropriate rank. It is a
challenging work especially when entering a relatively unexplored
area. The results of existing simulation validations can help the
users to build an understanding of what details are important, such
as the case studies in [38] [16]. Based on the level of detail, the
developers must decide whether they need a system-level
simulator or an instruction-level emulator of nodes. Generally,
node simulators are always at the high level of abstraction with
limited accuracy and less simulation time. Emulators can emulate
the execution of the application software, which provides more
accurate timing information. Until now, the category of the
simulator has been chosen. The simulators within the same
category shall be evaluated according the requirements of WSN
simulation listed in section 2. They are compared in the aspect of
scalability, heterogeneity support, extensibility, radio propagation
models, power models, easy to use and others.

5. Survey
In this section, we will analyze the existing simulation tools
according to the taxonomy. The existing simulation tools are
divided to 4 classes. In each category, many simulators will be
studied to demonstrate their common features and differences.

5.1 NSNM
Lots of simulators have been designed in this category. We
mainly study some typical ones to illustrate the main
characteristics of this kind of simulators

NS-2 [22] is a discrete event, object-oriented, general purpose
network simulator. Simulations are written by C++ and OTcl
(Object-oriented Tcl) languages. In general, C++ is used for
implementing protocols and extending the NS-2 library. OTcl is
used to create and control the simulation environment. Its
extensibility has been a major contributor to its success, with
protocol implementations being widely produced and developed
by the research community. According to [20], it is the most used
simulator in Mobile Ad hoc NETwork (MANET) research.
Regarding WSN, it includes many ad-hoc and WSN specific
protocols [8]. An IEEE 802.15.4 model is developed in [45].
However, NS-2 does not scale well in terms of memory usage and
simulation time [24]. It also lacks detailed support to measure the
energy utilization of different hardware, software, and firmware
components of a WSN node [43]. SensorSim [27] is built on top
of an NS-2 802.11 network model. It models the sensor node in
two parts: software model (Function Model) and hardware model.
The power models of different hardware components have been
implemented. The state of the hardware model is changed based
on the function that is carried out by the software model. So, the
power consumption of the whole network can be simulated. In
addition, SensorSim can be interacted with real nodes. The use of
real sensor nodes can provide accurate and valid inputs to the
simulation instead of modeling the sensor channel that is not yet
well defined and understood. SensorSim also provide the
underlying network on which we can develop, test and evaluate
the SensorWare [1]. SensorWare is a middleware that allows easy,
efficient dynamic programmability for sensor network. The
execution environment in a sensor node is closely modeled in
SensorSim so that the SensorWare scripts can run on both the real

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8659
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8659

nodes as well as the simulated nodes. However, the CPU and
sensor device models have not been implemented and the
simulator is no longer in active development. Furthermore, IEEE
802.11 is designed for high speed connectivity and not optimized
for WSN.

OMNeT++ [39] is a component-based network simulator, with an
Eclipse-based IDE and a graphical runtime environment. The IDE
supports all stages of a simulation project: developing, building,
configuring, running simulation models and analysing results.
OMNeT++ consists of modules that communicate with message
passing. Simple modules implement the atomic behavior of a
model, e.g. a particular protocol. Multiple simple modules can be
linked together and form a compound module. OMNeT++
provides the infrastructure to assemble simulations from these
modules and configure them (NED language). OMNeT++ can be
extended easily by interfaces for real-time simulation, emulation,
parallel distributed simulation, SystemC integration and so on. As
OMNeT++ is becoming more popular, many contributions have
been added to it. The Mobility Framework (MF) [7] supports
simulations of wireless and mobile networks within
OMNeT++. MF includes an 802.11 model. It can be seen as the
first start point of the WSN modeling by OMNeT++. An IEEE
802.15.4 implementation by OMNeT++ can be found in [2].
PAWiS [43] is an OMNeT++ based WSN simulator. Its
architecture is similar to SensorSim. It can evaluate the power
consumption of WSN systems with many levels of accuracy
which can still be balanced with complexity. The model
programmer has to insert special framework requests to the CPU
module to simulate the execution time and power consumption.
These requests include the estimated execution time of the
firmware code on the CPU.

SENSE [3] is another component-based simulator developed by
C++. It models various network devices as a collection of static
components. Connections between each component are in the
format of in and out ports. Dynamic packets are created,
transmitted and received by components through the ports.
Through its component-based model, SENSE can be extended
easily. A new component can replace an old one if they have
compatible interfaces; inheritance is not required. SENSE also
supports the parallel simulation, which is provided as an option to
the users.

GloMoSim [44] is a parallel simulator for WSNs. GloMoSim
allows the users to select sequential or one of the 3 available
parallel synchronization algorithms (null message protocol,
conditional event protocol and accelerated null message protocol).
Once a parallel algorithm is selected, the analyst can additionally
indicate the mapping strategy and number of processors. Taking
advantage of parallel simulation, GloMoSim has been shown to
scale to 10 000 nodes [36]. QualNet [31] is a commercial
derivative of GloMoSim. It has extended GloMoSim to other
networks, such as satellite, cellular and sensor networks. ZigBee
protocol model is provided too.

Prowler [28] is an event-driven network simulator running in
Matlab environment. Benefits gained from Matlab environment
are easy prototyping of applications and GUI interface. Prowler is
capable of simulating the radio transmission, propagation and the
MAC-layer operation in ad hoc networks. The radio models are
based on specific signal strength calculations combined with
random errors. Prowler is well suited for protocol and algorithm

development. However, it does not have sensor node energy
modeling.

The main advantages of these simulators are that they usually
have a rich library of the radio modules and protocol
implementations. Many contributions to these tools are carried out
ceaselessly. For example, NS-2 is currently undergoing a major
redesign [42]. The performances in the aspects of scalability and
extensibility will be improved by its successor, NS-3. However,
the network simulator is dedicated to model the network. It may
be not the best way to model the node system since they are
normally incapable to model the concurrency within the node and
provide a direct path to HW/SW synthesis [11]. The energy
consumption is usually based on some assumptions or estimations
of the software execution, which is not as accurate as the node
emulator.

5.2 NSNE
Two main simulators have been developed in this category.
Heemin Park et al. [29] have developed a unified network and
node level simulation framework. They developed the Embedded
Systems Power Simulator (ESyPS) by integrating sensor and radio
modules into EMSIM [37]. EMSIM is an energy simulation
framework for embedded systems featuring in StrongARM
microprocessor and Linux OS. Then, they integrated the ESyPS
with SensorSim [27]. The framework can explore the interactions
between network level and node level.

Another example is sQualNet [40], which is a scalable and
extensible sensor network simulation framework built on top of
QualNet [31]. It uses QualNet as the network simulator and
provides the emulation of the SOS operating system [18].
sQualNet allows using the QualNet’s detailed models of channel,
propagation, mobility, etc. The user also can use the rich protocol
suite for other kinds of networks to model heterogeneous sensor
networks. sQualNet introduces a sensor stack parallel to the
networking stack and provides accurate simulation models for
various layers in the sensor and networking stack.

These two simulators integrate the advantages of both the network
simulators and node emulators. They provide accurate results
about the energy consumption of the whole network. However,
they are both constrained to particular hardware and operating
system. Moreover, interactions between the network simulator
and the node emulator have to be well maintained, which
increases the simulation time and impacts the scalability.

5.3 NSSNM
There are mainly two simulators in this kind. Kashif Virk et al.
[41] have developed a SystemC-based modeling framework for
WSN. It enables system-level modeling of sensor network
behaviors by modeling the applications, real-time operating
system, sensors, processor, and radiofrequency transceiver at the
node level and the signal propagation at the network level. But the
simulation result is simple. Only a MAC behavior (states of the
sending and receiving tasks) simulation result has been presented.

The SystemC Network Simulation Library (SCNSL) [11] is a
Networked Embedded Systems simulator, written in SystemC and
C++. Because SystemC is a C++ class library, it has the advantage
that the hardware, software, and network can be modeled with a
same language. SCNSL contains three modules: node, node-proxy
and network. The network module is written in C++. The node-
proxy and the node modules are written in SystemC. The node-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8659
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8659

proxy can access the network instance. It is the interface between
the nodes and the network. By using Node-Proxy, nodes can be
designed as pure SystemC modules without object references to
other non-SystemC classes; this approach enables the use of all
the advantages of SystemC in HW/SW co-design, verification and
the design flow. There are two limitations of that library. One is
that only an IEEE 802.15.4 non-beacon model communication
protocol has been implemented. The other is that important
network simulation results are not given in [11].

These simulators usually model WSN at the system level, so they
scale well. New hardware and software modules can be easily
added to the existing library. However, the simulation results only
can be used to the system level design, and no GUI has been
provided by these two simulators.

5.4 NENM
Two kinds of node emulator, operating system emulator and
instruction set simulator, are studied separately in this section.
One special simulator providing the both features will be
presented too.

TOSSIM [21] and PowerTOSSIM [33] are two emulators
designed to emulate the execution of TinyOS [17]. Software
development for WSN can be simplified by using these emulators.
They permit developing algorithms, studying system behaviors
and observing interactions among the nodes in a controlled
environment. The application code of TinyOS can be compiled to
the simulation framework by only replacing a few low-level
TinyOS components that deal with hardware. TOSSIM can
capture the behavior of the network of thousands of TinyOS nodes
at bit granularity. TOSSIM allows developer to easily transition
between running an application on motes and in the simulation
environment. PowerTOSSIM is an extension to TOSSIM in
evaluation of the power consumption. The main problem with
such frameworks is that the user is tied to a single platform
(typically MICA motes) and a single programming language
(typically TinyOS/NesC) [43]. In addition, TOSSIM loses the
fine-grained timing and interrupt properties of the code that can be
important when the application runs on the hardware and interacts
with other nodes [35].

ATEMU [30] is an instruction-level cycle-accurate emulator for
WSN written in C. It simulates programs of each individual node
with accuracy down to the clock cycle. Its core is an ISS. Along
with support for the AVR processor, it also includes support for
other peripheral devices on the MICA2 sensor node platform,
such as the transceiver. ATEMU provides a GUI, called Xatdb,
which provides users a complete system for debugging and
monitoring the execution of their code. Avrora [35], written in
Java, improves the performance of ATEMU in the scalability
aspect. Avrora can scale to networks of up to 10000 nodes. Both
ATEMU and Avrora provide the highest behavioral and timing
accuracy of the WSN programs. Moreover, they are both language
and operating system independent. The main disadvantage of such
frameworks is that they only support systems based on
components that have already existed, e.g. memories and
processors, like MICA motes. Unfortunately they do not cover
systems containing new hardware blocks. And they are not
implemented by HW description languages, so they can not use
the typical HW design flow and verification tools.

Fummi, F. et al. [12] have developed an energy-aware simulator
by integrating an ISS of node’s microcontroller and a functional

SystemC model of the network module on SCNSL [11]. They
used the !Csim as the ISS for the Intel 8051 microcontroller of
the Texas Instruments CC2430–F128 chip. Using ISS makes it
possible to run the exact binary embedded software on the
simulated hardware platform. The SystemC kernel is modified to
communicate with the ISS through inter-process communication
primitives (e.g. a socket or shared memory). Instruction cycle
level node emulator can provide more accurate information of the
software than the node model does. But it is slow because it deals
with much detail at the cycle-accurate level, and the inter-process
communication between ISS and the SystemC kernel takes much
time.

COOJA [25] is a Java-based simulator that provides both the
operating system emulation and the instruction set emulation in a
single framework. The Contiki operating system [5] can be
compiled to the simulation framework. It executes native code by
making Java Native Interface (JNI) calls from the Java
environment to a compiled Contiki system. MSPSim [9] is used as
the instruction set simulator in the COOJA. MSPSim is also
written in Java. It supports the Texas Instruments MSP430
microcontroller and includes some hardware peripherals such as
sensor, communication ports, LEDs, and sound devices. Recently,
the COOJA/MSPSim platform [10] has been extended to support
the TinyOS, so the interoperability testing of nodes with different
operating systems is realized.

The main advantage of using such tools is that the code used for
emulation can also run on the real node with no or minor
modifications, which reduces the effort to rewrite the code. And
they often provide detailed information about resource utilization.
The main problems are that they are always constrained to certain
hardware platforms or operating systems, and it is difficult for
them to support heterogeneous networks. They can not scale as
well as the node system models at system level.

6. Conclusion
In this paper, the particular requirements of the WSN simulation
were studied. A typical WSN system model was presented. Based
on these, a taxonomy of WSN simulations was proposed, and a
survey of the existing simulation tools for WSN was made
according to the taxonomy. Most of the significant existing
simulation tools with relatively widespread uses have been
studied. We believe that the survey is broad enough to prove that
almost all the simulation tools for WSN can be divided into one of
the four categories in our classification scheme. This paper can be
used by WSN designers to find an appropriate simulator to their
special requirements.

7. REFERENCES
[1] Boulis, A., Han, C. C., Shea, R., and Srivastava, M. B. 2007.

SensorWare: Programming sensor networks beyond code
update and querying. Pervasive and Mobile Computing
(Aug. 2007), 386-412.

[2] Chen, F., Wang, N., German, R., and Dressler, F. 2008.
Performance Evaluation of IEEE 802.15.4 LR-WPAN for
Industrial Applications. In Proceedings of the 5th IEEE/IFIP
Conference on Wireless On demand Network Systems and
Services (Garmisch-Partenkirchen, Germany, January 2008).
89-96.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8659
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8659

[3] Chen, G., Branch, J., Pflug, M. J., Zhu, L., and Szymanski,
B. 2004. SENSE: A Wireless Sensor Network Simulator.
Advances in Pervasive Computing & Networking (2004),
249-267.

[4] Diana B., Miguel G., Jaime L., and Petre D. 2009. Real
Deployments of Wireless Sensor Networks. In Proceedings
of the 3rd International Conference on Sensor Technologies
and Applications (Athens/Glyfada, Greece, June 18-23,
2009), 415-423.

[5] Dunkels, A., Gronvall, B., and Voigt, T. 2007. Contiki – a
lightweight and flexible operating system for tiny networked
sensors. In Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks
(Washington, DC, USA, 2007), 455-462.

[6] Degermark, M., Brodnik, A., Carlsson, S., and Pink, S. 1997.
Small forwarding tables for fast routing lookups. In
Proceedings of the ACM SIGCOMM Conference (Cannes,
France, September 1997), 3–14.

[7] Drytkiewicz, W., Sroka, S., Handziski, V., Koepke, A., and
Karl, H. 2003. A mobility framework for OMNeT++. In
Proceedings of the 3rd International OMNeT++ Workshop
(Budapest, Hungary, 2003).

[8] Egea-López, E., Vales-Alonso, J., Martínez-Sala, A., Pavón-
Marñio, P., and García-Haro, J. 2005. Simulation tools for
wireless sensor networks. In Proceedings of the International
Symposium on Performance Evaluation of Computer and
Telecommunication Systems (Philadelphia, Pa, USA, 2005).

[9] Eriksson, J., Dunkels, A., Finne, N., Österlind, F., Voigt, T.
and Tsiftes, N. 2008. Demo abstract: MSPsim - an extensible
simulator for MSP430-equipped sensor boards. In
Proceedings of the 5th European Conference on Wireless
Sensor Networks (Bologna, Italy, 2008).

[10] Eriksson, J., Österlind, F., Finne, N., Tsiftes, N., Dunkels, A.,
Voigt, T., Sauter, R., and Marrón, P. J. COOJA/MSPSim:
Interoperability Testing for Wireless Sensor Networks. In
Proceedings of the 2nd International Conference on
Simulation Tools and Techniques (Rome, Italy, 2009).

[11] Fummi, F., Quaglia, D., and Stefanni, F. 2008. A SystemC-
based Framework for Modeling and Simulation of
Networked Embedded Systems, In Proceedings of the Forum
on Specification and Design Languages (Stuttgart, Germany,
2008), 49-54.

[12] Fummi, F., Perbellini, G., Quaglia, D., and Acquaviva. A.
2009. Flexible energy-aware simulation of heterogeneous
wireless sensor networks. Design, Automation & Test in
Europe (2009), 1638–1643.

[13] Fummi, F., Loghi, M., Perbellini, G., and Poncino, M.,
SystemC co-simulation for core-based embedded systems,
Design Automation For Embedded Systems (2007), vol. 11,
141-166.

[14] Girod, L., Stathopoulos, T., Ramanathan, N., Elson,
J., Osterweil, E., Schoellhammer, T., and Estrin, D. 2004. A
system for simulation, emulation, and deployment of
heterogeneous sensor networks. In Proceedings of the 2nd
International Conference on Embedded Networked Sensor
Systems (Baltimore, USA, 2004), 201–213.

[15] Handziski, V., Köpke, A., Willig, A., and Wolisz, A. 2006.
TWIST: A Scalable and Reconfigurable Testbed for Wireless
Indoor Experiments with Sensor Networks. In Proceedings of
the 2nd International Symposium on Mobile Ad Hoc
Networking and Computing (Florence, Italy, 2006), 63-70.

[16] Heidemann, J., Bulusu, N., Elson, J., Intanagonwiwat, C.,
Lan, K., Xu, Y., Ye, W., Estrin, D., and Govindan, R. 2001.
Effects of detail in wireless network simulation. In
Proceedings of the SCS Multiconference on Distributed
Simulation (Jan. 2001). 3-11

[17] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D. and
Pister, K. 2000. System architecture directions for networked
sensors. ACM SIGPLAN Notices, v.35 n.11, p.93-104, Nov.
2000. [doi>10.1145/356989.356998]

[18] Han, C. C., Kumar, R., Shea, R., Kohler, E., and Srivastava,
M. 2005. A dynamic operating system for sensor nodes. In
Proceedings of the 3rd international conference on Mobile
systems, applications, and services (New York, NY, USA,
2005). 163-176.

[19] IEEE Std 1666 - 2005 IEEE Standard SystemC Language
Reference Manual. IEEE Std 1666-2005, pages 1–423, 2006.

[20] Kurkowski, S., Camp, T., and Colagrosso, M. 2005. MANET
simulation studies: the incredibles. Mobile Computing and
Communications Review (2005), vol. 9, no. 4, 50–61.

[21] Levis, P., Lee, N., Welsh, M., and Culler, D. 2003. Tossim:
Accurate and scalable simulation of entire tinyos
applications. In Proceedings of the ACM Conference on
Embedded Networked Sensor Systems (New York, NY,
USA, 2003), 126-137.

[22] McCanne, S., and Floyd, S., “Network simulator NS-2”,
http://ww.isi.edu/nsnam/ns.

[23] Merrett, G. V., White, N., Harris, N., and Al-Hashimi, B.
2009. Energy-Aware Simulation for Wireless Sensor
Networks. In Proceedings of the 6th Annual IEEE
Communications Society Conference on Sensor, Mesh and
Ad Hoc Communications and Networks (Rome, Italy, June
2009).

[24] Naoumov, V., and Gross, T. 2003. Simulation of large ad hoc
networks. In Proceedings of the 6th ACM International
Workshop on Modeling Analysis and Simulation of Wireless
and Mobile Systems (San Diego, Calif, USA, September
2003), 50–57.

[25] Österlind, F., Dunkels, A., Eriksson, J., Finne, N. and Voigt,
T. 2006. Cross-level sensor network simulation with
COOJA. In Proceedings of the 1st IEEE International
Workshop on Practical Issues in Building Sensor Network
Applications (Tampa, Florida, USA, 2006).

[26] Prasad, V., and Son, S. H. 2007. Classification of Analysis
Techniques for Wireless Sensor Networks. In Proceedings of
the 4th International Conference Networked Sensing Systems
(Braunschweig , Germany, 2007), 93-97.

[27] Park, S., Savvides, A., and Srivastava, M. B. 2000.
SensorSim: A Simulation Framework for Sensor Networks.
In Proceedings of the 3rd ACM international workshop on
Modeling, analysis and simulation of wireless and mobile
systems (New York, USA, 2000), 104-111.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8659
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8659

[28] Prowler network simulator, Available from:
http://www.isis.vanderbilt.edu/Projects/nest/prowler, visited
at September 20. 2009.

[29] Park, H., Liao, W., Tam, K. H., Srivastava, M. B., and He, L.
2003. A unified network and node level simulation
framework for wireless sensor networks. Technical Report.
University of California, Los Angeles

[30] Polley, J., Blazakis, D., McGee, J., Rusk, D., Baras, J. S., and
Karir, M. 2004. Atemu: A fine-grained sensor network
simulator. In Proceedings of the 1st Annual IEEE
Communications Society Conference on Sensor and Ad Hoc
Communications and Networks (Santa Clara, CA, USA,
2004), 145-152.

[31] QualNet, http://www.scalable-networks.com/, visited at
September 20. 2009.

[32] Raghunathan, V., Schurgers, C., Park, S., and Srivastava,
M.B. 2002. Energy-Aware Wireless Microsensor Networks,
IEEE Signal Processing Magazine (March 2002), vol.19,
no.2, 40-50.

[33] Shnayder, V., Hempstead, M., Chen, B., Allen, G. W., and
Welsh, M. 2004. Simulating the power consumption of large
scale sensor network applications. In Proceedings of the 2nd
International Conference on Embedded Networked Sensor
Systems (Baltimore, USA, 2004), 188–200.

[34] Semeria, L., and Ghosh, A. 2000. Methodology for Hardware
/ Software Co-verification in C/C++. In Proceedings of the
IEEE Asian and South Pacific Design Automation
Conference (Yokohama, Japan, 2000), 405–408.

[35] Titzer, B. L., Lee, D. K., and Palsberg, J. 2005. Avrora:
Scalable sensor network simulation with precise timing. In
Proceedings of the 4th international symposium on
Information processing in sensor networks (Los Angeles,
California, USA, 2005), 477-482.

[36] Takai, M., Bagrodia, R., Tang, K., and Gerla, M. 2001.
Efficient Wireless Networks Simulations with Detailed
Propagations Models. Wireless Networks (2001), 297–305.

[37] Tan, T. K., Raghunathan, A., and Jha, N. K. 2002. EMSIM:
an energy simulation framework for an embedded operating
system. In Proceedings of the IEEE International Symposium

on Circuits and Systems (Phoenix-Scottsdale, AZ, USA,
2002), volume 2, 464-467.

[38] Varshney, M., and Bagrodia, R. 2004. Detailed models for
sensor network simulations and their impact on network
performance. In Proceedings of the 7th ACM international
symposium on Modeling, analysis and simulation of wireless
and mobile systems (Venice, Italy, 2004), 70-77.

[39] Varga, A. 2001. The OMNeT++ discrete event simulation
system. In Proceedings of the 15th European Simulation
Multiconference (Prague, Czech Republic, 2001). 319–324.

[40] Varshney, M., Xu, D. F., Srivastava, M. B., and Bagrodia, R.
L. 2007. sQualNet: An Accurate and Scalable Evaluation
Framework for Sensor Networks. In Proceedings of the
International Conference on Information Processing in
Sensor Networks (Cambridge, Massachusetts, April 25-27,
2007).

[41] Virk, K. Hansen, K. and Madsen, J. 2005. System-level
Modeling of Wireless Integrated Sensor Networks. In
Proceedings of the International Symposium on System-on-
Chip (Tampere, Finland, 2005), 179-182.

[42] Weingartner, E., vom Lehn, H., and Wehrle, K. 2009. A
performance comparison of recent network simulators. In
Proceedings of the IEEE International Conference on
Communications (Dresden, Germany, 2009), 1-5.

[43] Weber, D., Glaser, J., and Mahlknecht, S. 2007. Discrete
Event Simulation Framework for Power Aware Wireless
Sensor Networks. In Proceedings of the 5th International
Conference on Industrial Informatics (Vienna, Austria,
2007), 335-340.

[44] Zeng, X., Bagrodia, R., and Gerla, M. 1998. GloMoSim: a
Library for Parallel Simulation of Large-scale Wireless
Networks, In Proceedings of the Workshop on Parallel and
Distributed Simulation (Banff, Alberta, Canada, 1998), 154-
161.

[45] Zheng, J., and Lee, M. J. 2006. A comprehensive
performance study of IEEE 802.15.4. Sensor Network
Operations. IEEE Press, Wiley Interscience, Chapter 4, 218-
237.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8659
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8659

