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ABSTRACT

We present a methodology and a toolset for power aware
HW/SW co-simulation including real-life application code
at network level.

The toolset consists of the known OMNeT++ network si-
mulation environment and the PAWiS framework, which was
extended to include time-annotated and natively executing
C code, and allows detailed analysis of the power consump-
tion of single modules in the network. In conjunction with
the support of interrupt handling, this especially addresses
the needs of applications running on nodes of wireless sensor
networks (WSNs). The presented partitioning of the appli-
cation into platform-dependent and platform-independent
SW layers provides easy porting of the simulated code to
real sensor nodes. Therefore the established simulation en-
vironment supports the development, implementation and
verification of energy optimized protocols for real-time in-
dustrial applications using WSNs.

To demonstrate the functionality of this approach, the
methodology was applied to a simple real-world networking
test scenario and the achieved simulation results are com-
pared to real-world measurements.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication; I.6.3 [Si-
mulation and Modeling]: Applications; I.6.8 [Simulation
and Modeling]: Types of Simulation—Discrete event

General Terms
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1. INTRODUCTION
Design, evaluation and testing of wireless sensor networks

(WSNs) are often accomplished with the help of network
simulators. Among several different simulators ([8], [13])
there is OMNeT++ [11], a C++ based discrete event simu-
lation environment specifically used for network simulation.

Although OMNeT++ is a powerful tool, the simulation of
WSNs must consider special aspects which are not directly
addressed in this environment. WSNs are mainly used for
monitoring and controlling automated processes in various
application areas including industry, agriculture and home
entertainment. Nodes of such networks are required to have
very low power consumption in order to achieve lifetimes of
several years supplied by single batteries. This can only be
accomplished with the help of a power aware simulation of
the network. It is crucial to get a detailed profile of the
power consumption of single modules within the nodes, as
this enables the designer to tune and optimize these blocks.

CASTALIA [9] is an extension of OMNeT++ that offers
energy aware simulation using a resource manager module.
This module keeps track of various node resources, the most
important of all being energy. Every module within the node
can report its actual energy consumption to the resource
manager.

Another framework based on OMNeT++ capable of log-
ging the power consumed by a wireless node is PAWiS [12].
PAWiS not only enables the designer to protocol the power
consumption of every module within a node, but also pro-
vides several different power reporters (e.g. constant, resis-
tive, linear and user-defined reporters). A complete hierar-
chical model of power suppliers and consumers (i.e. a simple
electrical network) is established during simulation. In ad-
dition PAWiS offers a clear separation of HW and SW tasks,
a basic CPU model and support for interrupts.

Although PAWiS allows to model a WSN at the network
and system level, it lacks the integration of real-life code
into the simulation. In the following sections, a methodol-
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ogy is presented which eliminates this drawback and makes
possible a power aware simulation of WSNs, including time-
annotated real-life application code. This application code
can be ported easily to real sensor nodes.

The remainder of this paper is organised as follows: Sec-
tion 2 gives a short review of related work done so far. Our
concept is introduced in section 3, the usage of the concept
and exemplary simulation results are presented in section 4.
Section 5 comprises the conclusion of this paper and future
work.

2. RELATED WORK
Most publications concentrate on the usage of heteroge-

neous environments that consist of different simulation en-
gines to co-simulate HW and SW components at the network
level.

In [5], the NS-2 network simulator is used in conjunc-
tion with an instruction set simulator (ISS). As presented,
this provides the possibility of simulating heterogeneous net-
works that contain different wired protocols (UltiWIRE,
CAN, CANOpen) in factory automation environments in-
cluding real industrial applications. Timing-accurate sim-
ulations can be run with the drawbacks of (a) modifying
the NS-2 scheduling algorithm, (b) writing an application
driver module and (c) degrading of simulation performance
(roughly 50% slower than network simulation alone).

[6] presents a three-tier scheme consisting of SystemC to
model HW at the system level, an instruction set simulator
to execute SW and NS-2 to model networks. This scheme
and the methodology of HW/SW/network partitioning are
applied to the design of a system-on-chip that performs the
fast path of IPv4 routing.

In [3], a client/server co-simulation environment is pre-
sented. The server, which is controlled by the client through
SOAP services, consists of SystemC, µCSim (ISS for the In-
tel 8051 microcontroller) and NS-2.

Although all these solutions offer a timing-accurate simu-
lation of networks including real-life applications, they have
serious drawbacks. First, the simulation performance of the
heterogeneous environments is decreased compared to ho-
mogeneous simulation environments. Secondly, the energy
consumption of nodes and their building blocks contained
in the network is neglected by these approaches. The goal
of this work is to establish a power aware, fast and accurate
simulation environment for WSNs using only one simulation
engine and native execution of time-annotated SW.

A similar concept regarding time-annotated simulation of
real-life code is presented in [2]. The SW consisting of the
operating system (device drivers, ISRs, etc.) and applica-
tion code is executed natively on the host machine. HW is
described in SystemC and linked to the SW by a timed bus
functional model. Therefore, it is possible to run a fast and
accurate HW/SW co-simulation at the system level.

3. METHODOLOGY

3.1 Software architecture
Code portability is a key issue in the development of appli-

cations, especially when the targeted platform is a microcon-
troller. This is due to the huge variety of microcontrollers,
which differ not only between vendors but also between the
families a vendor offers.

Application

HAL ... Hardware Abstraction Layer

HAL_CC2500

HAL_CC2420

HAL_CC1100

HAL_DIGIO

HAL_TIMER

HAL_AD

HAL_SPIHAL_RS232

HAL_MCU

HAL_BOARD

HIL ... Hardware Interface Layer

HIL_RS232HIL_ERROR

HIL_BUFFER HIL_UTILS HIL_RF

hardware

dependent

hardware

independent

Figure 1: Software architecture

In our case, in addition to the different microcontroller ar-
chitectures, there is another target platform - the simulation.
Seamless porting of the application between these platforms
can only be achieved by a SW architecture which splits
the code into a HW/platform-dependent and HW/platform-
independent part. As shown in Figure 1, this is accom-
plished by using different software layers.

The hardware abstraction layer (HAL) comprises the
platform-dependent code for various HW modules. For ex-
ample, the initialisation of an SPI module varies between
different microcontrollers and is therefore encapsulated in
the HAL SPI block, which is part of the HAL. As a re-
sult, switching to another platform is as simple as exchang-
ing the HAL SPI block. Currently, HALs are available for
MSP430FG4618, MSP430F2274 and the PIC18x microcon-
troller families.

The hardware interface layer (HIL) supports hardware in-
dependency at a higher abstraction level and therefore pro-
vides higher reusability. An integral part of the HIL is an
error detection mechanism that gives feedback to the appli-
cation. In summary, the HAL implements functions which
are directly supported by the hardware, whereas the HIL
uses them to serve as a module handler to the application.

3.2 Creating shared libraries
The structured application code is used to build shared

libraries, which are then linked with the shared libraries of
the simulator to the simulation executable.

One shared library must be built for each application class
running on a node in the network. This gives the advan-
tage of defining different preprocessor constants for differ-
ent applications, which makes possible powerful conditional
compilation. For example, if node 1 uses a CC2500 mod-
ule and the corresponding API for running an application,
but node 2 needs a CC2420 API, all one has to do is to
include the switch “-DCC2500” or “-DCC2420” in the com-
pilation scripts. These scripts are generated automatically
from a list of preprocessor constants and a list of source
files specified in a text file. The HAL files targeting the
microcontroller must not be used in simulations, i.e. they
are excluded from the build step by not listing them in the
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Figure 2: Node structure

text files. Instead, HAL source files corresponding to the
simulation are specified in the text files.

To avoid name clashes between the several linked appli-
cation libraries, every library has its own namespace. This
namespace is created automatically during the compilation
step, using macros and preprocessor constants defined in the
scripts.

3.3 Annotating the application code
Differentiating between wall clock and simulation time,

native execution of application code takes zero simulation
time. To run a timing-accurate simulation, synchronisa-
tion between natively executed code and network simulation
is necessary. This is achieved by the global function re-
quireCpu() provided by the Glue Logic module. Calling this
function suspends the execution of tasks and gives control
to the simulation kernel by using PAWiS functionality. Af-
ter the specified simulation time duration has expired the
suspended task is reactivated.

Annotating the application source code with calls to re-
quireCpu() gives block-level time estimates. The execution
duration of the block according to a norm CPU and a profile
of the statements classified into integer, float, memory and
control operations must be specified. These formal parame-
ters can be used in requireCpu() to scale the execution time
with respect to the targeted CPU (i.e. microcontroller).

To determine the execution time of several lines of C code,
a macro is provided. It uses “C code to assembler” and
“assembler to clock cycles” ratios together with the spec-
ified clock period to compute the time parameter for re-
quireCpu(). An improvement to this rather simple approach
can be achieved by using mathematical models found in [4].

3.4 Glue Logic
Figure 2 shows the structure of a WSN node model with

the application, which is executed natively, on the left side
and the modelled HW modules, which are interpreted by
the simulator, on the right side. Between these two worlds
resides the Glue Logic, which links them together. Although
these modules are described at a high abstraction level using
C++, they reflect reality regarding the functional, timing
and power consuming behaviour.

Communication between Glue Logic and HW modules is
achieved through PAWiS functional interfaces which build
on the OMNeT++ message passing system. A tighter cou-
pling between the application and the Glue Logic is achieved

SPI

function, delay, poweronIni t ( )  {

    startTask(mainTask);

}

mainTask() {

    mainApp();

}

GlueLogic

mainApp()  {

    writeToSpi();

}

Application

writeToSpi() {

    gl->invoke(writeToSpi);

}

SPI_HAL

Figure 3: Calling sequence

trough function calls (the same holds for connections to the
CPU and supply module). The structure and connections
of a node are specified through network description (NED)
files as supported by OMNeT++.

Four main tasks have to be accomplished by the Glue
Logic. First, a database of registered interrupts and pins
(in/out) is contained in the module. Every HW module reg-
isters its symbolic names used for interrupts or pins during
the initialisation step of PAWiS to the Glue Logic. The map-
ping of symbolic names to names used by the application is
specified in the NED file or in the initialisation file of OM-
NeT++. This yields a greater flexibility of the simulation
setup. For example, a transceiver model (e.g. CC2500) can
be written for the symbolic name GDO2 and can be used
in conjunction with an application which expects the usage
of PORT2.7. Changing either the HW module (e.g. GDO2
→ GDO5) or the application (e.g. Port2.7 → Port4.3) leads
(in the simulation) only to a change of the initialisation pa-
rameters.

Secondly, the Glue Logic also provides interrupt handling,
as the module serves as a wrapper for interrupt service rou-
tines (ISR). Every interrupt is linked to this wrapper in the
initialisation phase of the HW modules. After an interrupt
occurs, the isrWrapperTask() method in the Glue Logic is
started, and subsequently calls the corresponding ISR of the
application code. The interrupt behaviour resembles that of
real HW, i.e. application execution is suspended, the ISR is
executed and afterwards application execution is resumed.
Nested interrupts are also supported.

Thirdly, the Glue Logic of every node is responsible for
starting the application as depicted in Figure 3 using pseudo
code. In the initialisation step, PAWiS calls the onInit()
method of every module contained in the simulation envi-
ronment. In this method the Glue Logic starts a new task
which subsequently calls the top level function of the appli-
cation. Thus, for every class of application there is a spe-
cialized Glue Logic (e.g. PawisGlueLogicTestApp) module
which subclasses from a base Glue Logic (e.g. PawisGlueL-
ogicCApp) class and overrides the onInit() and mainTask()
methods.

Finally, the Glue Logic delegates calls from the applica-
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tion code to the corresponding HW modules through PAWiS
functional interfaces (see Figure 3). An example is given in
Figure 3 where the application writes data over an SPI con-
nection. The application calls the corresponding API func-
tion of the SPI HAL block. Porting of the SPI HAL block
to the simulation platform forwards this call to the Glue
Logic module, which invokes the functional interface of the
required SPI module.

4. RESULTS
To demonstrate the functionality and usefulness of the

presented methodology, we applied it to a real-world test
scenario. The scenario consisted of a sensor node sending
a data packet regularly to a base station, which writes the
RSSI (received signal strength indicator) value of the cor-
rectly received packet (CRC check is good) to an RS232
interface. In practice, the base station would be connected
to a PC, which would process the RS232 bytes further. As
this is outside the scope of the simulation the RS232 data is
logged to a text file by the RS232 HW module.

Both the sensor and the base station node used a CC2500
transceiver module, which was modelled in rich detail (using
fsm, fifos, registers, etc.). As in reality, this model must
be accessed through SPI commands and triggers interrupts
on the GDOx pins. This ensures easy portability of the
application code between simulation and real sensor nodes.
Using a toggling LED, each node displays successfully sent
or received packets.

The current version of PAWiS (v2.0) used for wireless
communication between sensor nodes only provides a free
space propagation model that neglects large and small-scale
fading. Futhermore, PAWiS v2.0 only supports OMNeT++
version 3.3 or below. The simulation executable was built
using the GNU compiler collection (GCC v4.2).

PAWiS logs the power consumption of all modules to a sin-
gle text file in a proprietary format. Octave (v3.0) scripts are
provided which process this file and, using Gnuplot (v4.2.2),
plot the power and energy consumption of individual mod-
ules. Special filter phrases for module names and a time-
range for plotting can be specified. For example, Figure
4 shows the power consumption of the RF module voltage
regulator at the base station in the time-range of 1.078 s to
1.081 s in the simulation. After a packet consisting of 2 bytes
of preamble, a 4-byte synchronisation word, 2 bytes pay-
load and 2 bytes CRC has been received successfully using
2-FSK modulation at a datarate of 2.4 kBaud, the CC2500
transceiver switches from the receive state (RX state) to the
IDLE state. Thus, power consumption drops to 4.5 mW (at
1.0792 s). To receive further packets, the application triggers
an SRX strobe on the SPI which causes a state change from
IDLE (through several intermediate states) to RX. Conse-
quently, power consumption rises to approximately 43 mW.
Current consumption values were extracted from [7] for a
supply voltage of 3.0 V.

The simulated power consumption of Figure 4 can be
easily compared to real-world measurments using Figure 5
which depicts the measured current consumption (i.e. the
voltage drop measured on a 74.99 Ω resistor) of the RF
module voltage regulator at the base station. Knowing the
supply voltage of 3.0 V and the current consumption, the
power consumption in different states can be calculated.

Figure 6 visualizes the energy consumption of all consum-
ing modules contained in the base station (i.e. Node1) for
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Figure 4: Simulated power consumption of RF mod-
ule

Figure 5: Measured current consumption of RF
module (200 µs/div; 200 mV/div)
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Figure 6: Energy consumption of modules

Running s i mu l a t i o n . . .
∗∗ Event #0 T=0.0000000 ( 0.00 s ) . CC2500Net . Node1 . g l u e l o g i c ( i d =12)
Pawi sGlueLog i cTestApp : : mainTask ( ) e n t e r e d !
c a l l r f t e s t b a n ( )
r f t e s t b a n ( ) e n t e r e d
r f t e s t b a n ( ) i n i t i a l i z e d
∗∗ Event #1 T=0.0000000 ( 0.00 s ) . CC2500Net . Node2 . g l u e l o g i c ( i d =24)
Pawi sGlueLog i cTestApp : : mainTask ( ) e n t e r e d !
c a l l r f t e s t a c n ( )
r f t e s t a c n ( ) e n t e r e d
∗∗ Event #2 T=0.0000000 ( 0.00 s ) . CC2500Net . Node1 . cpu ( i d =9)
∗∗ Event #3 T=0.0000000 ( 0.00 s ) . CC2500Net . Node2 . cpu ( i d =21)
∗∗ Event #4 T=6.00000000e−06 ( 6us ) . CC2500Net . Node1 . cpu ( i d =9)
∗∗ Event #5 T=6.00000000e−06 ( 6us ) . CC2500Net . Node2 . cpu ( i d =21)

Figure 7: Simulation without time annotation

a specified time interval. This value is then related to the
total consumed energy of the node in this time interval. As
shown in Figure 6 the RF module of Node1 needs approx-
imately 56% of the energy consumed in the time-range of
1.07 s to 1.09 s.

The effects of simulating time-annotated code are visual-
ized in Figures 7 and 8, which depict snippets of OMNeT++
transcripts. Simple print statements in the application code
are used to point out the advantage of time annotation.
Without time annotation, the native execution of the
rf test ban() function lasts for zero simulation time and there-
fore the strings“rf test ban() entered”and“rf test ban() ini-
tialized” are printed at the same point in time. Annotating
the initialization block of rf test ban() inserts a (simulation)
time interval between these two print statements (see time-
stamps 0 µs and 11 µs). Consequently, using time annota-
tion yields simulations with higher temporal accuracy.

After the real-world networking scenario was simulated
and the RSSI values at different distances were generated,
the same application was transferred to a MSP430 micro-
controller architecture by only exchanging the HAL. The
measurements for the RSSI values were made in a free space
environment with both transceivers mounted on 1.2 m high
tripods and transmitting at a power of 1 dBm. Character-
istics of the employed antenna can be found in [1].

Figure 9 shows the results obtained from calculation
(RSSI c), simulation (RSSI s) and measurements (RSSI m).
Simulation results are consistent with calculated data, al-
though the resolution in the simulation was limited to 1 dBm.
Real-world measurements deviate from calculation using Friis
equation for simple free space propagation, which can be ex-

Running s imu l a t i o n . . .
∗∗ Event #0 T=0.0000000 ( 0.00 s ) . CC2500Net . Node1 . g l u e l o g i c ( i d =12)
Pawi sGlueLog i cTestApp : : mainTask ( ) e n t e r e d !
c a l l r f t e s t b a n ( )
r f t e s t b a n ( ) e n t e r e d
∗∗ Event #1 T=0.0000000 ( 0.00 s ) . CC2500Net . Node2 . g l u e l o g i c ( i d =24)
Pawi sGlueLog i cTestApp : : mainTask ( ) e n t e r e d !
c a l l r f t e s t a c n ( )
r f t e s t a c n ( ) e n t e r e d
∗∗ Event #2 T=0.0000000 ( 0.00 s ) . CC2500Net . Node1 . cpu ( i d =9)
∗∗ Event #3 T=0.0000000 ( 0.00 s ) . CC2500Net . Node2 . cpu ( i d =21)
∗∗ Event #4 T=6.00000000e−06 ( 6us ) . CC2500Net . Node2 . cpu ( i d =21)
∗∗ Event #5 T=6.00000000e−06 ( 6us ) . CC2500Net . Node2 . g l u e l o g i c ( i d =24)
∗∗ Event #6 T=6.00000000e−06 ( 6us ) . CC2500Net . Node2 . cpu ( i d =21)
∗∗ Event #7 T=1.10000000e−05 ( 11 us ) . CC2500Net . Node1 . cpu ( i d =9)
∗∗ Event #8 T=1.10000000e−05 ( 11 us ) . CC2500Net . Node1 . g l u e l o g i c ( i d =12)
r f t e s t b a n ( ) i n i t i a l i z e d

Figure 8: Simulation with time annotation

Figure 9: Calculated, simulated and measured RSSI

plained easily by the 2-ray model found in [10]. In addition
to the Line-of-sight (LOS) path, the 2-ray model considers
the wave reflection from the ground.

5. CONCLUSION
In this paper we have presented an approach to establish

a power aware simulation of wireless sensor networks with
nodes running real-life applications. Using a homogeneous
simulation environment with only one simulation engine and
time-annotated source code makes possible fast simulations
at a high simulation accuracy. Separating between platform-
dependent and platform-independent code as offered by the
presented SW architecture allows easy porting to real sensor
nodes. The concept was applied to a simple real-world net-
working test scenario and simulation results and real-world
measurements were presented accordingly.

Future work will include the improvement of the PAWiS
channel model to reflect large-scale and small-scale fading
effects, the automation of time-annotation and the develop-
ment of energy optimized protocols for real-time industrial
applications using WSNs.
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