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ABSTRACT

In this paper, we present a novel migration simulation of
entities over landscapes. The entities can explore the envi-
ronment or “walk” from point to point, depending on their
programmable attributes. For a fast adaptation to new
maps, we have developed a converter which creates 3D-
landscapes from 2D satellite (or map) images. Different
altitudes get represented with different color codes and au-
tomatically converted into the landscape. The underlying
system is based on a potential field, which is fully config-
urable and extendable for additional information about the
landscape (e.g. weather, GIS). We show how this simula-
tion can be applied to researches by simulating for example
human migration over a specific landscape and how it helps
to get information about the course of the walking-tour.

Categories and Subject Descriptors

I.6.3 [Simulation and Modelling]: Applications

General Terms

Migrants Simulation

Keywords

Migrants, Simulation

1. INTRODUCTION
The human migration in the early days of the humans out

of Africa is only theoretically demonstrated. A simulation
of the migration is complex because of the social behav-
ior of humans. Interactions between the entities (human)
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and the geological environment influence every decision and
make a real simulation nearly unfeasible. But archaeolog-
ical excavations in places of discovery give an idea about
the whereabouts of the humans and in which year they have
populated which area. This provides an informative basis to
track and approximate the path of the migration but does
not explain the reasons for this migration. Different kinds
of researches explain the biota, the weather and the animals
living at specific decades in the early years. This provides
a large base of data, which can help to understand the mi-
gration behavior, but until now no simulation concludes all
this data at once. Many publications try to find a good
model to describe how the humans came from Africa to Eu-
rope and develop simulators which are based on probability
distributions or complex structured equations. In several
simulators, the migration is based on population waves and
not on the path they walk. We want to change the view
on these simulators and to specify possible walking paths of
migrations.

In this paper we show how we simulate the migration of enti-
ties over a landscape and compute a path between the places
of discovery. We develop a model which is based on poten-
tial fields and provides the flexibility of being adapted to ev-
ery environment settings or geographic information systems
(GIS). The potential field allows concluding all datasets and
combines them to a value which can be used as attraction
of a place on a landscape. To simulate the migration in the
pre age, our simulator computes a landscape out of a digital
map. This map can either be a satellite map or a specific
map where the biota is identifiable.

This paper is structured as follows. In chapter 2 actual sim-
ulations for human migration are discussed. After that we
present our concept for a migration simulation in chapter 3.
The functionalities and the GUI-methods of our simulation
are presented in chapter 4. Chapter 5 shows a little exam-
ple of using our simulation tool, before we finish with our
conclusion and future workings in chapter 6.

2. MIGRATION SIMULATION
Different kinds of human migration simulations were de-

veloped in the past. Most simulations try to simulate broad-
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ening of the humans in order to understand the migration
behavior. Nikita and Nikitas understand human migration
as a big random experiment [10]. Their simulation map con-
sists of Africa and Europe and is reduced to 16, 308 cells.
Every cell has a probability to be populated by humans.
This depends on the biota of the cell and whether humans
populated the surrounding cells or not. Each cell consists of
a large area of the landscape and can either be populated or
not. There is no information about how many humans pop-
ulated the cell. In each simulation iteration, each population
can move, populate another cell or die with defined proba-
bilities. Based on the randomness of the simulation, repeat-
ing experiments leads to different results. Different Exper-
iments were performed where some cells were removed to
see whether the human population path changed and where
they walked through. The model which describes the earth
does not change during the experiments, even though sev-
eral thousands of years get simulated. The contents of the
cells were the same at every time step. This is not authentic
because the earth biota changed during the years. Conti-
nental drifts and for example volcanic activities changed the
earth drastically.

A similar approach was introduced by Mithen and Reed [8]
in 2002. The difference to Nikita and Nikitas was that the
humans change their behavior depending on the cells on
which they live. They could die, move to another cell or
stay at the cell. The humans could adapt to the cell biota
and live with the hot and dry weather or move to colder
cells if they die in hot cells. The cells could change their
content from land to water, this involved the evolution of
the earth in the simulation. This approach is extended by
[6, 5] with the genetic idea, that different population groups
can exchange their attributes and the genetic migration can
be monitored but no social structure is included.

Young et al. [16] developed an approach based on the Fisher
equation for genetic diffusion.

∂P

∂t
= RP −DP

2 +∇K ⋅ ∇P (1)

This equation combines time t, population density P , pop-
ulation growth rate R, population downturn D and the dif-
fusion constant K. Young et al. assume that there is a
maximum population density on every cell and the migra-
tion depends on the family. If humans travel to the next
cell, they are never alone. Results of this migration simu-
lation generated migration waves. The results of findings
dated the human inhabitation of Australia in 50.000 BC
and of Europe in 43.000 BC [11]. With this in mind Young
et all. changed the R and P value and this helped un-
derstanding the out-of-Africa theory with their simulation.
Although the simulation comprehends climatically changes
and a good migration theory, there is no geo-information
about the weather changes and the humans have no dan-
ger in the cells. They never died completely depending on
aridity or dearth. Based on this equation a lot of other
simulations were introduced. For example diffusion of nu-
trition production [1] or the diffusion of humans on north
America [14]. In all these approaches, there is no possibil-
ity to connect time depending information like weather or
other migration without changing the equation in a complex
way. Another point is that only waves of migration are com-
puted. The migration spreads in all directions and walks one

or maybe two paths. There is no war or ethic barrier in the
model.

The Open Geospatial Consortium1 presents an open stan-
dard for geo-information systems to use geo-data for re-
search. Data about the real environment like biota or weather
data and maps from different GIS-systems can be used and
shared with these developed standards. Paul Box [3] does
not use an OCG-system, but he describes a way to combine
a GIS with a multi-agent system to simulate the landscape
changes whereby every entity (tree, cloud, etc.) is modeled
as an agent. The advantages of multi agent systems are
the attributes of the agents. An agent is flexible, proactive
and social, which means that it can communicate with other
agents. This social aspect is important for human migration,
because every human acts depending on his behavior and his
social environment. A project which is engaged with this so-
cial fact of the migration is done by Maerker [9].

Only the Agent-based simulations are continuously simula-
tions. All other simulations are discrete and simulate the
migration stepwise over cell-based landscapes. Every sim-
ulation considers the migration as population based. This
means that if the humans “walk” over an area they popu-
late it and stay there. In our view this is not right, because
some areas are not habitable and humans hike to the next
area without staying there forever. We want to change the
view of the migration simulation to the path the humans
walk and not to the populated areas. A big disadvantage of
the discussed simulation is the inflexibility to integrate the
social aspect and changeable landscapes. Every map has to
be modeled in cells and the size of the cells is fixed. The hu-
mans contain no “brains” and are steered by the simulation.
The results were enforced by adapting the parameters to
steer the migration to specific points at specific time steps
but there is no explanation why the migration is at these
points. We want to develop a simulation where the enti-
ties are able to “think” and make their own decisions and
the landscape is flexible and able to change in whatever it
wants. This depends on the underlying potential field which
converts data into a value which lets specific areas on the
map be more attractive or abhorrent. Additionally, we want
to simulate a migration on all kinds of maps and build a map
converter which converts a landscape into a presentation for
the simulation based on the color schema of the map and
user settings.

3. CONCEPT OF OUR MIGRATION SIM-

ULATION
This section describes the implementation of the simula-

tion tool. At first, different land types of a map have to be
classified. Based on the result of this step, a potential field
gets computed on which simulation entities can be placed.
At last, statistical export methods are introduced.

3.1 Classifying different cell-types in a satel-
lite map

The implemented simulation tool imports a map, given by
an image of an arbitrary format and calculates an internal
cell representation of the imported map. A map-cell can e.g.
be a range of pixels of an imported Bitmap. The only con-
straint is that the range must be a matrix-format, because

1http://www.opengeospatial.org/
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the following methods work on matrices. Different image-
types of a landscape are useable, because the classification
of the cell-types is configurable. In our example, the func-
tionality of the developed methods is shown using satellite
maps. Maps for e.g. rainfall, heat-maps or maps for social
welfare are thinkable, too.

The classification accuracy depends on the clarity of the
partitioning between different characteristics in the given
map. At first, the map has to be pre-processed with signal
processing-operations, to find different characteristics in the
map. We define a number of classes of landscape-types (e.g.
“field”, “forest”, “mountain”, “desert”, “water” and “saltwa-
ter”). Each characteristic has to be placed in one of the
defined classes.

Color layers and edge information of the given image are
used to determine simple classification rules. Figure 1 shows
the original image in part (a) and the different color layers
red, green and blue in part (b) up to (d). Simple classifica-

Figure 1: Satellite image: Original, R-, G-, and B-

channel

tion rules can be determined, regarding the colors of different
areas. For example water has nearly no red intensity, but
a high blue intensity and a green value near the middle of
the intensity range (0-255). Water can be classified via edge
information, too. To get a good classification accuracy, a
combination of color channels, edge information and lumi-
nance of the map cells is used.

An edge is a color difference. To automatically find edges,
we use the discrete convolution-operation adopted from [4]
and shown in equation 2.

(g ∗ ℎ) (m,n) =
∑

i∈ℎx

∑

j∈ℎy

g (i, j) ⋅ ℎ (i−m, j − n) (2)

The convolution is a standard operation in signal process-
ing. It is used to manipulate a given signal g with another
signal ℎ with size ℎx, ℎy. Different filter-operations (e.g.
blur filters, filters for edge detection or relief filters) can be

implemented using the convolution. In our example, the
Laplace-filter is used. Figure 2 (a) shows the result of a
convolution of the map with a 5 × 5-laplacefilter (see [15]).
All edges in the image now are emphasized, shown in this

Figure 2: Satellite image: Edges and luminosity

figure with light-colored pixels. A grayscale-image, calcu-
lated by averaging of the three color layers is used to get an
idea about the brightness of the corresponding cells. This is
shown in figure 2 (b).

The calculated matrices are accessible for further calcula-
tions. As laplacexy we describe the result of the laplace-
convolution operation on position [x, y], shown in figure 2(a).
The entries rxy, gxy, bxy and grayxy correspond to the en-
tries of the RGB-layers and the grayscale-matrix of the given
image.

Depending on these image operators, simple classification
rules can be declared. In equation 3 and 4 the classifica-
tion rules for the saltwater (sea) and forest class are shown.
Other rules can be written by the user via adjusting the im-
plemented ranges for R-, G- and B-channel, luminosity and
edge intensity.

rulesea =
(

laplacexy < 5
)

(3)

∨
(

grayxy < 51 ∧ rxy < 25
)

∨
(

bxy > 100 ∧ gxy > 50 ∧ rxy < 30
)

ruleforest =
(

laplacexy > 5
)

(4)

∧
(

laplacexy < 20
)

∧
(

grayxy < 60
)

In our example map, the forest cells appeared to have differ-
ent green tones but certain edge intensity and a maximum
luminosity. Equation 4 shows the result of this observance.
These rules can be determined automatically by a simple
point and click feature on the given map.

The classification is done by checking the classification rules
for each cell. It is possible, that one cell can be classified
by more than one rule. When the classification algorithm
is called for one cell c, it determines the class of the cell by
checking the rules in a given order and then recursively calls
itself with the not yet classified neighbor cells of c and the
determined class. When the classification algorithm is called
with a cell and a class, it only checks this cell with the rule
for the given class. When the rule is fulfilled, it classifies
the cell with the given class, too and calls itself with the not
yet classified neighbor cells of the given cell. By this way,
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Figure 3: Classification result

Class Potential

Saltwarter 255
Freshwater 200
Borderlines of freshwater areas 10
Desert 200
Field 75
Forest 100
Mountain 150

Table 1: LUT

connected areas can be classified. This recursively behavior
of the algorithm is comparable to the well known Grassfire-

Algorithm used for finding same support vector structures
in an image or by using a variation of the region growing
segmentation algorithm (see [15]).

Without appropriate prior knowledge, it is not possible to
determine, whether a cell of water is saltwater or freshwater,
because both can have identical characteristics. The classi-
fication algorithm is therefore called with each border cell of
the map in the beginning, to check for saltwater. Normally,
rivers and little seas are freshwater. In our example, these
are attractive positions and classified as freshwater. Each
cell, which cannot be classified by the developed rules, gets
classified as “field”. Figure 3 shows the result of the classi-
fication algorithm. Sea is shown dark-blue, lakes and rivers
light-blue, field light-green, forest dark-green, desert brown
and mountains gray.

Our example map uses the RGB color model. Maps which
are given in another color model or display biota charac-
teristics in another way, can be classified by adjusting the
described methods.

3.2 Building a Potential field
The base for our potential field is a matrix, computed

using a lookup table (LUT) (see [2]). Our LUT assigns a
potential value to each class of landscape (see 1). A low po-

tential value means for example, that the attraction of the
corresponding cell is high, a high potential means vice versa.
Shore areas of freshwater get a lower potential value as areas
of freshwater, which do not belong to the border of this area,
because for example hominids were able to drink water in
these areas and rest there. The user is able to determine lo-
cations, which the hominids in the simulation have to visit.
By this way, these places get a potential bonus of a constant
value, e.g. −10. Predefined places obtain an attraction.

Transition regions between different cell types need to be at-
tended. For example a desert will not fade to a field directly,
but over an area. To obtain this, a 7× 7 box filter (see [15])
is convoluted over the matrix. This results in a smooth po-
tential field. Figure 4 shows the calculated potential field.

Figure 4: Potential field

The potential field is now represented by a m× n-matrix P

with the same dimensions (depending on the scaling), as the
used satellite image. If a potential for coordinates n⃗ ∈ ℝ

2 is
needed, a bilinear interpolation from the four neighbor cells
of n⃗ in P is calculated.

The potential field P can be manipulated during a simu-
lation. If e.g. a volcanic eruption at cell N = (x, y) is
simulated, the area around N will have increased potential
values after the eruption. A dry season can be simulated by
increasing the potential values of all cells. By varying the
potential field, many different influences on the simulated
area can be modeled.

To steer entities over the potential field, a gradient-field is
computed on the basis of the potential field. The gradient
of a cell c is computed by examining a number of cells in the
neighborhood of c and selecting the cell grad (c) = c′ where
equation 5 is fulfilled.

P
(

c
′
)

≤ P
(

c
′′
)

∀ c
′′
∈ neighborhood (c) (5)
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The gradient vector is now calculated by subtracting the
positions of c and c′. The neighborhood of c can be con-
structed in different ways. In the implemented simulation,
a square with an edge length of 7 cells around cell c is used
to compute the gradient of the cell.

If a cell is placed in an area with a constant potential value,
no gradient can be computed. The gradient vector could
have a length of zero then. In the implemented simulation,
the vector then points to predefined positions in the poten-
tial field if a location is marked. The user can declare the
positions. A possible appliance for this feature is the imple-
mentation of archaeological spots. By this way, some cells
get more attracted, manually.

The simulation entities can have different behaviors concern-
ing the predefined points. A fixed order of predefined points
can be given and the entities can visit these points in the
given order or randomly. The simulation ends, when the last
spot has been visited by the entities or has become stopped
manually by user.

These modes affect the determination of the position D =
grad (c) for the calculation of the gradient of the cell c, if the
gradient of c cannot be computed. The destination vector D
can point to the next spot in a given order, to the spot with
the lowest distance from the given cell or ignore all spots
(have length zero).

Each simulation entity can find the best way from the cell
it is located, by accessing the gradient vector of the corre-
sponding cell. The gradient vector may influence the behav-
ior of one entity, but this is not forced. The potential field
can vary over the simulation time. By this way, different
influences on the simulation entities can be simulated. If
one entity manipulates the potential field, this will have an
effect to all other entities, too. Via using this mechanism,
an indirect communication between simulation entities can
be accomplished.

3.3 Develope an Entity Behavior
This section describes how to get entities into the simu-

lation. Each entity will be placed in the simulation via an
interface. This interface defines a method, which is called
by a control class of the simulation. The control class man-
ages each part of the simulation. The simulation runs with
discrete time steps. In each iteration, the control class calls
the computation of each simulation entity behavior. Each
simulation entity then computes its next state and returns
its whereabouts back to the control class.

The implemented simulation uses as an example simple en-
tities like simple reflex agents[12], which compute their po-
sition (external state) via combining the positions of their
local best position, the global best position and a random-
ized vector over time-steps of the simulation. The global
best position is identified via examination of the local best
positions of all entities in the simulation. Additionally, the
gradient vector of the current position of each entity influ-
ences their movements.

An interface for accessing the potential field and the gradi-
ent field is given to all simulation entities. When an entity,
which represents a simple kind of hominid behavior in our
example, is placed at a cell, it modifies the potential of the
cell. For example, it exhausts resources. This can be mod-

eled by incrementing the potential value of this cell. The cell
regenerates its old potential over time. In each iteration, the
potential values of all cells are updated to the direction of
the original potential value of that cell before the simulation
started.

3.4 Map-scaling and statistical export meth-
ods

To build a simulation for hominid movement, it is neces-
sary to implement a map-scaling mechanism, which relates
the movements of the simulation entities to real-world dis-
tances and real-world time. Thus the user needs to declare a
map scale. In relation to the image-based classification, the
user can state “x pixels correspond to y kilometers”. With
these given parameters, the covered distance of simulation
entities can be estimated.

In addition to this specification, the user has the possibility
to declare a maximum speed vmax for an entity. The con-
trol class scales movements down to vmax, if the step of an
entity is longer than vmax. The maximum speed is declared
by“each entity can move with a step size of vmax kilometers
per iteration”.

Different distance measures are calculated. At first, the di-
rect connection lengths between the positions of the entities
in the ascending iteration order. We use quadratic cells. A
simple distance unit is the cell side length. It can also be
exported in metric units, such as kilometers. It is possible
that the movement path is not smooth and the entity jumps
not directly from cell to cell. If this happens our simula-
tion provides a Bézier interpolation method. It is used to
make the movement path smoother. The calculated curve
can be divided in transition pieces, whose length can be sim-
ply computed via Euclidean distance.

With the Bézier -method we have also the opportunity to
compare the motion paths of different simulation cycles.
We need this feature, because in our simulation model, the
entity movements are calculated with a randomized factor.
Each simulation run produces another movement path. The
main problem at this point is, that different simulation cy-
cles produce motion paths with different lengths. Motion
paths cannot be simply scaled to a certain length. After
[13, S. 330], the Bézier interpolation uses a number of n+1
sampling points (Pi)

n

i=0
to build a path, which starts in the

first sampling point P0 and ends in the last sampling point
Pn. The remaining sampling points Pi attract the path to
take its course near of them. The positions on the path can
be computed by solving equation 6.

C (t) =

n
∑

i=0

Bi,n (t)Pi (6)

The function B is the Bernstein polynomial. The clue is,
that the function C is only defined for the fixed domain
of definition t ∈ [0, 1]. The parameter t is used to define
the position on the path, which shall be calculated. It is
provable, that C (0) = P0 and C (1) = Pn. All other t-values
result in positions between P0 and Pn. Thus the path can
be scaled to a path with a fixed number m + 1 of points
shown in equation 7.

patℎ =
[

C (0) , C
(

m
−1

)

, C
(

2 ⋅m−1
)

, ⋅ ⋅ ⋅ , C (1)
]

(7)

The described method allows to compare different motion
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paths. Aberrations of motion paths can now easily be cal-
culated. An average motion path can be computed, by mid-
dling the motion paths of several simulation cycles.

Different statistics are provided for a running simulation.
For example the average potential value for the simulation
entities can be used as a measurement for the quality of the
walked paths. If a group of entities shall be simulated, which
has to find the way through the potential field collectively,
the average distance to the middled positions of all entities
gives a clue of how far the entities move from the center of
the group.

A MatLab file is generated, which gives information about
the simulation results. Boxplot-diagrams are plotted, which
show the dispersion of the arrival times. The dispersion of
the different orders of site visits is shown in another dia-
gram (see figure 6). Vectors containing the arrival times at
the last finding spot are given for further statistical analy-
sis. By this way, different simulation setups can be easily
checked against each other. MatLab can be used to conduct
different statistical tests on the obtained data.

4. THE GRAFICAL USER INTERFACE (GUI)

OF THE SIMULATION
This section gives an example of the implemented simula-

tion tool. Figure 5 gives an idea about the appearance of the
graphical user interface (GUI). In the top left-hand corner of
the GUI, the control center can be found. The configuration
of the GUI and the settings for the simulation can be done in
this window. The buttons to start and stop the simulation
and a time control for the simulation steps are offered as
well. The speed of the simulation is influenced by the time
length between each pair of simulation steps. Through the
tabs of the control center the simulation ground settings like
the shown migration paths in other windows can be config-
ured.

On the bottom-side of the screenshot, all two-dimensional
GUIs are allocated. In the bottom middle window, the used
landscape map, in our example a satellite picture, is shown.
If the user moves the mouse pointer over this window, an
arrow to every pixel of the map demonstrates the gradient
vector of the corresponding cell. The arrow points to the
direction of the most attractive neighboring cell. If the sim-
ulation runs, a yellow line is painted and shows, depending
on the settings, the real migration path or the Bézier inter-
polation. This is available on all 2D-windows, depending on
the simulation setup.

Based on the configuration of the LUT, the classification
map is shown on the left hand side of the bottom area of the
GUI. This can be a control window to see that all cells got
the right class. The classes differ by the chosen color. For ex-
ample water is marked blue and the fields are tagged green.
The right-bottom window demonstrates the computed po-
tential field. With a grayscale-map, the different attractions
of every cell, depending on the LUT get a value between
white (very unattractive) and black (very attractive). This
allows the user to check the changes on the potential field
at every time step and makes the manipulation of the map
easier. The last window is shown on the upper right.

The 3D-visualization of the landscape map combines the
color of the basis landscape map and a height field. The

height field gets computed with an additional LUT, which
gives every determined class a fixed height. After this step,
the height field gets convoluted with a blur filter, which re-
sults in the effect, that bigger mountains get a taller height.
This visualization has the function to show the process of
simulation in a realistic environment. As an alternative
to the height field, the potential field can be used for 3D-
visualization. The values of each cell can be frozen to the
start potential value because the dynamic computation of
the 3D visualization of the time variant potential field is
based on texture mapping and this is very time complex.
This feature can be switched on and off in the control cen-
ter. It is possible to move the field of vision with mouse or
keys over the 3D landscape. The user can cycle around or
zoom in or out of the landscape. The quality of the values for
the heightmap-LUT, results in the realism of the landscape
(e.g. the heights of hills). It is easier to see the behavior of
the entities if good values are chosen.

The finding spots are marked with a yellow point respec-
tively box on all maps. The entities are red. On every step
of the simulation, the movements of all entities are shown
and depending on the user settings, the path of movement,
too. Finally the user has a complete sight of all events of
the simulation and can easily access the potential field with
simple point and click on the maps.

5. EXAMPLE OF MIGRATION EVALUATION
To show how our simulation can be used for migration

evaluation, we test different settings for our entity behavior
and compare the results. As previously described, we cannot
compare our results to other scenarios because all researches
done in migration simulation simulate migration waves and
not paths. The evaluation emphasis is on the quality of the
motion paths of the simulation entities. We assembled dif-
ferent ratios for the evaluation.

At first, the average fitness values of each simulation entity
are computed. As fitness, we describe the potential value
of the actual cell of the entity. This ratio gives us an idea,
how good the entities walk through the potential field. If
the potential value is low, the cell is better for our entities.
The ratio of one simulation itself gives no interesting infor-
mation, but compared to the average fitness values for other
settings in different simulation runs, an interesting result
can be computed.

In our example implementation, we want to test if entities
arrive at the sites earlier when they behave in a group or
alone. We compare two groups of 40 entities with different
behavior in 200 simulation runs. One entity group focuses
on the global best value of the group and the other group
focuses on the gradients of the cells. To let them walk pre-
defined routes, we placed four markers on the landscape. If
the simulation entities do not visit all predefined points in
a given number of iterations, our example implementation
fulfills a program abort. Concerning different setups for the
entity behaviors of our simulation entities, the predefined
points must be visited in a certain order or can be visited
in any order. The resulting MatLab script shows the distri-
bution of simulation runs concerning different orders of visit
at the predefined places and the frequencies of occurrence
of those. The distributions are plotted, automatically. An
example is shown in Figure 6. The pros and cons of different
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Figure 5: GUI

Figure 6: Diagrams of the frequencies and order of

arrival

entity behaviors can be tested via examination of theMatLab

script. In our example, we wanted the simulation entities to
determine their way on the potential field as a group. To get
information about the quality of this measure, the spreading
rate of the entities, defined as the middled distances between
the entity positions and the mean position of all entities are
used.

Our simulation tool generates bitmap files, showing the mo-
tion paths of the simulation entities. The motion paths can
be exported as the average motion path from multiple simu-
lation runs, calculated via Bézier interpolating and middling

of the related motion paths (see Figure 7).

The motion paths are split-up into sub paths from one spot
to the next. Motion paths which did not visit all prede-
fined positions are used, too. All motion paths which have
the same order are used to compute a middled motion path.
Figure 7 shows the middled motion path of the order 1,2,3,4.
The predefined points are tagged with red quadrates. The
motion path begins at the end of the path without a quadrate
and ends in the contrarious end.

The calculated average motion path gives an idea of the way,
the simulation entities walked. With this graphic, the user
can decide if the path of the migration is right or if he wants
to change the behavior of the entities.

With the defined map scale, all distances can be calcu-
lated in a metric unit, e.g. kilometers. Based on the dis-
tances, the propagation speed for the given map can be com-
puted. In literature, different values for propagation speed
are stated. The simulation entities of our model have a prop-
agation speed of 0.11 km ⋅ year−1, which is near the speed
0.12 km ⋅ year−1, stated in [7]. The colonization period for
the given map can be calculated. The result is given in the
unit year.

We show that our model gives the opportunity, to simulate
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Figure 7: Motion path

different behaving entities and to compare the characteris-
tics of the estimated motion paths.

6. CONCLUSION AND FUTURE WORK
In this paper we describe a novel migration simulation.

Every kind of maps can be loaded and converted into a 3D
landscape. User defined rules describe the landscape types
and set the attraction for the classes. Supported by a poten-
tial field, every area of the landscape is flexible and changes
its attraction for migration. This flexibility allows adapting
every kind of data set to simulate events. The entities can
communicate indirectly through the potential values. An
easy behavior is possible depending on the gradient field
which shows to the best field in the environment of each
entity or to the next waypoint. The migration path is de-
scribed by middling the positions of the human-group and
results in waypoints over the landscape. The user sets pre-
defined points in the landscape and assists the statistical
analysis. The output of our simulation are data-structs for
MatLab in order to get graphs about the arrival time and
migration paths.

Our next steps are to build real agent structures for humans
with different behavior and more social interaction between
entities in the simulation. This behavior should base on so-
cial aspects and the team spirit of the early humans. With
this extension the migration becomes more suitable. An-
other point is to involve the standards of the Open Geospa-
tial Consortium in our calculation for the potential field.
This data allows us to have a more realistic landscape and
it is possible to test the migration on different biota and
maps. We want to develop an interface for easy usage of our
simulation and to give the opportunity to implement exten-
sions of the behavior of the entities in a simple way. Last
but not least, we want to improve the possibility to visual-
ize the results. More interactions between the user and the
landscape are possible. For example the user could create
a storm or a dearth during the simulation to test migration
with this obstacle.
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