A Virtual Integrated Network Emulator on XEN (viNEX)

Abraham Mukosi

*
Mukwevho
School of Computing
University of South Africa
P O Box 392, UNISA, 0003
mukosi@gmail.com

ABSTRACT

The recent progress on virtualization technologies has made
it possible to deploy multiple hosts instances with operating
systems running real network protocol stacks on one single
server. The objective of this paper is to explore whether it is
feasible to use such environments for network emulation and
simulation. Some significant amount of research is taking
place in this area, this includes Emulab [6] virtualization,
and IMUNES [12] system. Both Emulab and IMUNES are
based on FreeBSD Jails.

Very little is known about using traditional virtualization
platforms (such as Xen and VMware) for virtual emulators.
As part of our research, we will attempt to develop a vir-
tual emulator (ViNEX') based on Xen. Having identified
the limits and weaknesses of this approach, we also propose
some areas where viNEX can be useful.

Categories and Subject Descriptors

D.4.8 [Performance|: Measurements; 1.6.7 [Simulation
Support Systems|: Environments

General Terms

Network Simulation and Emulation

Keywords

Computer networks, Simulators, Emulators

*Abraham Mukwevho is a M.S student and primary author
of this paper at the University of South Africa.

JrConﬁguration and Administration scripts men-
tioned in this paper can be accessed online at -
http://sites.google.com/site/mukosi/

Yfrom now onwards, viNEX will be used as a short for
Virtual Integrated Network Emulator based on XEN

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIMUTools March 02-06 2009 Rome, Italy

Copyright 2009 ICST, 978-963-9799-45-5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5745
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5745

John Andrew van der Poll
School of Computing
University of South Africa
P O Box 392, UNISA, 0003
vdpolja@unisa.ac.za

Robert Mark Jolliffe
bobjolliffe@gmail.com

1. INTRODUCTION

Network research experiments have traditionally been con-
ducted in an emulated or simulated environment. Emulators
(such as Emulab [6]) are normally based on physically de-
ployed networks which are associated with high procurement
and maintenance costs, complex configurations and infras-
tructure (servers, routers and gateways). On the other hand,
network simulators such as NS-2 [15] provide a self-contained
and simple environment that can be hosted on a single host.
Simulators provide a synthetic environment which is only
an approximation of the real world and therefore the results
might not be a true reflection of real world. Furthermore,
network protocol components developed in a simulated envi-
ronment require a significant amount of code refactoring in
order to migrate them into the real world. This is mainly be-
cause simulated environments do not run real network pro-
tocol stacks, instead they use software modules that mimic
real world protocol stacks. It is also possible to combine both
emulation and simulation in one environment, for example;
in Emulab simulation can be provided by instantiating NS-2
traffic generators or sinks on one of the topology nodes. To
overcome limitations associated with simulators, emulators
provide an alternative approach whereby network protocols
can be developed while interacting with real protocol stacks,
and hence eliminating the need to migrate protocol code to
the real world. Network emulators have traditionally been
based on physical network deployments (a good example is
the original Emulab). The recent advances on the develop-
ment of virtualization technologies has now made it possi-
ble to deploy multiple hosts on one single environment and
interconnect them to provide a complete network environ-
ment. These virtual hosts run real network protocol stacks
and therefore provide an emulated environment that can be
used for network research experiments.

Our fundamental goal is to explore the possibility of us-
ing a traditional virtualization platform like Xen to build a
stand-alone network emulator hosted on one single server or
PC. Part of the rationale for this research is to be able to
create a freely distributable experimental environment for
use, for example, by distance education students who don’t
have computer laboratory access. We are also aware that
the software bridges will be a performance hit. What we
don’t yet know is how slow will be too slow. Furthermore,
the viNEX environment is never going to be useful for high
performance fast network emulation, but it might still be
useful for other educational scenarios.

Our emulator (viNEX) was built using free and open source
software. The use of open source software in networking re-

search continues a very long tradition, this includes NS-2,
FreeBSD Jails, and Emulab. We selected Xen as the vir-
tualization platform because at the time the research was
initiated Xen was the most viable open source platform you
could run ”any OS on”. Despite our focus on building mini-
nodes using NetBSD, the system is not, and is not meant to
be, restricted to using NetBSD nodes. In other words the
ability to run any OS is part of our high level design goals.
Other open source technologies used include; FreeBSD 7.0
and NetBSD 4. NetBSD is used to implement the exper-
iment topology nodes. FreeBSD is used to provide traf-
fic shaping and link emulation using Dummynet and IPF'W
which are also open source technologies.

We would also like to make a special note to our audience -
please note that our emulator is work-in-progress therefore it
is by no means in a complete status, it an ongoing research
work and we are continually improving it. On the other
hand, we are aware of some limitations of this approach, we
will be addressing some of them as part of the research. All
scripts and progress work on viNEX can be referenced online
at [13]

The rest of this paper is structured as follows. In Sec-
tion 2, we give background work in support of this research.
The original contribution work (viNEX) is described in Sec-
tion 3 through to Section 4. We approach the conclusion of
this paper by looking at current and other related research
work at Section 5. We conclude this paper and give pointers
to future research work in Section 6.

2. BACKGROUND

To begin, we provide some overview on emulation and
simulation to form the foundation work for viNEX. Due to
the limit in scope for this paper, we could not provide a com-
plete background on Xen networking. A significant amount
of technical writing on Xen exists, interested readers can
refer to [19], [5] and [24].

2.1 Network Emulation and Simulation

Network research environments can be classified into three
categories, i.e. testbed, network simulation and network em-
ulation. A network testbed is a physically deployed and
configured environment dedicated for conducting network
research experiments. It is formed by real networking ele-
ments such as end hosts, routers, links (cables), bridges and
switches. Some good examples of testbeds include; Emu-
lab [6], and PlanetLab [4]. Both these environments con-
sist of a set of physical servers deployed in a laboratory
environment interconnected by switches. Network experi-
menters normally access these shared testbed environments
over the Internet to setup and execute their experiments, re-
sults are obtained by downloading captured log files. Some
advantages of testbed environments include; experiments
are executed in real time and interacting with real proto-
col stacks deployed at the end hosts and routers. Testbed
environments are not dynamic and have a lot of drawbacks;
they are difficult to setup, configuration can be tedious and
time consuming, physical hardware is extremely expensive
to procure, hardware logistic and storage space problems.
Furthermore, although offering a real world environment,
conducting experiments on testbed offers an uncontrollable,
unpredictable and non-repeatable environment.

Network simulators are normally implemented as a col-
lection of software modules providing a synthetic network

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5745
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5745

experiment environment. Simulators achieve this by defin-
ing and modeling network behavior through the abstraction
of network elements, this include a virtual simulated time,
and a discrete network events system for traffic generators.
Simulators are normally deployed and executed on a single
host. Despite the limited emulator functionality of NS-2 [15],
NS-2 is a classical and popular example of a network simu-
lator. Network simulators offer a repeatable and controlled
environment for experiments. Simulators are easy to setup
and configure, and a result, they offer a lot of control to ex-
perimenters making them an ideal choice for rapid protocol
prototyping and evaluation.

Network emulation refers to a hybrid technique that lever-
ages on the features and benefits of both testbed and simu-
lated techniques. Emulation combines the real network ele-
ments of the testbed approach to the synthetic or simulated
elements of simulation. In most cases, simulated elements
of an emulated environment include - network links and in-
termediate nodes.

Emulab, despite being a physical testbed environment, is
a good example of an emulated environment. In Emulab,
a transparent FreeBSD delay nodes are inserted between
topology links in order to simulate the network boundary
conditions using the Dummynet module. NS is also an ex-
ample of a limited network emulator. NS has recently in-
troduced some limited emulation functionality whereby real
network traffic can be subjected to emulated network com-
ponents. The emulation facility of NS is described in detail
at [7].

3. IMPLEMENTATION OF VINEX

The following sections give a technical description of the
emulator (viNEX) and its implementation details. Develop-
ment of viNEX was conducted on a single Linux host, see
Table 1 for environment hardware and software configura-
tions;

Table 1: viNEX Development Environment

Operating System | CentOS 5.1
Memory 1 GB
CPU Intel Core 2 Duo, 3.0 GHz CPU

with vT Support

Xen 8.2, NetBSD 4, FreeBSD 7
(with Dummynet and IPFW en-
abled)

Other Software

3.1 Architecture and Design

Figure 1 depicts the high-level architecture of viNEX. The
main components of viNEX include: control network, experi-
ment topology nodes, traffic shaping node, network links, and
testbed configuration and management scripts.

3.1.1 Control network

Similar to Emulab [6], a separate control network is cre-
ated to allow users direct access to the experiment nodes
from within Domain 0. The control network is used by setup
scripts for access to the nodes in order to configure them
for networking by executing commands using SSH. Each
topology node (Node X) is assigned a Class C IP address
196.30.225.X for the control network.

Xen Hypervisor (VMM)

(" Control Network Environment (Domain 0)

Contral Network's Routing Table

oy
192168301 |wrLo

Traffic Shaping Node
(FreeBSD Cuest)

leeso: |wmr2e

wrao

(192 163 30 754, 197 168 35.253)

Experiment Topology Environment

< (192.168.302)

f10.0.1.2. 100.2.3)

(192.169.301) .. [192.168.303)

Figure 1: High-Level Testbed Architecture

3.1.2 Experiment topology nodes

These nodes form the topology to be used for conducting
a network experiment. They are standard Xen HVM guest
nodes. All experiment nodes are NetBSD 4 nodes running
a minimal kernel.

3.1.3 Traffic shaping node

The traffic shaping node is a FreeBSD node configured as
a transparent gateway between network links. In addition
to link modeling, the traffic shaper is used to model network
boundary condition such as: bandwidth limitation, packet
delay, and random packet loss.

3.1.4 Network Links

Links are used to model communication between any pair
of experiments topology node. Links are defined inside the
traffic shaper node. The traffic shaper node uses a combina-
tion of software bridging together with VLANS in order to
model the link between two nodes. Dummynet and IPFW
are used for bandwidth and delay simulation.

3.1.5 Configuration scripts

This is provided through a collection of Linux shell scripts
as follows. All these scripts can be obtained online at [13]:

start-gateway.sh - is used to boot the FreeBSD traffic
shaping node.

start-node.sh - is used for starting any NetBSD experi-
ment topology node as required

create-link.sh - is for for creating links between each pair
of nodes as specified by the experiment.

modify-link.sh - is used to alter the link properties after
it has been created.

3.2 Network Links

We now expand and discuss the lower level details of the
network link abstraction between any pair of topology nodes.
For the purpose of this discussion, please assume the two
node topology depicted in Figure 2 below;

A link between any pair of virtual nodes is formed by the
following network elements; front-end interfaces, back-end
interfaces, vlan subinterfaces, bridges, ebtables rules, ipfw

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5745
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5745

DGR W

196302251 196302252
Link 1
[Node-1 i - - - { Node-2 '
bandwidth: ZMbitss
delay: 10
10.0.1.1 I':sls rate: r;_;;a 10.0.1.2

Figure 2: A basic two-node network topology

rules and dummynet pipes. A sample Xen configuration for
the scenario in Figure 2 is shown in Listing 1. The important
information to note here is the IDs assigned by Xen to each
node.

[root@mukosi experiment]# xm list

Name Ip Mem VCPUs State Time (s)
Domain-0 0 1425 2 102.0
Gateway 1 512 1 31.7
Node-1 2 16 1 12.4
Node -2 3 16 1 13.1

Listing 1: Xen configuration of Figure 2 topology

Node-1 Domain 0 Network Configuration
(NetBSD)

k0
196.30.225.1 196.30.225.253 J
10.0.1.1 1
[00:16:3E:16:3F-66]

Node-2

(NetBSD)
0 105302252
10,012
[00:16:35:34.28:80]

Gateway
Traffic Shaping
(FreeBSD)

Figure 3: Components of a link connection between
two nodes

The following paragraphs briefly describe each network
link element as identified above:

3.2.1 Front-end interfaces

These are interfaces running inside each domain. Since we
are using HVM, all domains are running the native unmod-
ified network drivers. All interfaces involved are depicted in
Figure 3. Each node is allocated five front-end interfaces,
they configured during the node startup process. The low-
est interface, rtk0 is always reserved for the control network
and it is automatically assigned the control network IP ad-
dress during startup. The IP address allocation scheme for
the control network is such that for each Node X, interface
rtkoO is allocated a Class C IP address 196.30.225.X.

3.2.2 Back-end interfaces

They are interfaces inside Dom0 and directly connected
to front-end interfaces inside the topology domains as well
as the Gateway node. Looking at Figure 3, Node-1 and
Node-2’s front-end interfaces are directly connected to back-
end interfaces vif2.1 and vif3.1 respectively. Similarly,

RN SR

the Gateway node’s front-end interfaces rtkO and rtk1 are
connected to back-end interfaces vif1.0 and vif1.1 respec-
tively.

3.2.3 Bridges

For each link, two Linux software bridges are created.
The purpose for the bridges is to connect the traffic from
the topology nodes directly to the Gateway node for traf-
fic shaping in a protocol independent manner. Packets are
forwarded based on Ethernet address and not IP address.
Both the node’s back-end interface and the Gateway’s vlan
subinterfaces are joined together to allow traffic routing at
layer 2, as a result all protocols can be carried across the
links.

3.2.4 VLAN Sub-Interfaces

The Gateway node only has two fixed interfaces (vif1.0
and vifl.1) connecting it directly to the Dom0. Since all
links have to go through the FreeBSD Gateway node for
traffic shaping, we had to derive a mechanism that will al-
low the sharing of these two fixed back-end and front-end
interfaces among all links. For each link X in the topology,
a corresponding VLAN with VLAN_ID = X is created in
order to isolate the link’s traffic. For the example in Fig-
ure 2, a VLAN with VLAN_ID = 1 is defined for Link 1 (see
Figure 3).

3.2.5 Ebtables Rules

Ebtables [20] is a Linux packet filter that enabled us to
intercept bridged traffic at layer 2 and be able to BROUTE
them. Packets are forwarded at layer 2 without having to be
passed to layer 3 for routing. The PREROUTING chain of
the Ebtables NAT table is used to perform the MAC address
translation of the destination using the dnat instruction.
The destination MAC is changed to the MAC address of the
directly connected destination as defined by the topology of
the experiment before the packet is passed into the traffic
shaper Gateway. Using the basic experiment in Figure 2,
for each link, two Ebtables rules are created inside the NAT
PREROUTING table by the link configuration script - see
Listing 2 for details.

[root@mukosi experiment]# ebtables -t nat -L
Bridge table: nat

Bridge chain: PREROUTING, entries: 2, policy: ACCEPT

-i vif2.1 -j dnat --to-dst 0:16:3e:34:28:80 --dnat-target ACCEPT

-i vif3.1 -j dnat --to-dst 0:16:3e:16:3f:66 --dnat-target ACCEPT

Listing 2: Ebtables rules for the topology of Figure 2

The two Ebtables rules are listed in line 5 and 6 of List-
ing 2. The rule in line 5 simply translates the MAC address
of any frame that arrived through back-end interface vif2.1
and set it to the MAC address of the front-end interface
of Node-2 (00:16:3e:34:28:80) so that the frame can be
passed directly after being traffic shaped by the Gateway.
Similarly, the rule in line 6 is used to translate the MAC
address of any frame arriving directly from Node-2 through
interface vif3.1 and set it to the MAC address of the front-
end interface of Node-1 (00:16:3e:16:3£:66).

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5745
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5745

BN =

3.2.6 IPFW Rules

Packet filtering is specified using a set of rules that are cre-
ated by using the IPFW command line utility of FreeBSD.
See Listing 3 for the list of IPFW rules. Dummynet pipes
are also created using the ipfw command line.

Gateway# ipfw show

00800 27 1260 pipe 1 ip4 from any to any via vlanil layer2
00900 27
65535 19

1260 pipe 1 ip4 from any to any via vlani2 layer2
4943 allow ip from any to any

Listing 3: IPFW rules for the topology of Figure 2

3.2.7 Dummynet Pipes

Dummynet pipes are created inside the FreeBSD traffic
shaper node by IPFW. They are used for simulating the
network adverse conditions such as; delay, bandwidth limi-
tation, probability drop rate, various queueing techniques.

4. PRELIMINARY RESULTS

In this section we provide some of the preliminary results
that where captured as part the verification and validation of
viNEX. At this stage; it should be emphasized that viNEX
is by no means complete, it is in a functional state where
basic networking can be accomplished.

Two experiments were run on the six-node dumbbell topol-
ogy as depicted in Figure 4 below. The main objective of
these experiments is to verify if TCP protocol behaves as
expected when deployed on viNEX nodes. The first experi-
ment is used to assess the maximum possible bandwidth on
viNEX running without traffic loss or delay issues; the sec-
ond experiment investigates the effects of imposing a delayed
and lossy link between Node-3 and Node-4.

4.1 TCP stack and analysis tools used

Since all the nodes envolved in the experiments are NetBSD
4 nodes, we are making use of the latest TCP stack im-
plemented on NetBSD 4, i.e. Reno and NewReno TCP.
NewReno TCP is enabled by default in NetBSD. Table 2
lists all the TCP settings that remained constant between
Experiment 1 and Experiment 2. NetBSD’s NMBCLUS-
TERS setting was adjusted to 16484 and the kernel was
recompiled. In both experiments, we have used the same
synthetic load in order make performance comparisons triv-
ial, files of sizes 5MB, 10MB, 20MB, 50MB and 100MB were
transferred. In both experiments, data is transferred from
Node-1 to Node-6 via the link between Node-3 and Node-4
(see Figure 4). We used the tool iperf [14] for traffic gen-
eration and maximum bandwidth measurement. TCP flow
data packets were captured using tcpdump [23] and the tool
tcptrace [16] was used to analyze them. xplot [21] was
initially used for graphing but eventually converted xplot
datasets to gnuplot [9] and used it for graphing. Data con-
version was done using the xpl2gpl script (located at [16]).

10.0.1.1

10.0.2.2

10.0.1.3 10.0.3.3
Link 3

10.0.2.3

Figure 4: A six-node dumbbell
periments

10.0.3.4

10.0.4.5

10.0.4.4

10.0.5.6

10.0.5.6

topology used for ex-

Table 2: TCP stack settings and configurations

TCP Stack Version

NewReno + SACK enabled

Initial Congestion Window

4 (4068 bytes)

Send Buffer Maximum 32Kb

Receive Buffer Maximum 64Kb)

RFC1323 Enhancements Enabled
NMBCLUSTERS 16384

Traffic Source and Sink Node-1 and Node-2
Bandwidth Measurement Tool | iperf

4.2 Experiment 1: Maximum bandwidth

The following results were obtained using iperf to send
data files of sizes 5, 10, 50 and 100MB. TCP statistics were

obtained using tcptrace tool;

Table 3: Results without any delay and loss

Filesize 5MB 50MB 100MB
Bandwidth (Kb/s) 302.5 320.3 154.43
Data packets: 2405 39400 78483
Ack packets: 1565 25603 51196
Total packets: 3974 65007 129683
Dropped/Rexmt pkts: 0 0 0
Duration (MM:ss.mmm): | 0:10.561 | 02:43.736 | 11:19.054

18.68.1.1:65532 ==> 168.68.5.6:58681 J(time sequence graph

3580660880 T ;

24995008008

34998008088

3492500088 -

34958008088 -

sequence number

3497500008 -

24978008008

ey

sge
1

34965008000
5

2i48 SZidE S2idd

S2i46 S2id45 52158 Sg: 52
time

Figure 5: Time Sequence Graph Graph for traffic

from Node-1 to Node-2

Digital Object Identifier: 10.4108/ICST.SIMUT

0O0LS2009.5745

http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5745

18.8.1.1:65532 ==> 18.8.5.6:5881 (throughput)
5608008

Fagasoa

cEEaEEE !

SEEABEA

48080048

pel=l=]cys]s)]

thruput Chytesssec)

capasea

: | l'L Il I . A
uf._#H}HJ“L“QHHMjJHiLLHLu”.'Lh]iJ!jul

Sa:5a SE:o2

1panaae |- “

|.l| L

iasg. to
Sar4a

S2:44 S24c SE2:48

time

Figure 6: Throughput for the traffic from Node-1 to
Node-2

18.8.1. 1265532 ==> 18.8.5.6:508081 (rtt samplesy
148 T T T T T

188 - =

20 - B

rtt (ms)

=150 o =

48 4

ol

o I 1 I I
S2:i48 SEid4 SEid6 SZi48 Sgi5a S2: 52

time

Figure 7: Round Trip Time (RTT) graph for the
traffic from Node-1 to Node-2

4.3 Experiment 2: Delay and lossy links

For this experiment, the propagation delay of 20ms and
random packet loss of 5% was configured on the link between
Node-3 and Node-4. The same data files were transmitted
and the results are shown in Table 4 below.

Table 4: Results 20ms delay and 5% loss rate

Filesize 5MB 50MB 100MB
Bandwidth (Kb/s) 72.21 70.67 67.97
Data packets: 4129 41053 82071
Ack packets: 2987 29449 58879
Total packets: 7119 70506 140954
Dropped/Rexmt pkts: 229 2085 4156
Duration (MM:ss.mmm): | 01:12.724 | 12:22.036 | 25:42.748

18.8.1.1:65531 == 18.8.5.6:3881 (time seguence graphl

272000800 . . .

37l0B0aaa -

FFeoeaaan

FEVOEEEAE -

FoopEEEEe -~

segquence numker

BFEFOBEEEE -~

3660800800

IE5AEEEAA L 1 1 1 1 L 1

42:00 42:10 42:28 42:30 420149 42:58 43:00 43110 43

time

Figure 8: Time Sequence Graph Graph for delayed
traffic from Node-1 to Node-2

18.8.1.1:65531 == 18.8.5.6:3881 <throughput)

FEEEEEE g T | B T T T

P

cPEEEEE |- ‘ o - : B 4
SEEEEEE | e B ’ .

4800888

pedulzlzlz1c o o

thruput thytes<sec)

ZEREEEE |- . S B

legaaag

igs): hud

42:88

time

Figure 9: Throughput for delayed traffic from Node-
1 to Node-2

18.8.1.1:65531 ==: 168.8.5.6:5881 (rtt samples)

42148 42:58 43:868 432118 43:

12a T T T T T T T
118 B
1@a - B
98 - B
28 .

78 - B

rtt {msd

=10 o =

5o | e
t

49 4

38 - =

6 1 1 I 1 1 1 1

42:@8 4210 42:2@8 42:38 42:48 42:58
time

Figure 10: Round Trip Time (RTT) graph for de-
layed traffic from Node-1 to Node-2

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5745
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5745

43188 43118 43:

5. RELATED WORK

Virtualization of network emulators is currently receiving
a lot of research attention. During the time of this research,
we have managed to identify a few number of research work
in this space.

The first significant virtualization identified was the cur-
rent large-scale virtualization initiative being done on Em-
ulab. Instead of using a traditional virtualization tool like
Xen, Emulab have chosen the approach of using FreeBSD
Jail mechanism. FreeBSD Jail provide a light weight virtu-
alization mechanism through process isolation. See [10] for
a detailed description of Emulab’s virtualization approach.

UML (User-Mode Linux) has been used quite extensively
in virtualizing network emulation, this includes some key re-
search in; 1) the work done using UML (User-Mode Linux)
at [22], mainly targeted at evaluating VPN networks, UML
was used to evaluate VPN protocols such as PPTP (Point-
to-Point-Tunneling-Protocol) and IPSec (IP Security). 2)
the UML based emulator for MPLS networks [1], 3) UML
was also used in the implementation of VNUML (Virtual
Network UML) [8], VNUML is mainly targeted at the eval-
uation of ipv6 routing protocols.

FreeBSD has also been used to virtualize network emula-
tors; 1) the FreeBSD network stack was virtualized through
the cloning technique that allows for multiple network stacks
on the same kernel as proposed in [25]. This approach
depends on the FreeBSD Jail [18] framework for applica-
tion environment isolation. Each instance of the protocol
stack resembles a full network stack capable of running net-
work routing protocols as well as networking applications.
2) IMUNES is another example, it was proposed in [12].
IMUNES also extends the FreeBSD kernel by enabling it to
maintain several networking stacks that are used to run dif-
ferent networking applications. 3) ENTRAPID introduced
the approach of virtualizing different 4.4BSD kernels. This
enbaled the deployment of different network protocol stacks
on the virtualized kernels. ENTRAPID is described in [11].

Further examples of network emulators virtual attempts
include; the hypervisor based testbed at [3] aimed at con-
ducting network security experiments, the virtual integrated
TCP testbed (or VITT) aimed at evaluating TCP perfor-
mance at [2], another research is looking at the possibility
of using paravirtualization as the basis for a federated Plan-
etLab architecture at [4] - PlanetLab [17] is a testbed aimed
at rapid prototyping and testing of Internet based experi-
ments.

6. CONCLUSIONS AND FUTURE WORK

viNEX is currently a work in progress system in the sense
of being able to create nodes, configure links, and route traf-
fic. The reason viNEX was built to investigate the limits to
this approach. We are aware about the potential limits of
this aproach and we are in the process to establish them.

To take this research work further, three key challenges
have been identified. (1) Network performance; we are not
impressed by the bandwidth rates obtained in Experiment
1 and 2 above (3 Mbit/s) - the slow performance is mainly
attributed to the use of QEMU for device emulation. Future
enhancements on the XEN HVM are in the pipeline and
this limitation might be eliminated. (2) there is a need to
identify the class of network experiments that are suitable
to be run on viNEX. During the evaluation phase, we were

able to deploy the standard IP protocols on viNEX without
any issues, e.g. the RIPv2 protocol was deployed on the
experiment topology nodes without any modification.

Our emulator (viNEX) was developed using open source

technologies; with the major technologies being Xen, FreeBSD,

and NetBSD. As a result, we experienced a significant amount
of the benefits and advantages of open source, such as; (1)
the direct access to the primary software authors and ex-
perts, (2) the ability to modify the source to meet our cus-
tom requirements, Xen kernel was recompiled with setting
vmxenabled=yes to enable booting of NetBSD guest kernel,
(3) the ability to scale to arbitrary instances without ar-
tificial licensing constraints, arbitrary number of NetBSD
instances can be booted without any licensing restrictions
(4) the ability to learn from the availability of source code
(5) the potential to bundle, package and distribute without
additional licensing transaction costs.

There is also another opportunity to improve this research
by enabling the configuration of the testbed to be done using
the NS-2 tool. Key integration points will be identified in
order assist interested reader to extend this work. NS-2 is
a famous tool in the network research space and therefore
is makes sense to use NS-2 as the modeling language for
viNEX. Network researchers are already familiar with NS-2
and therefore it will make a seamless adoption of viNEX into
their space.

7. REFERENCES

(1] R. Balachander and P. Venkataram. User-mode linux
based mpls emulator. TENCON 2004. 2004 IEEE
Region 10 Conference, B:601-604 Vol. 2, Nov. 2004.

[2] Carlo Caini, Rosario Firrincieli, Renzo Davoli, and
Daniele Lacamera. Virtual integrated tcp testbed
(vitt). In TridentCom ’08: Proceedings of the 4th
International Conference on Testbeds and research
infrastructures for the development of networks €
communities, pages 1-6, ICST, Brussels, Belgium,
Belgium, 2008. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications
Engineering).

[3] Dan Duchamp and Greg De Angelis. A hypervisor
based security testbed. In DETER: Proceedings of the
DETER Community Workshop on Cyber Security
Ezperimentation and Test on DETER Community
Workshop on Cyber Security Exzperimentation and
Test 2007, pages 3—-3, Berkeley, CA, USA, 2007.
USENIX Association.

[4] Chris Edwards and Aaron Harwood. Using
para-virtualization as the basis for a federated
planetlab architecture. In VI'DC ’06: Proceedings of
the 2nd International Workshop on Virtualization
Technology in Distributed Computing, page 13,
Washington, DC, USA, 2006. IEEE Computer Society.

[5] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdst,

L. Mathy, and T. Schooley. Evaluating xen for router

virtualization. Computer Communications and

Networks, 2007. ICCCN 2007. Proceedings of 16th

International Conference on, pages 12561261, Aug.

2007.

Emulab. Emulab home. www.emulab.net.

Kevin Fall. Network emulation in the vint/ns

simulator. In ISCC' ’99: Proceedings of the The Fourth

=

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5745
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5745

[11]

(12]

IEEE Symposium on Computers and
Communications, page 244, Washington, DC, USA,
1999. IEEE Computer Society.

D. Fernandez, T. de Miguel, and F. Galan. Study and
emulation of ipv6 internet-exchange-based addressing
models. Communications Magazine, IEEE,
42(1):105-112, Jan 2004.

gnuplot. Gnuplot. http://www.gnuplot.info/.

Mike Hibler, Robert Ricci, Leigh Stoller, Jonathon
Duerig, Shashi Guruprasad, Tim Stack, Kirk Webb,
and Jay Lepreau. Large-scale virtualization in the
emulab network testbed. In ATC’08: USENIX 2008
Annual Technical Conference on Annual Technical
Conference, pages 113-128, Berkeley, CA, USA, 2008.
USENIX Association.

X.W. Huang, R. Sharma, and S. Keshav. The entrapid
protocol development environment. INFOCOM ’99.
Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings.
IEFEE, 3:1107-1115 vol.3, Mar 1999.

Miljenko Mikuc Marko Zec. Operating system support
for integrated network emulation in imunes. In In
Proc. of the 1st Workshop on Operating System and
Architectural Support for the on demand IT
InfraStructure (OASIS), Boston, MA, 2004., 2004.
Mukosi Abraham Mukwevho. vinex home.
http://sites.google.com/site/mukosi/.
NLANR/DAST. Iperf.

http://sourceforge.net /projects/iperf.

NS-2. Ns-2 wiki.
http://nsnam.isi.edu/nsnam/index.php/.

Shawn Ostermann. tcptrace.
http://www.tcptrace.org/.

PlanetLab. Planetlab. http://www.planet-lab.org.
Robert N. M. Watson Poul-Henning Kamp. Jails:
Confining the omnipotent root. In 2nd SANE
Conference, May 2000.

Tan Pratt, Keir Fraser, Steven Hand, Christian
Limpach, Andrew Warfield, Dan Magenheimer, Jun
Nakajima, and Asit Mallick. Xen 3.0 and the art of
virtualization. In Proceedings of Linuz Symposium
2005, July 2005.

Paul ‘Rusty’ Russell. Ebtables firewalling.
http://ebtables.sourceforge.net//.

Timothy Jason Shepard. xplot. www.xplot.org.

Ralf Spenneberg. Emulating networks using user-mode
linux.

http://www.samag.com/documents/s=8997 /sam0401a,/0401a.ht:

Craig Leres Van Jacobson and Steven McCanne.
tepdump/libpeap. http://www.tcpdump.org/.

Xen. Xen home. http://www.xen.org/.

Marko Zec. Implementing a clonable network stack in
the freebsd kernel. In In Proceedings of the USENIX
2008 Annual Technical Conference, pages 137-150,
2003.

