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ABSTRACT

An integrated modeling amsimulation tool called Component-
based System Modeler and Simata(CoSMoS) is developed.
It supports visuatlevelopnent of families of nodels that have
well-defined logical specifications. The logicabmponent-
based mdels persist in retmnal databases and malye
autonatically translated into specific target simtion and
markup programming languagesthe underling system-
theoreticmodeling franework of CoSMoS lends itself for the
well-known discrete-time, cdimuous, and discrete-event
modeling approaches. Currenti@oSMoS supports developing
parallel DEVS-compliant modelshich can be executed using
the DEVS-Suite simulator. The underlg process lifecycle of
the CoSMoS enables stenatic transitioning from visual odel
development and design of exipeents to sinulation execution
and experimentatiorSimulation data can be used for run-time
animation and viewing of time-bad trajectories or exportéar
post processing. This todielps to sinplify simulation-based
systemdesign, verification, andalidation. The core capabilities
of the CoaMoS are exerlified with a conceptual odel of an
anti-virus network software system.

Categories and Subject Descriptors

1.6.1 [Simulation and Modeling]: Types of Simulation —
animation, visual 1.6.5 [Simulation and Modeling]: Model
Development -modeling methodologige$6.7 [Simulation and
Modeling]: Simulation Support Sfems -environments

General Terms
Design, Experimentation, Meagurent, Theory Verification.
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1. INTRODUCTION

Complex sgtems are described using a set miodel
abstractions and relationshipgor exanple, the Unified
Modeling Language (UML)[9] and Discrete Event Syem
Specification (DEVS) [14] are primarily usd for ®ftware
modeling and simulation modmg, resgpectively. The
abstractions and relationshipffered by these allow modeling
both structures and behaviorsdyhamical systems. In contrast,
other languages such as XML Sclerand Sgtem Entity
Structure (£9S) [13] are nainly targeted for radeling $ructures
of systeams. XML Schema [3] can be used to describe arbitrary
data structures aong sinple and complex elenments.Fanilies of
modelsmay al® be pecified usng an extenige st of elenments
with pre-defined and user-definedes. Similarly SES supports
data modeling, but has a fixedt <& rules that constrain how
entities’ (objects without behavior) abstractiomsay be
organized. Among these approash UML provides aunified
logical and visual modeling fram@rk. Numerous other efforts
and tools have been proposed amtlertakenbut many lack
sound underlyig principles that caempower users to visually
develop logical models and autatically translate into
simulation code and simulated.

It is desirable to describe sgms using logical and visual model
types that can also lend themselves for uation. Logical
models can be mathematical forrulations of a gstem’s
structure and behavior and arepiontantsince theyhave precise
syntax and senantics. Visud models, on the other hand, are
desirable since theyhelp simplify modeling, especially for
domain experts who find formapecifications or programming
difficult and not intuitive. Furtherrare, it is desirable to

represent models in standard languages that are well suited for

databases. Models can be used persistent repositoriesd

thereforebe sytematically reused for niltiple purposes and
evolved over tire and pace during thdifecycle of simulation

models.

Given the unique capabilities and advantages afforded by
logical, visual, and persistenaaodels, it is advantageous to
havea modeling framework thaupports collective use of these
different model types ia consistat manner. That is to saall
visual model developmeraictivities nust be sanctioned bthe
logical models and all models thate sored in a databasnust
be consistent withtheir logical specifications and thus their



visual representations. The @ponent-based System Modeling
(CoSMo) framework satisfiehe above requirement.

A key disadvantage for visuanodeling is limited viewing
space. Techniquesuch ashierarchical rdelingwith zoomin

and zoorout capabilities can significantlseducethe viewing
space limitation. However, a usr who is interesed in
developing models and simulating them needs to design
experiments. For observing mo@emponents’ input and output
data, it is useful to suppovisual selection of the components
and their individual input and output variables. To support such
a capability, the concept of visual design of expesits is
proposed and introduced into th@oSMo framework. The
resulting Component-based sfgm Modeling andSimulation
(CoSMoS) framework is used to develop the Component-based
System Modeler andsimulator environment which integrates
the CoSMo mdeler and DEVS-Suitsimulator together.The
design of the CoSMoS has a lifety processin which a user
starts with visuamodeldevebpment and design of experiments
and executes siglation nodels tlat are partiallygeneratechnd
manuallycompleted by user.

In the remainderof this paper, we brieflypresent the basic
modeling approach of CoSMo, tlemplementarwiewing of
model executions supported iye DEVS-Suite simulator, and
an exarmple that helps to illustraietegratednodeldevelopnent
and simulation in CoSMoS. Nextie describe the basic design
of CoSMoS that ensures visual modebnfiguration for
simulation experimentations, aadtonated data collection and
viewing. In the following two actions we presnt the proces
lifecycle andrelatedwork. We conclude with a summaof the
paper and future work.

2. BACKGROUND

In this section, we provide a brief account of CoSMo and
DEVS-Suite with emphasis on aspects that iamportant in
integrating into the CoSMoS emehment. We also descrilz®
exanple thatcanillustratethe kind of end-to-end modeling and
simulation that is supported in CoSMoS.

2.1 CoSMo

Component-based Stem Modele (CoSMo) is a tool [1] for
developinga family of models of a sstem [2]3] [5][10][11]. It
has a unified concept for specifying general-purpose logical,
visual, and persistent pritive and corposite nodels (see
Figure 1). Comlex hierarchicalmodels may be developédyy
composing modular componentsing their input and output
ports. CoSMo currenthsupportsDEVS and XML models and
generates partial and cphate source code for DEVS-Suite
[1][6].

The logical model specification is governed by a set of axioms
that ensure consistencyanong a family of alternative
hierarchical mdel pecifications[5][10]. A systemis modeled

in terms of three mdel types: Terplate Models (TM), Instance
Tenplate Models (ITM) andInstance Models (IM). All
primitive and conyposite logical, visual, and persistent models
are defined in terms of theseodel types. Theprimitive and
composte models can collectively repregnt alternative
specificationsof one or nore g/stens. Every Instance Terplate
Model is definedonly when it has a Template Model and every
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Instance Model is defined only when it has &rstance
Tenyplate Model.
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Figure 1. Architecture Concept for CoSMo
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2.1.1 Logical Models

The Tenplate Model is defined to include primitive and
conposite nodels with hiearchy of length two. The
composition and specializatiomelationships may be used
together under some well-defined constraints (e.g., absence of
self-composition as defined ithe sywtem-theory and self-
feedback as defined in DEVS formalism) to gecify drict
hierarchical tree teucturesof one or more models. To avoid
possible confusion, conposition refers to coposite/primitive
(or whole/part) relationships.é., a composite component can
contain oneor more primitive conponents). The specialization
refers to parent/child relationship where a pritive or a
conposite conponentcan be specialized to a pritive or a
composite component, respieely. A model can be a
specializeeconponentin which case it can have one ooma
specialized components. There is a specializatgationship
between any specialized component and its specializee
component. With th&emplateModels, separate models can be
specified for ysterrs that may or may not be relatedo one
another. Limitedbehavioral modeling (specifing input and
output variables) is supported asttuctural complexitymetrics
(e.g., number of components fany composite model) can be
readily obtained.

The Instance Template Model, which extends the Telate
Model, is defined to havdierarchies with lengths equal or
greaterthan two. Multiple Terplate Models can be cdiimed
together to formdifferent models of a ystem The Instance
Tenplate Model represents anstance of the Teptate Model
sinceTenplate nodels nay becombined using the composition
andspecializationhierarchiego gecify alternative sucturesof

a sytem. Although anytwo Insance Template Modelare
distinct, they may share one omore Tenplate Models. The use
of the termingtance isnot in the snse of Object Theoryhere
all instancesof a clas have an identical pecification. Two
Instance Template Models differ irterms of their specializations
and conposdtions. The InsanceModel is defined to represent
structures that do not haway specialization relationships. An
instance mdel is instantiated byenoving all specialization
relationships (selectingpecidized conponents fromspecializee
components) that may be com@d in an Instance Template
Model.



Since there can be amy alternative model$or a ystem it is
important to keep thernonsistat with one another. A concept

that is conmonly used in pecifying hierarchical modelof
systens is unifornity. A model fa a part ofa system (i.e.,
primitive or composite model) thét used mltiple times in the
system’s model hierarchymust have a unique specification (i.e.,
structure and behavior). When the structure ofmadel is
redrictedto be atreeinstead of a graph, unifority implies that
for any sub-structure with a unique specification and name, all
of its occurrencesre identical. A coresjuence of enforcing this
propertyis that changes made to thgb-structureare uniformly
applied to the complete trestructure.Another property called
non-self-reference states that adal cannot contain itself either
directly through iterative composite/primitive relationships.
Based on the above relationships (i.e., position and
specialization) and properties (uniformity and non-self-

reference), a finite set of unique Instance Models can be

generated given the Templakdodels and Instance Template
Models.

Instance Models are concrete since theannot have any
specialization relationships. &htransformation relationship
(between the Inance Temlate Model and the Irtance Mbdel)
enables defining one or manyrigttures that are defineloy
removing all occurrences of spalization relationshipghat
may be contained in the Instance Template Mod&hus, a
family of unique instance models can feneratedrom the

Instance Template Models.
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2.1.2 Persistent and Visual Models

The CoSMo environment suppodtoring models in relational
databass. Model creation, terage, accesand nanipulation
require management of ard@ number of models and
deternining their structural copiexity metrics [9]. The visual
modeling supports developingnd manipulating composite
models that are synthesized froprimitive and conposite
models. Specification of priitive and composite models are
basedon block models that can be combined using input and
output ports and links thabnnectthem together usg ecific
modeling languages such as DEVS.

2.1.3 Model Translator

The translator for CoSMo supports translating the logical
modelsthat are storedin any of its databases to code for target
simulation and markup languagel general, since it is
impracticalto visually model arbitrary dynamical models, only
partial sourcecan be autoumtically generated. Logical pritive
and conposte modelscan be autoatically trangatedto atonic
and coupled models for DEVS-8a simulator. The translator
generates partial source cofte DEVS atomic models from
primitive Instance Models and emplete source code for DEVS
coupled models frommomposite mods. It is for this reason the
shaded arrow isused between the btel Trankators to
SimulationLanguagegseeFigure 1). Translators have also been
developed for generating DT&hd XML schema code.

2.2 DEVS-Suite

DEVS-Suite [6] is the nexigeneration of the DEVSJAVA
simulator [1] It supports simulating modelshat can be
specified usng the DEVSformalism [14]. The architectureof
the $mulator isbagd on Model Fagade View ControfMFVC)
and in particular has its animation and viewing tohe
trajectories separated frotine pardel DEVS abstracsimulator.
Models in DEVS are classifieidto atomic and coupled models.
An atomic model is defined iterms of input, output, state, and
time sets with functions that @emine next states aralitputs

given current states and inputs at arbitrary time instances.

Together, external, internalpfluent, output, and timadvance
functionsdefine a component’behavior over time. A coupled
model is defined inermsof atomic and/or coupled models. As
in an atomic model, a coupledodel contains a set of inputs, a
set of outputs, a set of compone@mes, a saif components,
and a set of coupling relatidnps among the inpuand output
portsof the composed model eponents. Atomic and coupled
models interact with oneanother using messages that are
exchangedvia couplings that connect their input and output
ports.

The executionof the nodelscan be viewed athe anination of
the input/output messages for coupled models tuedstate
changes of the atomic modelsor any atomic or coupled
models, itdnputs and outputs cdre selected via a dialogue box
at the beginning of the simdien and time-based trajectories
generated during simulation. For atermodels trajectoriescan
also be generated for prefued phase andsigma state
variables.
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2.3 Anti-Virus Network Software System

Example

To illustrate nodel developrant and simalation in CoSMoS[1],
we have constructed a modehlled SimpleVirusNet for a
simple virus detection softwae system which is store in a
database file called NetVirBlet.mdb (see Figure 2(a)Xhe
system is intended to protect a network of computers frisus
attacks. A mdel of thissystemwhich is called SimpleVirusNet
consists of two coupled mods called RouterVirus. The
messages arriving at the in port of thenf@eVirusNet are ent
to the in port of the first RouterVirus mdel. The nessages
arriving at the $mpleVirusNet alert$gnal are ent to the
alertSignal of both RouterVirus models.

Each RouterVirus has on®outerQ and one VirusProcQ
componentgseeFigure 2(b). The RouterQ acts as a processor.
If it receivesa message which isnot infected by a virus, the
messagés sent to the out porfhe type of messages arriving at
thealertSignal port is the sanas the ressages arriving at the in
port. A message arriving at the in port densideredto be
suspicious if its ID ratches the ID ofhe messagearriving atthe
port alertSignal.The RouterQhas two queues, g and alertQ, to
store the nessagesand the alert mssagesregectively.

An experimental frame modelled ExpFrame is defined. As
shown in Figure 2(c), this mdel consists of the GenrMsg,
GenrVirus, and TransdSVN wdels. The GenrMsg generates
messages for the in port dfie SimpleVirusNet and GenrVirus
geneates messages for the dertSignal port. The TransdSVN
computesstatistics such as throughput for the SimpleVirusNet
model. The above models shown the Instance Template
Model are visuallydeveloped using CoSMdhe tree structure
of the entire mdel (including the pecialized GerngstVirus
and GenrSlowVirus model$or the GenrVirus radel) with
multiplicity of model components are shown in Figure 3.

All operations including creatiodgletion, and modification of
simulatable and non-simuléi@ model components are
supported visuallySimilarly, adding ports, variables names of
input and output values, and starariables are also supported
visually. Other operationgre conplexity measire calculation
and viewing of the generatesburce files and non-simulatable
models. These un-timed non-sintaldle models are simple and
complexdata structureand objects that are used in addition to
the simulatable prinitive and composite models [11]

3. CoSM0oSENVIRONEMENT

The unified modeling andimuldion environment bridges the
CoSMo and DEVS-Suite byintroducing visual tags for input
andoutput ports of the modelsahcan be developed in CoSMo.
Thevisual toggling of input and output ports for tracking during
simulation is advantageous d#seliminates the needo use
dialogue boxes that are otherwisequired for DEVS-Suite. Of
particular importance ithe manipulation of model components
visually for designing experiments and on-the-figlection of
simulation data to be observelah the following sub-sections,
we describe the basic concepisd design that were developed
for developing CoSMoS. The developed approach can be
applied to other modeling approaches and simulatiogines.
For exanple, the rules for creating pritive and corposite
models can be defined according tan&ilink block (discrete-



time and continuous-timehodels or cellular automate models.
The basic approach described this sectioncan be used to
integrate elversfor thee kindsof models into CoSMo and thus
have other variants of CoSMosS.

A very simple conceptualization for the CoSMoS environment
is shown in Figure 4. This integfedenvironnent enablesisual
model development, model onfiguration and automatic
simulation data collection, and simulation. It extends the
CoSMo design and implementation to support visual
configuration of model$or expeimentations and generation of
partial simulation code for DEVSSuite. Once the behaviors of
atonmic models (i.e., the externahternal, confluent, and output
functions) are conpletely specified, the DEVS-Suite ditator
can be invoked to simulateocpled models. Using CoSMoS
with its model development press, modelers can develop and
simulate nodels in an integrat visual modeling and simulation
environment.

———> | DEVS-
CoSMo {—— | Suite

Figure 4. CoSM oS conceptual system view

3.1 Component Selection with Automated

Data Collection and Observation

The models loaded in the DEVS-Suite assigneddefault
trackers. Users can select angoupled instance model and
visualizeany of its input and output ports as well as all of its
components. For atomic modetgmmon state variabléphase
and sigma) andimulator timing variables (i.e., time of next
eventand tine of lag event) can ats be visialized. kgure 5
showsthe steps that lead to tagging input and output ports of
modelsfor tracking.(Recall that MFVC is the bag: architecture
of DEVS-Suite). The Controlleobject is responsibléor the
creation of the hooks with the View. Th&ew objectdelegates
thelogic for determiningthe data for trajectoryiewers through
the TrackingControl objectEach tracker asociated with the
model hasa checker that enablex disables what is to be
tracked. With CoSMoS, insteanf use dialogue boxes to select
trackers, the user simplyoggles on anyport that is tobe
tracked.Figure 6 Bowsselection of the trackersisually for the
net-virus network and experimenfahme models. Note that the
names (IDs) of the instance modelse unique among
thenmselves as well as the names of the instance teptate
models. The background color ofpart that is to be tracked
during sinulation is set to white bylicking on it.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5744
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5744

Controller
postComputelnputOutputH
ook

View
addTrackingColumn()

v

TrackinglLog
addTracking()

Y

TrackingControl Trficker .
Check View Options |~ Check View Options
Loop the Tracker Loop the Tracker

ModelTrackingComponent
Tracking Log
ExportCSV

TimeView L—»

Figure 5. Selecting input and output ports for primitive and
composite and their tracking in DEV S-Suite TimeView

NetvirusExp_0_1

I
|
¥
o
=

ExpFrame_1_1

in] h
I»t-virus outVirus - - -

B e |

Simplevirushet_1_1

Figure 6. Input and output ports selected for tracking
during simulation

3.2 Adding Behavior to Models

The primtive models that are transfoed to DEVS atonic
models must be completed before tlean be simulatedsing
the DEVS-Suite simlator. CoSMS assiststhe user in adding
behaviorto generated source code. The structural specification
of theseJava models (e.g., input and output port names, variable
types for messages, and skeletmdefor transition and output
functions) are automaticallincluded in the generated source
code. The source code for each adel is consstent with its
logical specification — i.e., nameorts, variables, and state
variablesincluded in the surce code are therse asthos that
are sored in the databas Sample tabs of source code editors
are $iown in Fgure 7. The editor isvailable as partof the
Netbeans editor API. Its funomalities include code coloring,
line numbering, and keyord recognition. To disable the
changego the nodel's structure,the Guarded Sections property
of the editor is used. The samts that are guarded cannot be
edited. The guardedsectionsare $aded ashown in Figure 7.
As noted earlier, guaranteeing that evkrgical model and its
source code are consistent isi@al, otherwise verification of
models and validation of sirffations become unnecessarily
difficult.
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3.3 Modelsand Namespaces

Another important need is to manageratidelsthat are created root
and used in the CoSMoS ermiment. Thee models can be

categorized into databases and flat files (see Figure 8).

A simple method is to devise a naspace. A root directoris MB_Models
defined within which anyiumberof user-defined databases may ,___|
exist in unique directories (e.d\NetVirus_Exp).Each database

directory has a Database rdctory for databases (e.g., — D

VirusNetworkmdb), DEVS-Suiteand XML directories, and a
directory for NSM (non-simulatale) models. The DEVS-Suite
Models directoryconsists of ta Generated directonyhich has

source and compiled filege.g., VirusProcQ_0_O.javaand —

NetVirus_Exp Name Of Database2

VirusProcQ_0_0.class). As noted above, the source foodiee Database

primitive models (e.g., atoin DEVS nodel) nust beconpleted VirusNetwork.mdb
in order to be simlated. Tlke separation of the directories —

including the Generated and Comgildirectories is useful for DEVS-Suite Models

creating models for differentses and/or sgtems to be modeled
and simulated. The NSM Modetlrectory has non-simulatable

models. The remaining XML Modediirectory is designated for Generated - Dvirusprocq_o_o,java
holding XML models).
E B DModeIZ.java
NSM Models - DVirusProcQ_O_O.class

= DModeIZ.class

Figure 8. Namespaces for logical models and code for
simulatable and non-simulatable models

XML Models
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4., CoOSMoSPROCESSLIFECYCLE

The processes and relationshiefined in Figure 9 are defined
in terms of the following threparts. The Model Developnent
activities are supported byCoSMo. The Experimentation
Design and Configuration is supported bthe capabilities
described in Section 3. Theodel executions are supported by
DEVS-Suite.

A. Model Development

1. Select Database: User slects the databasthat
servesasarepostory for the logical nodels This
database has a predefirgducture (ER schema).

2. Select an existing model or create a new one:
User uses an existing saft (partial or conplete)
modelsor createsan enpty tenplate model.User
develops a familyf models.

3. Sdect Instance Template Model: User slects
one Instance Template Models framose that
are created int8p 2.0Otherinstancemodelsmay
be created.

4. Transform Instance Models into source code:
User instantiates one of the instance piate
models For every specializee model, the user
must choose one specialized model. User may
create a faily of alternative ingnce nodels
bagd on the pecialized nodels that are ches.
Then, user can generagartial and complete
source code for all inance nodels of the
selected ingance nodel.

5. Add behavior to the source code: The prinitive
models are copleted using the NetBearslitor.
Other IDEs maybe used, but theiser must
ensure the source code remagmnsistentwith
its counterpart logical model.

B. Experimentation Design and Configuration

6. Select and load ssimulation models: User €lects
an ingance nodel to be mnulated. The surce
code for the instance gdel and all of its
componentsare loaded irthe DEVS-Suite. The
loading is an iterative process between
completing the source code and automated
conyiling within DEVS-Suite.

7. Select components and ports of models: User
selects models and therespectiveinput and
output ports. These selections are staredhe
memory (JVM) in order to allow the user to
select them for tracking (i.e., input/output
trajectories,CSV export, and tabular form)Yhe
user may skip this step if no trajectories or
tabulateddatais to be viewed or no data is to be
exported into a CSV file.

8. Sdect visualization modes. The modeler is
given the choice of viewingthe models’
simulation outputdata on different types of
trajectory viewers The animation includeshe
SimView and the tracking of theutputis shown
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in Tracking Log and TimeView.

C. Simulation Execution

9. Execute model: User starts simiation of the
model. If any model compongis selectedo be
viewed (see $p 7), the execution of theauel
is displayd as the animtion of the model
components, time-based trajectories, and
tabulated form as well as export€sV files for
post processing, depending user’s choice.

Select an existing template
model or create new
model

~z

Select instance template
model and createits
instance models

Database

r_/

Partial
DEVS-Suite
Models

—

Transform
instance models

Model Development

N7

\Z

Add behavior to
simulation models

v ! !
A

Select and load
simulation models

Select visualization
modes ( SimView,
TimeView and
Tracking L og)

Completed and

DEVS-Suite files

\L—'F

Select
input/output
ports of models
for tracking

[

Experimentation Design
and Configuration

v A

Execute
model

Simulation

o) G

Figure 9. Process for developing models, designing
experiments configur ation, and executing simulations

[ Tracking Log ]

v

5. COMPARISONWITH OTHER TOOLS

A variety of tools have been built focombined model
development and simulation epution. Some tools support
rendering source code ofaakels as visual entities while few
others support visual moddéévdopment, chieflythrough use of
predefinediconsor block component notations. Here, we focus
on visual model development and selectivigch of them to be
monitored during execution. The behavior tie model
components can be animated (view state chargfeshe
components and input and outputssa&ges that are exchanged).
The input and output data can also be viewed as time-based
output trajectories.



Acadenic tools such as CoSvioS and Roleny Il and
commercial tools such as Siménts support component-based
modeling and simulation. Thegre aimed at differengoalsand
differ from one another in impoméways Here we consider
their visual nodeling capabilities across adeling and
simulation lifecycle. Roleny Il [7] is a software framework
developed as a part of thetolemy Project. It provides a
component assembljramework which has a graphical user
interface called Vergil. The project supports odeling and
simulaing of systams (eg., real-time and embeddesstems) It
has a large domain-patorphic component libraryits visual
modelingoffers pre-defined sybdic representation that can be
asembled to create hierarchicaladels The anination feature
highlightsthe active model at anyiven instance of time during
the simulation. The sirolation results can be enitored and
analyzed with the help of th@re-built plotters. The plotters
form part of the model layutand thuscan ggnificantly increag
the total number of the componetitat are displagd to users.

SimEventsis an extension ofimulink [8] and has a discrete-
event sinulation with a built-in model of computation.
SimEvents interacts with the tieabased dyamics of Simulink.

It also provides signals or entitghangesto control the
processing of Stateflochanges.SimEvents can be used to
developactivity-bagd nmodelsto monitor g/stem statessuch as
congestion, resource contemti and processing dekay It
provides pre-built libraries for quesieservers, switchegates,
timers, time-outs, andgenerators for entities, events, and
signals. The SimEvents Sinks Ldtoy has several plotters that
canbe used in the models to nitar the valuesor the satesof
the various events. These sirki® stronglytyped. Similar to
Ptolemyll, the total numbeof components for a model can be
very large depending othe numbe of input and outputs that
are to be monitored.
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Figure 10. Assembly Linemodel in CoSM oS

To conpare 3$mEvents Ptolemy Il, and CoSMoS, we
developed a simple Assemblyne model as showim Figure
10. This model is alsdevebped in SimEvents and Ptolently
(more details can be found in J4Rs shown in Table 1, since in
CoSMosS, there is noeedto include “monitoring components”,
the total number of components thate displagd to a user is
always minimal compared withSimEvents and Ptoleml. For

a model with evem modestunber of components, significant
display space is required as conpared with CoSMoS
Furthermore,while CoSMoS cansupport well-formed visual
modeling of a family of modelsthese and manwther tools
mustrely on a file structure provided by an operating system. In
particular, the gecialization relatiortsip betweenra specializee
and itsspecialized nodelsare not definedn the file structures
of operating sgtems. Thereforajsers need to define their own
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scheme of organizingnd managng a family of models for a
system, something that is undesirable.

The AssemblyLine model wa simulated usingCoSMoS,
Ptoleny II, and SimEventsto evaluate the executiopeedsof
their simulators. For the Assely Line model, the execution
speed for Rolery Il and DEVSSuite are corparable and faer
than the speed of SEwents. Wth regard tothe speedplotting

of the trajectoriesPleny Il and SmEvents performancecan

be much more efficient that DEVS-Suite depending on the
number of plotsand choice of programming language and
implementation details.

Table 1. Visual display complexity metricsfor component-
based modeling tools

SimEvents Ptolemy CoSMoS
Logical 11 9 5
components
Ports 29 15 10
Couplings 14 11 4
Monitoring 4 2 0
components
Trgjectory 4 2 4
viewers
Total no. of 62 39 23
components

6. CONCLUSIONS

For studyng complex and large-saasystams, it is desirable to
havea unified modeling and sination framework and tool that
canreduce effort and help develop better models. Increasingly
is necessaryo develop a familpf models for a sstem and thus
useful to enable not onlydeveloping models visually
automatically translating them to programming code, and
making viewing of simulation ofmodels simpler and more
accesible to domain experts but al® to help autorae
managenent of multiple models of a sgtem The CoSMoS
framework and its tool helps &ddress some of the challenges
faced in developing odels that are easr to verify and
simulations that can be validated. Asnoted earlier, the key
limitation for CoSMoSand all other tools that we are aware of
is the inability for conplete behavior specificationToward
greater support and ease, ademin domain-specific modeling
are promising and could lead donew generation of tools that
can go begnd the current use of softwarengineering
techniques and in particular gendon use of models with pre-
fabricated behavior. Another imasting research direction for
CoSMoS is to extend itto support common modeling
approachesncluding cellular autosta. The bag goal of the
current and future researchtés make modeling and simulation
more accesble while srengthening the core verification and
validation activities.
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