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ABSTRACT

There are a number of challenges facing the High Performance

Computing (HPC) community, including increasing levels of con-

currency (threads, cores, nodes), deeper and more complex mem-

ory hierarchies (register, cache, disk, network), mixed hardware

sets (CPUs and GPUs) and increasing scale (tens or hundreds of

thousands of processing elements). Assessing the performance of

complex scientific applications on specialised high-performance com-

puting architectures is difficult. In many cases, traditional computer

benchmarking is insufficient as it typically requires access to phys-

ical machines of equivalent (or similar) specification and rarely

relates to the potential capability of an application. A technique

known as application performance modelling addresses many of

these additional requirements. Modelling allows future architec-

tures and/or applications to be explored in a mathematical or sim-

ulated setting, thus enabling hypothetical questions relating to the

configuration of a potential future architecture to be assessed in

terms of its impact on key scientific codes.

This paper describes the Warwick Performance Prediction (WARPP)

simulator, which is used to construct application performance mod-

els for complex industry-strength parallel scientific codes execut-

ing on thousands of processing cores. The capability and accu-

racy of the simulator is demonstrated through its application to a

scientific benchmark developed by the United Kingdom Atomic

Weapons Establishment (AWE). The results of the simulations are

validated for two different HPC architectures, each case demon-

strating a greater than 90% accuracy for run-time prediction. Sim-

ulation results, collected from runs on a standard PC, are provided

for up to 65,000 processor cores. It is also shown how the addition

of operating system jitter to the simulator can improve the quality

of the application performance model results.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Measurement techniques, Mod-

elling techniques, Performance attributes; I.6.8 [Simulation and

Modelling]: Type of Simulation - Discrete event
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1. INTRODUCTION
Assessing the potential performance of parallel scientific codes on

existing and future HPC architectures is crucial for national labo-

ratories such as the Los Alamos National Laboratory (LANL) and

the United Kingdom Atomic Weapons Establishment (AWE). Pro-

curement decisions are largely directed by the need to ensure, and

understand, future scientific capability. Therefore, being able to

assess the potential scientific delivery from one HPC architecture,

against a rival system, is paramount. Organisations such as LANL

and AWE are also keen to ensure that their scientific codes, often

developed over many decades, make best use of new architectural

innovations and that any code development is done in such a way

that it improves potential performance rather than hinders it.

Application performance modelling – that is, assessing appli-

cation/architecture combinations through modelling – is an estab-

lished academic field, and there are several examples of where the

application of such approaches prove to be advantageous: input/-

code optimisation [22], efficient scheduling [26], post-installation

performance verification [19], and the procurement of systems for

the United States Department of Energy [19]. The process of mod-

elling itself can be generalised to three basic approaches; mod-

elling based on analytic (mathematical) methods, (e.g. LogP [6],

LogGP [2], LoPC [9]), modelling based on tool support and simula-

tion (e.g. PACE [11, 4] and DIMEMAS [10, 20]), and a hybrid ap-

proach which uses elements of both (e.g. POEMS [1]). Modelling

based on tool support has a number of advantages over its more

mathematical counterpart: firstly, it is often based on (source) code

analysis, which absolves the user from translating lengthy program-

matic features into abstract analytical program models; secondly,

tool support allows larger-scale problems to be tackled, opening up

the possibility of full-scale application analysis, as opposed to anal-

ysis based on small, core application kernels; thirdly, mathematical

models often hide the mechanics of execution, subsuming com-

plex, synchronised activities into collective mathematical expres-

sions - in parallel codes in particular, understanding this complex

synchronisation amongst processes is often the key to understand-

ing application performance.

Despite these benefits, tool-supported application modelling tech-

niques for scale are difficult to develop. Typical applications codes
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can be tens or hundreds of thousands of lines in length, and blend

a variety of programming languages and libraries. To add to this,

modern HPC architectures consist of tens of thousands of process-

ing elements, have increasing levels of concurrency (threads, cores,

nodes), deeper and more complex memory hierarchies (register,

cache, disk, network), mixed hardware sets (CPUs and GPUs) and

layered interconnects (node, processor, blade, chassis). It is not

feasible therefore to simulate the behaviour of each application in-

struction on each element of the target hardware (if one is to scale

beyond a few thousand processor cores).

In this paper we introduce the Warwick Performance Predic-

tion (WARPP) tool kit which comprises a suite of tools designed

specifically to support the rapid and efficient generation of accu-

rate, flexible performance models for high-performance parallel

scientific codes. The centrepiece of this tool kit is an efficient

and portable discrete-event simulator, which can scale to tens of

thousands of processor cores yet at the same time provide high

levels of modelling accuracy. In order to demonstrate the capabili-

ties of WARPP, we document its application to an industry-strength

procurement benchmark developed and maintained by the United

Kingdom Atomic Weapons Establishment (AWE), one of the UK’s

largest users of supercomputing resources. The focus of this pa-

per is therefore, to (1) provide a detailed description of the tool

kit and simulator, (2) demonstrate its application to a real-world

high-performance parallel scientific code and (3) illustrate the ca-

pabilities of this simulation approach to scale, that is, to model real

application behaviour on HPC systems beyond 50,000 processing

elements, with complex layered interconnects and in the context of

background operating systems noise.

The specific contributions of this paper are:

• The presentation of a new discrete event simulation-based

toolkit, which supports the modelling of industry-strength

parallel scientific codes on modern HPC architectures that

scale to tens of thousands of processor cores. The predictive

accuracy of the resulting models exceeds 90%;

• A detailed description of the simulator’s support for multiple

networks within a single simulation allowing for the evalu-

ation of application performance on complex network and

machine topologies with high degrees of accuracy;

• A description of the use of coarse-grained computational mod-

elling, permitting rapid and accurate simulations of compu-

tational behaviour - a key technique in improving the scala-

bility of the simulations;

• The development of a simulation-based performance model

for an AWE HPC benchmark code on two high performance

computing architectures, with extended projections for up to

65,000 processor cores. The simulation is also used to eluci-

date several properties of the runtime behaviour of the code,

including a breakdown in terms of computation/communica-

tion, parallel efficiency with increasing problem size input

and performance in the presence of operating system noise.

An evaluation of the simulator’s performance in providing

these insights is also examined.

The remainder of this paper is organised as follows: Section 2 dis-

cusses related work; Section 3 introduces the WARPP tool kit and

details the discrete event simulator; in Section 4 we describe the

application of the modelling toolkit to AWE Chimaera and study

the performance of the benchmark for two high performance com-

puting systems; the paper concludes in Section 5.

2. RELATED WORK
Simulation-based performance studies employ specialised simula-

tor hardware or software to remove the requirement for the user

to have expertise in model construction or computing hardware.

The simulator will attempt to replicate the behaviour of the code

with respect to a set of input parameters such as machine processor

count, network latency etc. Examples include the Wisconsin Wind

Tunnel [23], PROTEUS [3] and the PACE toolkit [4, 11] also devel-

oped at the University of Warwick. The notable problem with this

previous research has been that in order for simulations to achieve

appreciable levels of accuracy, each individual program instruction

must be simulated directly. As scientific codes and modern ma-

chine sizes have grown in size and complexity, this approach has

led to intractable simulation times. Whilst many of the techniques

which underpin these toolkits are still relevant, and indeed are used

as a basis for the work presented in this paper, the lengthy sim-

ulation times which have resulted, as well as limited support for

complex networking models, make these toolkits less plausible so-

lutions for users who require accurate models of large, complex

parallel codes.

The more recent DIMEMAS project [10, 20] alleviates the instruction-

based simulation approach through replay of traces obtained during

a run of the application. Evaluation in the context of different ma-

chine sizes is supported through the regeneration of a trace, subject

to the user’s specification. This approach has been successfully

demonstrated on machine sizes of up to 1000 processor cores. The

reliance on traces however, acts as an inhibitor to the manual tun-

ing or changing of a performance model, since the code behaviour

is implicitly contained within the trace rather than explicitly de-

scribed in a user-editable model. Editing such complex structures

is non-trivial and the initial creation requires that the code actually

be written in the first place - modelling-led prototyping of algo-

rithms is therefore not possible. The traces employed are also large

in size requiring considerable disk space and system memory, plac-

ing severe limits on the maximum model size that can be processed

on an individual workstation in feasible timeframes.

In [14], Grove and Coddington develop the Performance Evalu-

ating Virtual Parallel Machine (PEVPM) which provides lightweight

and rapid predictions of performance and execution through the use

of directives, effectively removing the need to simulate complete

application execution. The development of the MPIBench bench-

marking tool aids the PEVPM by providing high fidelity network

models with probability distributions for the variance in transmis-

sion times. The work presented in this paper draws on similar tech-

niques to the PEVPM, but offers three additional contributions: (i)

complex network models; (ii) simulation to large-scale and, (iii) the

impact on the simulation of computational noise.

Denzel et al present MARS - a toolkit for the simulation of high-

performance computing systems in [8]. This system is primarily

constructed to elucidate the performance of computing hardware

including complex network topologies. The mechanism employed

is similar to DIMEMAS in that application traces are replayed but,

the simulator itself is considerably more flexible in the design of

simulated hardware. The work presented in this paper differs from

MARS in that our focus is directed to the development of applica-

tion performance models which provide insight into the behaviour

of algorithms and applications - the MARS system is built to as-

sess the performance of computing hardware in the context of an

application.

3. THE WARPP TOOLKIT
The WARwick Performance Prediction (WARPP) toolkit presented
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Figure 1: The WARPP Modelling Process

in this paper is a prototype semi-automatic performance predic-

tion environment which supports the exploration and analysis of

a code’s performance on machines consisting of thousands of pro-

cessors. More specifically, our interest is on the accurate simulation

of complex scientific codes on modern Massively Parallel Proces-

sor (MPP) machines, which may be constructed from multi-core,

multi-cabinet components, each of which may have complex inter-

connects and communication protocols requiring modelling. Note

that the abstraction of a machine into a set of virtual processors and

a set of networks permits modelling of distributed computational

resources, including SMP-machines.

Figure 1 presents the workflow which is associated with the de-

velopment of a simulation model using the WARPP toolkit. The

modelling process requires four stages: (1) model construction, (2)

machine benchmarking using a reliable MPI benchmarking util-

ity [12, 17], a filesystem I/O benchmark [25] and an instrumented

version of the application, (3) the post-execution analysis of ma-

chine benchmarking results to produce simulator inputs and finally

(4) simulation.

The reader will note that three methods of model construction

are proposed in Figure 1 - (1) hand-coded simulation script pro-

gramming, (2) automated script generation from static source code

analysis and (3) automated script generation from post-execution

trace analysis [15]. In this paper we focus exclusively on method 1

- manual model development - since it provides the most accurate

performance models and enables us to focus on how simulations are

carried out without the added complexity of discussing the tools re-

quired for automated model generation. Tools to support methods

2 and 3 are in development.

3.1 Model Construction
x The WARPP Simulator accepts simulations which are written

in a C-like language designed specifically to reduce the knowledge

requirements in developing a simulation model. As the simula-

tor is based on discrete event methods the script can essentially be

thought of as a program which generates events that are of inter-

Table 1: Events Supported by the WARPP Simulator

Event Parameters

Compute Time

Network Send Destination, Message Size, Type, Tag, Blocking

Network Recv Origin, Message Size, Type, Tag, Blocking

Wait/Idle Time

I/O Read Read Length

I/O Write Write Length

est to the simulator. Six types of events are currently supported

(see Table 1) in the simulation scripting language, which represent

the most common activities associated with the execution of a par-

allel code. During the execution of a simulation the model script

is evaluated, with the simulator halting script execution to process

each event as it is generated. Each event is generated by a directive

placed into the simulation script.

Computation modelling in the WARPP simulator is based on the

use of coarse grained ‘blocks’ of code. This differs from previ-

ous toolkits such as PACE [4, 11], which employed per-instruction

simulation and more recent simulators such as DIMEMAS which

use trace-profiles. The WARPP toolkit can be considered some-

where in-between these two approaches with the focus on a ‘block’

of computation approximately equal to those used by compilers in

the generation of code. A block might therefore be thought of as a

group of instructions but is likely to be smaller and finer than whole

sections of computation recorded during a trace-based profile.

The timings for each ‘block’ are obtained by the direct instru-

mentation of source code with timing routines, with multiple blocks

being instrumented within a single application. The instrumenta-

tion is currently performed by hand, however we are in the process

of developing Fortran and C-language tools to perform instrumen-

tation immediately prior to compilation. Each block corresponds to

a single compute event during simulation. The placement of tim-

ing routines should therefore represent a trade-off between simu-

lator performance and flexible modelling - too large blocks reduce

the experimentation possible in the simulations but improve sim-

ulation times, whilst too small blocks increase the flexibility of a

model at the cost of increasing the number of events the simulator

has to process. From our experience of modelling using the simu-

lator, the instrumentation of ‘blocks’ of code should roughly follow

the notion of a ‘basic-block’ used by compilers, which is typically

a section of code such as a loop body or a group of statements be-

tween function calls. This provides for adequate flexibility, which

often also correlates with the user’s conceptual structuring of the

code, but does not overwhelm the simulator with a large number of

events to process.

By means of an example consider an entire loop. The loop body

contains a single block of code which corresponds to one compute

event per iteration. The time for the block, and thus the simulated

time for each iteration, is obtained by placing a start timer call im-

mediately prior to the loop starting and an end-timing call imme-

diately after the loop has completed. The time the loop takes to

execute is divided by the number of iterations and recorded in a

manner as to map the time to the equivalent event during simula-

tion. For non-loop blocks the time for the event corresponds to

the time between the start and end timer calls. Since each block is

liable to be executed multiple times in a scientific code, the time

for each block is averaged over the course of an execution. When

any MPI function is encountered in the application source code it

is wrapped by a call to stop the code timing and then a clock restart

immediately after completion. This maintains a clear division be-
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tween the timing of computation and communication within the

executing application.

The introduction of instrumentation to a code does have an im-

pact on the performance of the application at runtime and in some

cases can disrupt the optimisation process during compilation. These

overheads are nevertheless less than those generated when profil-

ing. This is because the timing calls are compiled directly into

the application, resulting in efficient, in-context timing, which does

not require control to pass from the application to a large exter-

nal profiling library. Note that the use of timers in the code can be

substituted for toolkits such as PAPI, which provides low overhead,

processor/instruction information, or other advanced machine mea-

surement utilities. In the experiments conducted for this paper, the

overheads resulting from the use of timing statements amounts to

less than 1% of total execution time, as the timed blocks of code

are extremely large when compared to the timing routine used. For

codes where the block size is considerably smaller we are devel-

oping methods of obtaining timing information using light-weight

methods such as reading processor clock registers. Instrumenting

on a per-block basis allows us to gain a valuable insight into the

times associated with each individual section of code. We there-

fore gain finer-grained information on the computational behaviour

of the code, itself directed by the user. Such flexibility is not possi-

ble through profiling alone where the profiling information is often

recorded as a coarser (typically function) level.

We also note that since the timings used for each compute event

are simply numerical values relating to the wall time being used

for processing, they can be generated through methods such as

low-level processor simulation, statistical analysis based on ex-

isting results or analytical modelling. Thus users are able to de-

velop flexible performance studies on a per-event basis, swapping

instrumented compute times for abstract models where desired or

developing entire simulation studies using a combination of these

approaches. Since the simulation environment also exposes a rich

scripting language, a limited degree of non-deterministic behaviour

is able to be modelled through user refinement. We are also in-

vestigating methods for the limited pre-processing or in-simulation

processing of input decks to guide execution behaviour, potentially

enabling data dependent runtimes to be modelled.

3.2 Developing Simulator Inputs and Modelling
Machine Networks

Following code instrumentation, the timed code as well as reliable

MPI [12, 17, 24, 13] and file I/O benchmarks [25] are executed on

the target machine. Only a limited number of processors are re-

quired for this purpose, since the timings which are obtained can

then be used to produce estimates for individual events in the con-

text of increased input sizes or processor counts. MPI and I/O tim-

ings are used to produce the notion of a “time per byte,” so that the

simulator can produce predictions of communication or read/write

times without requiring large lookup tables to be created in mem-

ory. In this subsection we describe how the timings recorded during

benchmarking are processed prior to simulation, so that accurate

models of computation, I/O and networking can be developed.

The computation times per event are recorded from an instru-

mented run on the application. The output of this run is collated

and entered into a ‘globals’ file ready for simulation. The sepa-

ration between the timing of each event and the simulation script

itself helps to promote reusability of the model between different

simulations and provides for greater degrees of flexibility.

Modern machines frequently contain more than one network - by

means of example consider a large multi-core machine composed

of SMP nodes connected via an InfiniBand interconnect. In this

machine there are at least three networks which will be utilised at

runtime - the low latency, high bandwidth core-to-core bus, a fast

processor-to-processor bus within each SMP node and the slower,

lower bandwidth InfiniBand network. Each of these networks has

complex performance properties which must be modelled if the

simulation of communications is to be accurate. In [5] the author’s

show that in a number of high performance codes the use of local

communications (i.e. those within a single node) can be up to 50%

of the total messages sent during execution, demonstrating a sub-

stantial motivation for complex network simulation mechanisms to

be developed.

This process is achieved in the WARPP toolkit by the construc-

tion of multiple network ‘profiles’. A profile represents one net-

work within the machine. Within each profile the message space

is divided into distinct regions to enable the modelling of networks

which utilise multiple protocols - for instance, many machines will

utilise a special small message protocol and then use an alterna-

tive for larger messages and so forth - or packet based chunking

of network transmissions for which there may be various complex

behaviours. The performance of the interconnect in each region

is described by two parameters - latency and bandwidth. The la-

tency and bandwidth values used for each region are calculated by

performing a least-squares regression over the data obtained during

network benchmarking. Multiple regions are then grouped to form

a profile.

The topology of the machine is relayed to the simulator by a set

of triples - each containing the identifiers of two virtual proces-

sors and the network which connects them. In a dual-core, dual-

processor SMP machine, virtual processors 0 and 1 will be mapped

to the core-to-core profile, with processors 0 and 2 mapped to the

processor-to-processor profile and so forth.

As with all inputs to the WARPP simulator, network topolo-

gies and profiles are communicated in plain text allowing for easy

modification by end-users. We are also in the process of build-

ing automatic topology description tools which relay information

obtained during the scheduling of a job or from post-execution

analysis of MPI benchmarks. The separation of machine topology

from the simulation model and input parameters allows for further

reusability between simulations and the rapid creation of alternative

topological investigations which may be generated by the machine

scheduler, workload analysis or experimentation.

A similar process to the construction of a network model is ap-

plied to output from the filesystem I/O benchmark to form the ma-

chine’s I/O model.

3.3 Simulation using the WARPP Simulator
Following the creation of all required simulator inputs, the simula-

tion of the code is now possible. Simulation is conducted on the

WARPP simulator, which is written entirely in Java to aid porta-

bility between machines and the reproducibility of results between

runs and installations. Four inputs are required for accurate simula-

tion - a simulation script (which contains the control flow and event

structure of the application), a set of ‘global’ values which contains

the respective timing for each computational event, the machine’s

network model and finally an I/O model.

A simulation is carried out by the creation of a set of ‘virtual

processors’ within the simulator - with each being responsible for

maintaining control-flow and expression stacks as well as a lo-

calised timeline. A virtual processor is an abstract processing el-

ement - this represents a physical processor core or in the case of

uni-core processors a complete processor. The execution of the

simulation script proceeds by the swapping of control flow between

one of the virtual processors in the system, and handlers within the
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simulator which process the events being generated. A virtual pro-

cessor simply executes the control flow of the simulation model,

halting when an event is reached and passing control flow back to

the simulator for processing. In order to improve performance the

simulation script is compiled to Java bytecode by the creation of

multiple small functions which comply with the requirement for

execution to halt when an event is reached.

Computation and wait/idle events are the most easily processed

since they require the virtual processor’s timeline to be incremented

by a specific time - for compute events this is resolved by locating

the time associated with the event in the simulator ‘globals’ input,

for wait events the simulator generates the next event in the virtual

processor and then resolves how long the processor would have

been idle.

Networking and I/O events are passed to special handlers within

the simulator that check that both the sender and receiver are ready

and have posted the correct event details (i.e. the message size, tag,

destination are all aligned). The time associated with the sending

transmission is obtained by finding the correct network associated

with the sender and receiving virtual processor and then calculat-

ing the time required for the transmission of the message using the

latency and bandwidth values from the respective region. Where

transmissions between the sender and receiver do not occur at the

same point in virtual time, the simulator will stall the respective

processor until needed, recording this time as a wait event. The

time for each event is recorded against the virtual processor’s lo-

calised timeline.

A simulation completes once all virtual processors have fully ex-

ecuted the simulation script, after which timeline summaries are

displayed to the user. The simulator includes several options to

change its behaviour to suit user preferences, one of which records

the entire timeline for each virtual processor into a series of traces

allowing post-simulation inspection of behaviour.

4. CASE STUDY: MODELLING THE AWE

CHIMAERA BENCHMARK
The Chimaera benchmark is a three-dimensional particle transport

code developed and maintained by the United Kingdom Atomic

Weapons Establishment (AWE). It employs the wavefront design

pattern which is described briefly in Section 4.1. The purpose of

the benchmark is the replication of operational behaviour of larger

internal codes which occupy a considerable proportion of parallel

runtime on the supercomputing facilities of AWE. The code shares

many similarities with the ubiquitous Sweep3D application [16,

18] developed by the Los Alamos National Laboratory (LANL)

in the United States, but is considerably larger and more com-

plex in its operation. Unlike Sweep3D, Chimaera employs alter-

native sweep orderings within the data array, a convergence crite-

ria to halt simulation (Sweep3D always executes precisely 12 it-

erations) and extended mathematics. The AWE Chimaera code is

also relatively unknown in academic literature with only one exist-

ing analytic model [22] - there are no existing simulations of the

benchmark. It is worth noting that the modelling of both Chimaera

and Sweep3D continues to be of interest to laboratories such as

LANL and AWE because of the considerable proportions of exe-

cution time consumed, thus accurate models of existing and future

machines can help to direct procurement and tuning so that each

machine is run at its maximum performance.

4.1 Generic Wavefront Algorithm
The wavefront algorithm, originally the “hyperplane” method, is

based on work by Lamport from the 1970s which investigated meth-

Ny
Ny/n

Nz

Nx

Nx/m

Inflows

Outflows

Figure 2: Wavefront Executing through a 3D Data Array

Table 2: Benchmark Machine Specification

Francesca Skua

Architecture Distributed Cluster Shared-Memory

Nodes 240 1

Processor Intel Xeon 5660 Intel Itanium-II

Instruction Set x86-64 IA-64

Processor Clock 3.0Ghz 1.6Ghz

Processors/Node 2 56

Cores/Processor 2 1

Total Cores 960 56

Memory per Node 8GB 112GB

Total Memory 1.92TB 112GB

Network Interconnect 4x SDR-InfiniBand SGI NUMAlink

File System 12TB (IBM-GPFS) 3.7TB

Operating System GNU/Linux GNU/Linux

Compiler Toolkit Intel 10.0 Intel 9.0

ods for the parallelisation of Fortran DO-loops [21]. The basic

three-dimensional wavefront problem executes over a data array of

size Nx×Ny×Nz . The array is distributed over a two-dimensional

processor array of size m × n giving each processor a ‘column’ of

data of size Nx/m×Ny/n×Nz . The decomposition of this data is

presented graphically in Figure 4. For discussion purposes it helps

to consider the column of data as a stack of Nz ‘tiles’ each of size

Nx/m × Ny/n × 1.

The wavefront algorithm proceeds by executing a series of sweeps

through the data array. In the usual course of execution Chimaera

executes 8 sweeps, one for each vertex of the three-dimensional

data array. Note that this is not a strict requirement, the LU [27]

code developed by NASA, which also employs the wavefront algo-

rithm, requires only two sweeps to complete.

A sweep begins on a processor at a vertex of the processor ar-

ray. Computation required for the first tile is completed and the

boundary information is sent to the two downstream neighbouring

processors. The originating processor then computes the second

tile in its data stack, while the two neighbours compute their first

tile. Following computation the processors communicate boundary

information with their downstream neighbours. A sweep is com-

plete once all processors in the data array have computed all tiles

in their data stack. Figure 4 presents a sweep executing through the

data array. Darkened grey cells have been solved in previous steps.

A full iteration of the wavefront algorithm is complete when all

8-sweeps in Chimaera have finished executing. For the standard

input decks supplied during benchmarking, Chimaera executes 419

full iterations.
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Figure 3: Benchmarked MPI Performance for Francesca and

Skua (Intel MPI Benchmark 3.0)

4.2 Benchmark Machines
A simulation model for the Chimaera benchmark has been devel-

oped manually and evaluated on two supercomputers. The two ma-

chines used to obtain sample computation times as well as valida-

tions of the simulator’s accuracy are: (1) a recently installed 11.5

TFLOP/s IBM Intel Xeon InfiniBand machine (Francesca) and (2)

an older SGI Altix 3700BX2 (Skua). Both are production machines

operated by the Centre for Scientific Computing at the University

of Warwick. The specification for each machine is shown in Ta-

ble 2. Note that as both machines are used for production runs

at the University, job runtimes exhibit as much as 15% variance

due to the inconsistent allocation of resources within the machine,

background load and contention for resources arising from node

sharing.

The networks used by both the Francesca and Skua machine have

been benchmarked using the Intel MPI Benchmarking utility [17]

version 3.0 in order to obtain a set of network profiles suitable for

simulation. We note that several more advanced MPI benchmark

utilities are available [13, 24] for complex network benchmarking,

however, for our purposes the Intel benchmark is sufficient to ob-

tain accurate point-to-point communication times which support

the application modelling process. The results from this bench-

marking are presented in Figures 3(a) and 3(b) respectively along

side simulated results for the associated network models. As de-

scribed in our earlier example of network modelling, the Francesca

machine uses three inter-core communication networks - each of

these are modelled as a separate profile for simulation. The Infini-

Band model, which is the key contributor to the accuracy of simu-

lations for the Francesca machine, has a root mean squared error of

1.8×10
−7 seconds. We note that the considerable variability of the

NUMAlink network used in Skua poses a difficult set of values for

the network modelling approach used in this simulator, however,

an RMSE of 6.97×10
−7 seconds is also obtained demonstrating a

good level of accuracy for such a volatile performance profile. We

also note that in the region of interest for the Chimaera code (which

Table 3: Simulation Validations - Francesca Machine (Intel

Xeon, InfiniBand, OpenMPI 1.2.5, Intel Fortran 10 Compiler)

Core Problem Actual Predicted Error Error

Count Size (secs) (secs) (secs) (%)

4 603 95.05 95.32 0.27 0.29

8 603 50.18 50.58 0.40 0.80

16 603 26.65 26.67 0.03 0.10

64 603 9.00 9.63 0.64 7.08

128 603 5.69 6.22 0.52 9.20

256 603 3.86 3.96 0.10 2.56

32 1203 196.86 196.90 0.04 0.02

64 1203 56.72 55.22 1.50 2.64

128 1203 32.56 33.15 0.60 1.82

256 1203 18.64 19.47 0.83 4.44

128 2403 225.65 211.63 14.02 6.21

256 2403 129.65 118.59 11.06 8.53

Table 4: Simulation Validations - Skua Machine (SGI-Altix,

NUMAlink, Intel Fortan 9 Compiler)

Core Problem Actual Predicted Error Error

Count Size (secs) (secs) (secs) (%)

4 603 345.78 324.38 21.40 6.19

8 603 182.73 167.60 15.13 8.28

12 603 126.19 113.73 12.45 9.87

16 603 97.61 86.07 11.54 11.82

18 603 86.68 78.36 8.32 9.59

20 603 78.67 70.02 8.65 10.99

20 1203 605.85 531.21 74.63 12.32

24 1203 494.19 446.17 48.02 9.72

28 1203 433.64 402.39 29.25 6.75

32 1203 377.75 339.78 37.97 10.05

uses small messages) the model demonstrates exceptionally high

levels of predictive accuracy as can be seen by close relationship

between predicted and benchmarked values in Figure 3(b).

4.3 Model Validation
Tables 3 and 4 present validations of the simulation-based model

of the AWE Chimaera benchmark for the Francesca and Skua ma-

chines respectively. The ‘actual’ runtime figure presented is av-

eraged over 5 runs to ensure a representative runtime is provided

for comparison to the prediction. Variations of up to 15% are seen

in the these runs which we attribute to machine noise, node shar-

ing and background network load. The average error for both ma-

chines is less than 10% despite there being significant differences in

machine architecture, reflecting the ability of the simulator to pro-

cess simulations on a variety of hardware platforms. Note that the

validations presented are the largest which are possible within the

resource constraint policies used on the Francesca machine. Al-

though it is difficult to predict whether similar error bounds will

hold at considerably larger scale, the projection of larger runs based

on accurate, validated smaller runs is common place in high perfor-

mance computing modelling literature and serves to provide insight

into potential performance at machine sizes which may not even be

commercially available.

The computation times for both simulations are taken from a sin-

gle run of the Chimera executable on 4 processing elements on each
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Table 5: Simulation Validations - Cray XT3 and XT4 installa-

tions at AWE and ORNL (Chimaera 2403 Problem)

Core Machine Actual Predicted Error

Count (secs) (secs) (%)

256 AWE XT3 333.54 309.92 7.08

1024 AWE XT3 100.01 92.16 7.91

1024 ORNL XT4 110.43 101.48 8.11

4096 ORNL XT4 54.13 48.18 10.99
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Figure 4: Runtime Breakdown for the Chimaera 603 Problem

machine. The compute event times have then been extrapolated for

larger processor configurations by developing a per-cell computa-

tion cost and then multiplying this by the number of cells a compute

event represents. Similarly, the network model was constructed us-

ing only a single process on two nodes for Francesca and two pro-

cessors for Skua. From these simple set of measurements we are

able to construct each of the simulations shown. The reliance on

so few measurements is of considerable advantage during procure-

ment since sample machines, which are often only single blades

or at most a group of blades, can be benchmarked and their per-

formance at scale predicted, even if such a large machine does not

currently exist.

We are also able to show accuracy of the simulations at scale

(Table 5). WARPP simulations of the Chimaera benchmark have

been run at AWE and the Oak Ridge National Laboratory on Cray

XT3 and XT4 systems respectively. For executions exceeding 4000

cores, the simulations demonstrate a greater than 90% accuracy.

These results also correlate with those from a recent analytical

study in [22].

4.4 Benchmark Behaviour Breakdown
Obtaining a breakdown of the performance of a parallel code is

often a difficult challenge. The use of parallel profiling tools can

provide limited insight, but such tools often perturb the runtime po-

tentially limiting the applicability of the results. Analytic models

also provide only limited insight since much of the complexity of
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Figure 5: Parallel Efficiency for the 5003 and 10003 Chimaera

Problems on Enlarged Francesca and Skua Machines

the code’s operation is hidden in the highly abstracted mathematics

of the performance model. For this reason, simulation-based mod-

els often provide more accurate insight into the behaviour of paral-

lel codes, which in turn can support more accurate determination of

code or machine bottlenecks and potential sources of optimisation.

Figures 4(a) and 4(b) present the proportion of runtime attributed

to computation, network sends/receives and processor wait time on

a processor at the centre of the processor array for Francesca and

Skua respectively. Processors on the the edge of the array will com-

municate less, resulting in a lower proportion of time in send or

receive, because they have at least one neighbour missing.

In comparison both machines demonstrate similar behaviour up

to 32 processors with computation accounting for between 80-90%

of runtime. At scale, the results for the Francesca machine show

that the decline in the proportion of time accounted for by compu-

tation is relatively smooth with the networking exhibiting slightly

more volatile behaviour. We attribute this to the length of messages

being communicated breaking over one of the 2048-byte bound-

aries where different performance characteristics exist.

4.5 Large Problem Size Inputs
The procurement of future systems is often oriented not only to im-

proving the performance of existing codes and problem sizes but

also to the execution of more complex or larger inputs. Our ex-

perience has been that it is common for procurement exercises to

look at enlarging the computational capability of a system by two

or three times in each subsequent purchase. Similarly, the increase

in processor core counts which usually accompanies any new ma-

chine purchase is expected to be used efficiently - simply increas-

ing the core counts assigned to applications can result in limited

speed improvements yet consume much more of the machine’s re-

sources. Systems managers will therefore expect to see high levels

of utilisation and efficient machine use. To this end we have used

the existing simulation model and extended the input parameters

extrapolating the existing computational costs associated with the
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Figure 6: Relativized P-SNAP System Noise Profiles for

Francesca and Skua when executing fixed-quanta equal to the

computation of the Chimaera 603 Problem

2403 Chimaera problem for two larger inputs - 500
3 and 1000

3.

To our knowledge Chimaera has never been run at such scale. The

target of our analysis is the identification of the point at which the

code breaches 50% parallel efficiency. This figure is targeted by

computing sites such as AWE and LANL because it represents ef-

ficient use of the machine, trading further reductions in runtime for

processor availability.

The result of our simulations is shown in Figure 5. As can be

seen from the figure, the 5003 problem becomes less than 50%

parallel efficient shortly before 8192 cores and the 10003 problem

shortly before 32768. Skua has marginally higher levels of parallel

efficiency because the processors used are slower and therefore it

takes longer for the network to dominate the execution. Note that

Skua still has the slowest runtimes. By providing quantitative esti-

mates of the point at which the code’s efficiency falls below 50%

we are able to inform procurement activities and provide user’s

with an upper limit on the number of processors which should be

employed to comply with the 50% metric.

4.6 Impact of System Noise
System noise, also referred to as operating system jitter, arises from

the use of background daemons and other user’s processes [7]. It

is common that commercial, more general purpose, operating sys-

tems such as Linux experience higher levels of noise than hand

tuned or specialised light-weight kernel processes such as Cray

Catamount. The effect of noise on a single individual processor

is generally considered to be low, however, when all the processors

executing a parallel application experience noise, the effect can be

compounded by processors arriving late for communication or tak-

ing longer to compute than their neighbours.

In this final set of experiments we attempt to provide quantita-

tive estimates of the impact of noise on Chimaera by injecting ran-

domised noise into the simulation during execution. The random

noise distribution is taken from an execution of the P-SNAP bench-

 2

 4

 6

 8

 10

 12

 14

 16

 8  16  32  64  128  256  512  1024  2048  4096

P
er

ce
nt

ag
e 

In
cr

ea
se

 in
 R

un
tim

e 
(%

)

Simulated Processor Cores

Increase in Runtime (%)

(a) Francesca

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 4  8  16  32  64

P
er

ce
nt

ag
e 

In
cr

ea
se

 in
 R

un
tim

e 
(%

)

Simulated Processor Cores

Increase in Runtime (%)

(b) Skua

Figure 7: Percentage Increase in Predicted Runtime of Chi-

maera with Noise Profile Applied During Simulation

mark developed by the Los Alamos National Laboratory. P-SNAP

executes a fixed quantum of work for which a specific time period

of execution is expected, when the actual recorded execution time

varies this is recorded. By analysing the distribution of multiple

executions of the fixed-quantum a distribution of noise can be gen-

erated. Figures 6(a) and 6(b) present the results of this benchmark

when executing fixed-quanta approximately equal to the computa-

tional work in Chimaera. The noise for the Skua machine is consid-

erably smoother and less frequent than that observed on Francesca,

which may be attributable to operating system tuning by SGI or

fewer background daemons being executed on the system.

The impact of the application of noise during simulation is shown

in Figures 7(a) and 7(b). For both machines the introduction of a

noise profile to execution results in reasonable increases in runtime

which are up to 15% for Francesca and 8% for Skua. We believe

that these values give some indication of the variation a user might

expect in the runtimes of their job - the 15% figure correlates with

our own experiences from executions of Chimaera on the Francesca

machine on configurations up to 256 processors. The increase in

impact on runtime shown at higher processor counts also follows

expectation - the more processors in a system the higher the proba-

bility that random noise will interfere with any single processor in

the run.

We are currently developing specific network noise features within

our simulator which allow for the simulation of networks which ex-

perience blocking or congestion. An open question remains - how

best to efficiently identify the parameters to such a noise profile

from benchmarking in a shared system.

4.7 Simulator Performance
In the introduction to this paper we commented on the observa-

tion that many existing simulation toolkits designed to replicate the

behaviour of parallel scientific codes are simply unable to provide

tractable execution times because of the reliance on individual in-

struction simulation. The problem is particularly acute when simu-
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lating machines with tens of thousands of processor cores.

In Figure 8 we present the time required for our own simulator to

simulate large problem inputs to Chimaera. These times were taken

from execution of the simulation on a single Intel Xeon dual-core

2.33Ghz workstation with 8GB of memory. The Sun JDK 1.6 (64-

bit) edition was used as the Java virtual machine. Approximately

the same simulation time is required for both Francesca and Skua.

All simulations for 16384 cores or less are completed in under an

hour. Simulations for 1024 processors or less - the usual size of

existing jobs at AWE and the University of Warwick - run in under

a minute. All simulations require less than 2GB of system memory.

Whilst we believe that these times represent a clear advance for

simulations of parallel codes we are still actively investigating meth-

ods to optimise and improve the performance of the simulator still

further. Potential avenues for optimisation include parallelisation,

since the existing simulator is entirely single threaded, and just-

in-time/ahead-of-time optimisation of the simulation script prior to

compilation in Java.

5. CONCLUSIONS
In this paper we introduce the WARwick Performance Prediction

(WARPP) toolkit - a discrete event simulation-based suite of tools

which have been designed to support the rapid and accurate mod-

elling of parallel scientific codes. At the heart of the toolkit lies

a newly designed discrete event simulator which executes C-style

scripts to generate events representing the behaviour of a parallel

application. The specific contributions of the simulator which are

explored in this paper are:

• The use of coarse grained ‘basic-block’ computational mod-

elling as opposed to individual instructions seen in existing

work. The use of larger computational blocks, for which

the times are recorded through instrumentation, allows for

considerable increases in performance and scalability whilst

remaining more flexible than the coarse-grained sections of

code which result from trace-profiling;

• Support for complex models of machine networks. Network

models can now be composed of multiple ‘profiles’ each de-

fined by a set of ‘regions’. Each region itself represents a

specific range in the message space. The topological map

of the system is then relayed to the simulator through virtual

processor pairs being linked to a profile. By permitting com-

plex topologies to be created the simulator is able to provide

accurate models of machines which employ multiple com-

plex internal networks;

• Direct compilation of model scripts into Java bytecode al-

lowing for a considerable improvement in simulation perfor-

mance;

• The ability to model machines containing thousands or tens

of thousands of virtual processors. This represents a clear ad-

vantage of existing research, which is typically demonstrated

on configurations of up to 1000 processor cores. We note that

the simulator is able to deliver simulations for exceptionally

large machine sizes within very acceptable execution time;

• Full recording of events and code behaviour information dur-

ing runtime which is summarised to the user upon comple-

tion. The ability to analyse the results and output of the sim-

ulation in more detail is of significant advantage to users who

wish to use the system as means to discover code or machine

bottlenecks.

In the latter half of this paper we applied our toolkit to modelling

the industrial strength Chimaera benchmark developed by the United

Kingdom Atomic Weapons Establishment on two high performance

computing architectures employed at the University of Warwick.

This paper represents the first reported simulation of the Chimaera

code. Model validations for both platforms were conducted on a

variety of input sizes and processor configurations demonstrating

accuracies which exceeded 90%. Similarly, network models de-

veloped for InfiniBand and NUMAlink revealed RMSE errors of

less than 1.8×10
−7 and 6.97×10

−7 respectively, despite complex

multi-profile multi-region models having to be employed. Each of

these simulations and network models was developed with only a

small number of benchmarks being required - in the case of Francesca

only two nodes were used and for Skua only two processors - which

is of clear benefit during procurement when only limited resources

are available for testing or benchmarking.

Following the development of an accurate simulation we were

able to further explore the performance of Chimaera for existing

and enlarged machine configurations and problem sizes. We high-

lighted the parallel efficiency of the code at a problem size which

has never before to our knowledge been executed. These results

are of utility to system designers, code developers and procurement

managers. As well as providing key insights into the breakdown of

the code’s runtime for two platforms, we were able estimate the

runtime variance of the code in the context of machine noise - the

maximum impact of which is estimated to be 15% when executing

on the Intel Xeon-based Francesca machine.

The toolkit presented in this paper is actively being developed to

provide rapid, accurate and where possible automated generation of

runtime predictions. Many of these tools are still in the process of

being prototyped and extended in our collaborative work with aca-

demic and industrial partners. The specific results presented in this

paper, demonstrate that the simulator, which lies at the very centre

of the toolkit and WARPP modelling process, offers accurate and

reliable predictions of code behaviour in compact timeframes. The

ability to develop accurate models rapidly, as well as to simulate

these quickly, represents a significant improvement over existing

simulation-based performance modelling toolkits which cannot of-

fer the scalability or necessary features to support the demands of

modern application performance modelling.
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