
A New Event-Driven Network Simulator for Delay-Tolerant
Networks (DTNs)

Euiyul Ko
Dept. of Computer Science
Korea Advanced Institute of

Science and Technology
Daejeon, South Korea

key@cnlab.kaist.ac.kr

Hanjin Park
Dept. of Computer Science
Korea Advanced Institute of

Science and Technology
Daejeon, South Korea

hjpark@cnlab.kaist.ac.kr

Ikjun Yeom
Information & Communication

Eng.
Sungkyunkwan University

Suwon, South Korea
ikjun@skku.edu

ABSTRACT

As wireless networking technologies have evolved, wireless
networks are deployed in wider areas. In some of them, end-
to-end paths may not be guaranteed due to high mobility
or low density of network nodes. Delay/Disruption Toler-
ant Networks (DTNs) or Intermittently Connected Networks
(ICNs) are proposed to handle packet delivery in those net-
works. In DTNs, network simulation may play a critical role
for developing new technologies since it is very expensive
and time-consuming to perform real experiments. In this
paper, we present a new simulation tool for DTNs. This
tool is developed with an event-driven manner to accommo-
date discrete events in packet delivery processes in DTNs,
and also it is highly flexible and easily extensible for devel-
oping new protocols. We validate the tool with well-known
mathematical models of DTNs.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
simulations

General Terms

Network simulation

Keywords

Delay/Disruption Tolerant Network, Event-driven simula-
tor, Simulator validation

1. INTRODUCTION
With the increasing use of wireless mobile devices, Mobile

Ad-hoc Networks (MANETs) have been studied actively in a
last decade. Unlike traditional infrastructure-based TCP/IP
network environments, a MANET is a network formed with
a set of mobile nodes without pre-configured infrastructure.
In a MANET, each mobile node participates to organize a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2010 March 15–19, Torremolinos, Malaga, Spain.
Copyright 2010 ICST, ISBN 78-963-9799-87-5.

network as a router or an end user by relaying/forwarding
packets. The main assumption of traditional networks is
that there always exists a fully connected path among nodes
to communicate between a source and a destination. In
other words, there should exist at least one contemporary
fully connected path between end users to delivery packets.
Some subsets of a MANET, however, cannot satisfy this as-
sumption, for example, a network with high mobility of mo-
bile nodes, low density of mobile nodes, frequently partition-
ing, or high bit error rate. In order to overcome this char-
acteristic, a new type of network called as Delay/Disruption
Tolerant Network (DTN) or Intermittently Connected Net-
work (ICN) [8] has been suggested.

Real experiments, for capturing the state or behavior of
DTN, are very difficult because of difficulties of implemen-
tation in physical test-bed and construction of experiment
environments. Experiments, moreover, can be affected by
other unconsidered factors, which lead to wrong conclusion.
Because simulations can abstract behaviors of DTN protocol
and simplify characteristics of them, simulations are useful
tools to analyze behaviors of DTN protocols and to help to
concentrate specific measures that are interested in origi-
nally.

There are two time advance approaches in simulation: a)
time-driven simulator; and b) event-driven simulator. The
former, a time-driven approach, advances time with a fixed
interval ∆t for continuous systems. After ∆t, the simulator
updates the state variables. It is the most widely known ap-
proach in simulations of natural world. ONE1 (Opportunis-
tic Networking Environment) simulator [11] is a well known
DTN simulator based on a time-driven approach. The lat-
ter, a event-driven approach, advances time with the next-
event time. Polling the next event, a simulator processes
that event and it updates time to next event time. This ap-
proach is for the case of discrete systems. The DTNSim2 2

is a example based on an event-driven approach.
The event-driven approach has advantages compare with

the time-driven approach. The result of time-driven ap-
proach is very sensitive to a fixed interval ∆t. For capturing
all events, ∆t is the minimum time between two continuous
events. If ∆t is larger than the minimum time, the simulator
does not capture all events in [t, t+∆t], which can lead wrong
results. On the contrary, if ∆t is smaller than the minimum
time, the simulator capture every event in the discrete sys-
tem, but simulation performance, such as simulation time,

1http://www.netlab.tkk.fi/tutkimus/dtn/theone/
2http://watwire.uwaterloo.ca/DTN/sim/

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8650
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8650

resource usage, and so on, is down. In time-driven approach,
two events between ∆t are handled as events which start the
same time although they have different starting time. The
event-driven approach also has the advantage that periods
of inactivity can be skipped over by leaping the time from
the current event time to the next event time, which can
raise up simulation performance. Since the ONE simulator
is based on time-driven approach, it has mentioned weak-
nesses. The DTNSim2 has advantages because it is based
on event-driven approach. Since various mobility models,
however, was not implemented in it, it cannot test them.

In this paper, we describe our new simulator based on
event-driven approach. It is written by JAVA language. We
first make frameworks for easy extension of other protocols.
For processing events, first, event generation modules are
required. For simulation, we have defined three different
events, such as contact event, message creation event, and
transfer event. Generated events are processed in the sched-
uler. We have defined the scheduler which processes events
in order of time and manages event queue. Finally, we build
a mobile node which is constructed a node class (applica-
tion layer), a transport class (transport layer), and a routing
class (network layer). We did not develop MAC and PHY
layer since they does not critically affect DTN performance
and MAC and PHY layer may have an unpredictable effect
on results. These classes are based on frameworks, so new
protocols in transport or network layer can be easily imple-
mented by our or other researchers.

The rest of paper is organized as follow: In Section 2,
we summarize related works on DTN and simulations. We
describe our simulator detailed in Section 3. In Section 4,
we validate our simulator’s results compared with analytical
models, and describe our performance. In Section 5, more
works to do are described. Finally, we conclude this paper
with summary in Section 6.

2. RELATED WORKS
DTN has been actively researched for last several years.

There is a well-known research group for studying DTN pro-
tocols that is Delay Tolerant Networking Research Group
(DTNRG) [2]. In [2], a lot of researchers have proposed sev-
eral protocols for DTN. To evaluate performance of these
protocols, the real experiments are often difficult because
of difficulties of the implementation, cost for constructing
test-bed, and biased results by limited samples. Therefore,
simulations have been used for evaluating performance.
There are several simulation tools have been developed

so far to help to understand the underlying performance
of routing protocols in DTN, such as ONE [11], DTNSim2
[10], and so on. ONE written by JAVA language is easy
to simulate some scenarios, and provide many supporting
mobility models and routings with optional GUI interfaces.
Moreover, ONE system is updated frequently to improve its
quality and include new routing protocols for DTN.
ONE, however, have been developed by the time-driven

approach. Even though it is called itself as a discrete event
simulator and generates several events (e.g. message cre-
ation events, message transferred events, and so on), there is
a global clock, which is advanced time with a system config-
ured fixed interval ∆t, in it to capture the events. According
to the size of fixed interval ∆t, the simulator may generate
more precise results with very long computation times or in-
accurate results with reasonable computation times. There

is a trade-off relationship between efficiency and precision in
the time-driven simulator as it. General events are occurred
in DTN simulations, such as message creation events, con-
tact events between nodes, and message transfer events, are
not continuous time event but mainly discrete events. In
these discrete systems, the event-driven simulation approach
is more appropriate than the time-driven simulation.
DTNSim2 is a simulator written in JAVA language and

is developed several routings appeared in [10] paper, such
as First Contact (FC), Minimum Expected Delay (MED),
Earliest Delivery (ED), Earliest Delivery with Local Queue
(EDLQ), Earliest Delivery with All Queue (EDAQ), and
Linear Program (LP). It can be configured with simple scripts
with contact schedules and traffic parameters, is easy to ex-
ecute simulation, and was developed by the event-driven ap-
proach. It, however, was developed at 2006 and after that
time there is no updates/evolutions to improve its quality
or to fix bugs. Moreover, it lacks supporting various mo-
bility models and is only working properly in some limited
scenario examples.

There are also several simple simulators embedded in ns-
2 [1] simulator, which is the most popular network simu-
lating tool, to implement DTN routing, such as epidemic
routing simulator [14] and nsdtn-1 [3]. In [14], they imple-
mented only epidemic routing in ns-2 simulator. However,
the epidemic simulator was developed in very old ns-2 ver-
sion, 2.17b, and is working only limited scenarios. With
MAC and PHY modules in ns-2, the result of simulation
can be biased or affected by non-routing protocols. The
epidemic routing simulator, moreover, [14] is not working
properly in some scenario. In [3], the nsdtn-1 simulator was
developed with the fixed mobility model that is not appro-
priated in general DTN environments which are mainly fo-
cused with mixed end nodes between mobile users and fixed
infrastructures.
As discussed above, the existing simulators may give in-

accurate results in the time-driven approach case or may
not handle many mobility models or may lack extensibil-
ity to include more features. Our simulator has the follow-
ing strong points compared previous simulators: a) Provide
frameworks for easy extension with routing and mobility.
Each layer has been developed based on framework as a
class so that any researcher can easily implement the proto-
col to be used in the layer or exchange it, such as application
layer, transport layer, network layer; b) With event driven
approach, our simulator can generate the precise result with
reasonable computation time; and c) With excluding MAC
and PHY part, we can show the abstraction behavior of
routing and above layer protocols in DTN.

3. A NEW EVENT-DRIVEN SIMULATOR

FOR DTNS
The event-driven simulator progresses time with the next

event time. For these, all events should be generated before
simulation is started. The number of event type is three,
Contact event, Message Creation event, and Transfer event.
Contact event is generated when a node encounters another
node. Message creation event is produced by traffic gener-
ation. Transfer event is generated when practical transmis-
sion is occurred.
First, we have developed event generation functions, and

we have made frameworks for a simulator and new imple-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8650
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8650

Random waypoint

movement model

...

Mobility generator

End- to - end connectivity

generator

Contact event

generator
Scheduler

Traffic event

generator

Node class

Transport class

Routing class

Core of simulator

Node

Figure 1: Overview of the simulator

mented protocols. We have also developed basic features of
DTN and protocols in our simulator. The simulator first
generates all events, such as contact event, message creation
event, and transfer event, to be processed during a simula-
tion. The simulation scheduler processes events in order of
event execution time. The simulation states are updated at
every event executions.
The simulator consists of five main parts: a) mobility

generator; b) end-to-end connectivity generator; c) contact
event generator; d) traffic event generator; and e) core of
simulator, which includes the event scheduler and the node
agent. Mobility generator and end-to-end connectivity gen-
erator are independent of other parts. These parts and their
relations are shown in Figure 1.

Nodes’ movement is generated by mobility generator. Cur-
rently, we implement a random waypoint movement model.
An end-to-end connectivity generator makes connections be-
tween two nodes which are used in traffic generator. Contact
event generator creates contact events using results of mo-
bility generator. Message creation events are made by traffic
event generator. Currently, we implement CBR traffic with
fixed end-to-end connectivity, and random end-to-end con-
nectivity. Contact and message creation events are sched-
uled in the scheduler of core of simulator. A simulation is
performed with configuration files. In a configuration file,
we can choose a traffic pattern, scenario, and other settings.

In the rest of this section, we describe each part more
detailed and how to add new protocols or mobility models.

3.1 Mobility Generator
Mobility is important to simulate the protocol and eval-

uate its protocol performance in DTNs. Mobility models
characterize movement patterns of nodes. Currently, there
are some kinds of mobility models, for example, Random
Walk (RW) model, Random Waypoint (RWP) model, Ran-
dom Direction (RD) model, Brownian model, Random Gauss-
Markov model, and so on.

Our simulator includes nodes’ movement generator using
a mobility model. Currently, we have implemented RWP
model, which is popular mobility model while it have some
known defects. The result of generator is used a contact
event generator.

To add a new mobility model, you can easily implement
it as long as the result of implemented model is matched
to pre-implemented format. Our result format is formed as
Figure 2. A format is organized as follow: a) start time
when current move is started; b) end time when current
move is ended; c) the node index; d) speed on X axis in the
simulation world; e) an initial position on X axis; f) speed on
Y axis in the simulation world; and g) an initial position on
Y axis. This format is only applied if a path is the straight

Start
time

End time
of
node

Speed of
X axis

Start position
of X axis

Speed of
Y axis

Start position
of Y axis

Figure 2: Format of a result of mobility generator

line, but it is enough to process other mobility models.

3.2 Contact Event Generator
The contact event generator makes contact events based

on a result of mobility generator. Contact events consists of
two nodes, which meet each other, meeting start time, and
duration of meeting.

Finding a contact point in two nodes during [t1, t2] is
simple. Let two nodes’ path functions be fa(t) and fb(t)
in [t1, t2]. At time t in [t1, t2], a distance d(t) between

two nodes is
√

(fa(t)− fb(t))2. Checking whether d(t) is
smaller or bigger than a transmission range, we can deter-
mine whether a contact event in two nodes are occurred
during [t1, t2].

In the contact event generator, first, it makes all interval
through a mobility scenario, and it finds contacts between
nodes. If a contact is found, it generates a contact event and
pushes it into a scheduler.

3.2.1 Transfer Event

When two nodes meet each other, they try to transmis-
sions each other. If any node in two is already connected
another node except two, first two nodes do not transfer
their messages. Solving this problem, transfer events are
generated when a contact event is processed.

If two nodes do not transfer messages to other nodes, the
first transfer event is generated and pushed in a scheduler.
When this event is processed, a next transfer event between
these two nodes is generated until there is no transmitted
messages in two nodes.

Otherwise, which any node of two has another meeting
node, a transfer event is not generated until previous transfer
events is end. In this case, the contact event is postponed
until previous transfer events is end.

3.3 Traffic Event Generator
Messages are generated by the traffic event generator. We

have implement two message generators: a) CBR traffic with
fixed senders and receivers, and b) CBR traffic with random
senders and receivers. A CBR traffic with fixed sources and
destinations uses a result of the end-to-end connectivity gen-
erator. The reason why we use the end-to-end connectivity
generator is that the simulator must produce the same re-
sults if simulations do with the same environments. In a
CBR traffic with random senders and receivers, a sender
and a receiver of a message is determined when a message is
generated. All message generation events generated by the
traffic event generator are made at the start time of simula-
tion.
Adding new traffic patterns is not difficult. For adding

new traffic patterns, the new generator has to make inter-
vals and generate a message in each interval. Interval calcu-
lations depend on new traffic patterns, and you can easily
implement them.

3.4 The Core of Simulator
The core of simulator is consisted of a scheduler and a

node. A scheduler manages events, such as contact, transfer,

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8650
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8650

and message creation events. A node includes a node class
(application layer), a transport class (transport layer), and
a routing class (network layer).

A scheduler consists two queues, which one queue is for
contact and transfer events, and another queue is for mes-
sage creation, enqueue methods, and a scheduling method.
If all events are managed in one queue, simulation perfor-
mance is down at event generation time because events are
not made in sequence of time. Enqueue methods insert a
event to an queue at right position. A scheduling method
picks out a event in queues and processes it.

A node is the basic agent in the simulator. At processing
a simulation, a set of nodes is created and manages all data
used by a simulation. A node consists of a node class (appli-
cation layer), a transport class (transport layer), and a rout-
ing class (network layer). We do not implement MAC and
PHY layers. While these two layers are important in legacy
network schemes, such as wired, wireless, and ad-hoc net-
works, they are less influential in DTNs since competitions
among nodes are not often compared with legacy networks.

A node class represents an application layer program. In
this class, it stores messages of which a destination is itself,
the number of created and received messages, and delay of
messages. Messages, which created in a node class, are sent
to its transport class. Received messages are stored in its
buffer. Delay of messages is calculated when a message or
copy is reached in a node class.

A transport class is a basic class of transport layer pro-
tocols, such as UDP, TCP, and so on. While transport
layer protocols are very important parts in legacy networks,
they are not paid attention because end-to-end connections
managed by transport layer protocols are not guaranteed in
DTNs. Currently, we only implement an UDP, and it only
forwards messages from a node class to a routing class.

A routing class is the most important part in DTNs since
the performance of DTNs depends on routing protocols. Re-
cently, many kinds of routing protocols, such as epidemic [14],
spray and wait [13], PRoPHET [12], MaxProp [5], and so on,
are proposed by researchers. We have implemented a rep-
resented routing protocol, epidemic. It is a basic flooding
routing protocol, so it is extended to other routing protocols
easily. We have defined a framework for routing protocols
and implemented basic functions for the epidemic routing.
For the epidemic routing, it manages a buffer of which drop
policy is ”drop oldest”. In a routing class, it stores link
bandwidth for calculating transmission time.

3.4.1 How to Add New Protocols

For add new transport and routing protocols in the our
simulator, new protocols have to be based on our imple-
mented frameworks. We have implemented frameworks for
a transport layer protocol and a routing protocol. In frame-
works, we have made function declarations for necessary
functionalities in a transport layer protocol and routing pro-
tocol.

A transport layer protocol framework consists of declara-
tions of basic functions, which are sending to and receiv-
ing from lower and upper layer. In UDP, which is imple-
mented in our simulator, we have only implemented forward-
ing functions simply. For implementing new protocols, these
forwarding functions must be implemented first, and next,
other necessary functions should be implemented.
A routing class framework is also composed of declara-

tions of basic functions, which are sending to and receiving
from upper layer and other nodes’ routing class, and buffer
managements. For implementing new protocols, these func-
tions should be implemented first, and other needed func-
tions must be implemented. For example, we have imple-
mented the epidemic routing protocol. For sending messages
to upper layer, it only sends messages to upper layer if a mes-
sages’ destination is only itself. When exchanging messages
to another node, it first check whether receiving is rightly
processed, and copies messages in own buffer. When mes-
sages are duplicated in own buffer, routing protocols must
determine what message is dropped in its buffer if buffer
is full. A drop policy is also determined for new routing
protocols.

4. SIMULATOR VALIDATION AND

PERFORMANCE EVALUATION
The simulator’s accuracy is measured that simulation re-

sults is how close to the real systems. For validating our
simulator, first, we compare simulation results with analyt-
ical results. In [9, 15], they proposed analytical models for
epidemic routing. In [9], they developed the model for mes-
sage delay in ad-hoc networks, and the inter-meeting time
distribution model for random direction (RD) and random
waypoint (RW) mobility models. In [15], they modeled mes-
sage delay for various schemes using epidemic routing.

4.1 Simulator Validation
To validate our simulator, we compare simulation results

with [9, 15]. We first substantiate the accuracy of contact
event generation for RW mobility model, which is compared
with [9]. Next, we compare the message delay of our simu-
lator with that of analytical model in [15].

4.1.1 Accuracy of Contact Event Generation

Accuracy of contact event generation is the most impor-
tant feature in our simulator. For validating it, we compare
our results with analytical results in [9]. In [9], the inter-
meeting rate λRW of two nodes is defined as follow,

λRW ≈

2wrE[V ∗]

L2
, (1)

where w = 1.3683 is a constant to the RW model and E[V ∗]
is the average relative speed between two nodes. Where
v = vmin = vmax, there is λRW ≈

8wrv

πL2 . We easily derive
the total number of contacts from 1 as follow,

C = λRW ×

(

N

2

)

× T =
4wrvN(N − 1)T

πL2
, (2)

where N is the number of nodes in the scenario and T is the
simulation time.
We simulated various speed and the number of nodes. We

have 100, 200, 300, and 500 nodes which move in a map
of 3,000x3,000m. Node speed variation is 1, 5, 10, and 20
m/s (respectively, 3.6, 18, 36, 72 Km/h). The variation of
transmission rage is 10, 25, 50, and 100 meter. The mobility
model is RW. We have simulated during 10,000 seconds.
We created 10 different nodes movements with the same
configuration, and took the average of simulation results.

Figure 3 shows simulations and analytical results. In each
plot, X axis is represented the number of nodes, speed, and
transmission range, respectively. Y axis is the total number

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8650
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8650

100 200 300 500
0

0.5

1

1.5

2

2.5
x 105

of nodes

#
 o

f
co

n
ta

ct
s

Simulation
Analysis

(a) Number of contacts with various
number of nodes

1 5 10 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Speed (m/s)

#
 o

f
co

n
ta

ct
s

Simulation
Analysis

(b) Number of contacts with various
speed

10 25 50 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Transmission range (m)

#
 o

f
co

n
ta

ct
s

Simulation
Analysis

(c) Number of contacts with various
transmission range

Figure 3: Comparing simulation results with analytical results

50 100 200 300 500
0

50

100

150

200

250

300

350

400

450

of nodes

M
es

sa
g
e

D
el

ay
 (

se
c)

Simulation
Analysis

Figure 4: The message delay

of contact events in simulation time. Figure 3 is shown that
the simulator accurately generates contact events.

4.1.2 Message Delay

Next, we validate the performance of routing protocols
implemented by ours. In [15], the expectation of message
delay, E[Td], in epidemic routing is modeled as follow,

E[Td] =
ln(N)

λRW (N − 1)
, (3)

where N is the number nodes. It is the result with infinite
bandwidth and infinite buffer.
In the simulation, we have 50, 100, 200, 300, and 500

nodes which move in a map of 3,000x3,000m. A node speed
is 10m/s, and a transmission range is 50m. The mobility
model is RW and buffer size is 50. We executed 10 times
of simulation with different node movement scenarios and
averaged them.

Simulation results are shown in Figure 4. In Figure 4, X
axis represents the number of nodes, and Y axis is the mes-
sage delay. As shown Figure 4, simulation results are the
almost same as analytical results. It is that our implementa-
tion of epidemic routing protocol and message transmission
functions are worked well.

4.2 Performance Observations
Our simulator offers frameworks for developing DTN pro-

tocols. Its performance mainly depends on developed pro-
tocols’ computation and memory usages. Basically, simula-
tor’s performance depends upon the number of events, which

is determined by simulation map size, the number of nodes,
node’s transmission range, node’s speed, mobility models,
and traffic generations. Also, it is dependent on the simu-
lating computer environments.
For testing performance of simulator, we executed simula-

tions in the linux PC (redhat 9.0) with Intel(R) Pentium(R)
4 CPU 3.20GHz and 2GBytes memory. We set java max-
imum heap size to 1024MBytes. Simulations are executed
100, 200, 300, and 500 nodes moving in 3,000x3,000m map.
Node’s speed is 10m/s, and node’s transmission range is
50m. We used RW model for nodes’ mobility. The band-
width of link is infinite and buffer size of node is 50. The
simulation time is 10,000 seconds. Even the most complex
scenario is simulated, it only takes about 50 seconds and uses
about 28.5MBytes memory. We think our simulator is ex-
ecuted in a reasonable time when more complex simulation
scenarios are simulated.

5. FUTURE WORKS
In order for our simulator to become efficient, we have

to implement more features, such as other mobility mod-
els, and routing protocols, and optimize simulator’s perfor-
mance. We also have to determine a result format to be
shown easily.

Currently, we have only implemented RW mobility model.
As describe above, there are many mobility models to rep-
resent the movement of mobile users. While RW mobil-
ity model is the most popular and used model in DTNs
or mobile ad-hoc networks, it has already known shortcom-
ings, and there are more realistic mobility models, such as
map-based mobility model [6] or working day movement
model [7]. More mobility models are described in [4]. In
the mobility generator, it only covers models that the path
of node during an interval is a straight line. In some mobil-
ity models, however, the path of node may be not a straight
line. Therefore, we will modify our mobility generator more
flexibly, and we will implement other mobility models.
As mentioned above, there are many routing protocols in

DTNs, for example, spray and wait [13], PRoPHET [12],
MaxProp [5], and so on. We have only implemented epi-
demic routing protocol which is the basic and most popular
routing protocol in DTNs. Because other mentioned proto-
cols are also popular routing protocols in DTN, and there
are many researches are advancing based on these protocols,
we will implement these routing protocols as soon.

The most popular network simulator ns-2 [1] presents gen-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8650
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8650

eral outputs with the pre-defined formant, and researchers
get the own results by parsing outputs generated by ns-2.
Similarly, our goal is that our simulator offers general out-
puts with pre-defined format. So we will define an output
format, and implement functions offering results with this
format.

Finally, we have to optimize our simulator’s performance.
While we have shown the performance of our simulator in
Section 4.2, it is not guaranteed that the performance of
our simulator is optimized. By simulating various scenarios
and many times, we will further test our simulator’s perfor-
mance, and fix finding bugs. Also, we will be able to change
codes with more efficient algorithms. By releasing our sim-
ulator, we will be able to receive some bug reports or fixed
codes from other researchers using our simulator. We will
also apply these features in our simulator.

6. CONCLUSION
In this paper, we have described a new event-driven simu-

lator, which efficiently simulates Delay/Disruption Tolerant
Networks (DTNs) protocols. It generates nodes’ mobility
models and generates contact events and message creation
events, and these events are scheduled in order of time. Cur-
rently, we have implemented RW mobility model for nodes’
movement generation, and epidemic routing protocol for
routing. We have offered frameworks for developing other
mobility models or DTN protocols. We have shown that our
simulator generates contact events compared with the ana-
lytical model of RW mobility model and simulates epidemic
routing protocol comparing the message delay with analyt-
ical model of epidemic routing, accurately. We also present
future works for our simulator. We expect that our simula-
tor will be useful to anyone investigating DTN protocols.

Acknowledgments

This work was supported by Korea Research Foundation
grant funded by the Korea government (MOST) (No. 313-
2008-2-D00883).

7. REFERENCES
[1] The Network Simulator NS-2.

[2] www.dtnrg.org/wiki.

[3] www.illuvatar.nu/ns-dtn/code/.

[4] Fan Bai and Ahmed Helmy. Wireless Adhoc and
Sensor Networks, Chapter 1. Kluwer Academic
Publishers, 2006.

[5] John Burgess, Brian Gallagher, David Jensen, and
Brian Neil Levine. Maxprop: Routing for
vehicle-based disruption-tolerant networks. In In Proc.
IEEE INFOCOM, 2006.

[6] V. Davies. Evaluating mobility models within an ad
hoc network. Master’s thesis, Colorado School of
Mines, 2000.

[7] Frans Ekman, Ari Keränen, Jouni Karvo, and Jörg
Ott. Working day movement model. In MobilityModels
’08: Proceeding of the 1st ACM SIGMOBILE
workshop on Mobility models, pages 33–40, New York,
NY, USA, 2008. ACM.

[8] Kevin Fall. A delay-tolerant network architecture for
challenged internets. In SIGCOMM ’03: Proceedings
of the 2003 conference on Applications, technologies,

architectures, and protocols for computer
communications, pages 27–34, New York, NY, USA,
2003. ACM.

[9] Robin Groenevelt, Philippe Nain, and Ger Koole. The
message delay in mobile ad hoc networks. Perform.
Eval., 62(1-4):210–228, 2005.

[10] Sushant Jain, Kevin Fall, and Rabin Patra. Routing in
a delay tolerant network. In SIGCOMM ’04:
Proceedings of the 2004 conference on Applications,
technologies, architectures, and protocols for computer
communications, pages 145–158, New York, NY, USA,
2004. ACM.

[11] Ari Keränen, Jörg Ott, and Teemu Kärkkäinen. The
one simulator for dtn protocol evaluation. In Simutools
’09: Proceedings of the 2nd International Conference
on Simulation Tools and Techniques, pages 1–10,
ICST, Brussels, Belgium, Belgium, 2009. ICST
(Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering).

[12] Anders Lindgren, Avri Doria, and Olov Schelén.
Probabilistic routing in intermittently connected
networks. SIGMOBILE Mob. Comput. Commun.
Rev., 7(3):19–20, 2003.

[13] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and
Cauligi S. Raghavendra. Spray and wait: an efficient
routing scheme for intermittently connected mobile
networks. In WDTN ’05: Proceedings of the 2005
ACM SIGCOMM workshop on Delay-tolerant
networking, pages 252–259, New York, NY, USA,
2005. ACM.

[14] A. Vahdat and D. Becker. Epidemic routing for
partially connected ad hoc networks, 2000.

[15] Ellen Zhang, Giovanni Neglia, Jim Kurose, and Don
Towsle. Performance modeling of epidemic routing.
Technical report, Dept. of Computer Science,
University of Massachusetts, Amherst.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8650
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8650

