
DisSimJADE: A framework for the development of
Agent-based Distributed Simulation Systems

Daniele Gianni
Computing Laboratory

Oxford University

Oxford, UK

gianni@comlab.ox.ac.uk

Andrea D’Ambrogio and Giuseppe Iazeolla
Dept. of Computer Science

University of Rome TorVergata

Rome, Italy

{dambro,iazeolla}@info.uniroma2.it

ABSTRACT

The adoption of an agent-based approach that incorporates
intelligence, adaptation and learning abilities has proved to
significantly increase the realism and the accuracy of the
simulation. Simulation systems of such a kind, however, require
computational resources that might be considerable for a single
agent, so to become unfeasible when the number of simulated
agents scales up. A distributed environment is thus needed to
allow the execution of such simulation systems, particularly in the
case of scenarios populated by a large number of agents. Building
an agent-based distributed simulation system, however, requires
both specific expertise and knowledge of distributed simulation
standards and a non-negligible amount of effort to develop ad-hoc
components. This paper introduces a simulation framework
named DisSimJADE, which enables the incorporation of
distributed simulation facilities into existing agent-based systems.
DisSimJADE is built on top of the popular agent-based
framework JADE and allows to define agent-based simulation
systems that can be transparently executed either in a local or
distributed, therefore bringing significant savings in terms of
effort and development time. In addition, DisSimJADE provides a
uniform interface to the JADE framework, which further
facilitates the production of distributed simulation systems to
developers of JADE-based multi-agent systems.

Categories and Subject Descriptors
D.2.13 Software Reusability, D.2.10 Design, D.3.2 Language
Classification, D.3.3 Language Constructs and Features, I.2.11
Distributed Artifi cial Intelligence, I.6.5 Model Development, I.6.7
Simulation Support Systems, I.6.8 Discrete Event, I.6.8
Distributed, I.6.2 Simulation Language.

General Terms
Design, Experimentation, Languages.

Keywords

Discrete event simulation, Distributed Simulation, Agent-based
Simulation, Framework, JADE, HLA

1. INTRO DUCTIO N
Physical systems are often composed of autonomous, interacting,
possibly intelligent entities that cooperate, compete and carry out
tasks to achieve individual or collective goals [1]. When
simulating such systems, an agent-based modeling approach
offers an effective conceptualization paradigm that easily allows
to capturing the interactions and the individual/collective
intelligence that such systems exhibit. The incorporation of
sophisticated intelligence often requires computational resources,
in terms of memory for the data representation and CPU cycles
for the reasoning rules or criteria, that are often not available on a
single host. The use of distributed execution environments can be
seen as a solution to the problem of guaranteeing the needed
accuracy and efficiency when largely populated scenarios are to
be simulated [2]. On the other hand, developing a simulator in a
distributed environment requires specialized know-how that goes
far beyond the agent-based modelling techniques. In addition,
acquiring such knowledge is a considerable initial investment that
can prevent the adoption of such techniques.

In this paper, we face the problem of making easier the
development of distributed agent-based simulation systems. To
this purpose, the paper introduces DisSimJADE, a framework that
makes transparent the development of distributed agent-based
simulation systems by raising the agent-based developer from all
the concerns of the local or distributed simulation environment.
At the same time, DisSimJADE provides a simulated agent
container that can also be used to host conventional agent
components.

Therefore, the benefits of DisSimJADE are amplified by
combining the effortless development of distributed simulation
systems with the incorporation of distributed simulation facilities
into existing agent-based frameworks. In such a setting,
DisSimJADE allows developers of multi-agent systems to easily
produce distributed versions of agent-based simulation systems
with a very limited effort and without being required to gain
specific knowledge about distributed simulation standards and
implementations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTools ’09, Rome, Italy
Copyright 2009 ICST 978-963-9799-45-5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5725
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5725

To this purpose:

(a) DisSimJADE is built on top of the popular agent-based
framework JADE [3] and provides a uniform interface
with it, both in local and distributed environments

(b) DisSimJADE has been integrated into SimArch, a
layered simulation architecture that allows to define
simulation systems that can be transparently executed
either in a local or distributed environment [4].

A side benefit of point (a) is that DisSimJADE is compliant with
the FIPA specifications [4], as in the case of JADE, while point
(b) provides a uniform approach to develop agent-based
simulation systems without explicit knowledge about the
execution environment (local or distributed) and the specific
distributed simulation infrastructure (e.g., HLA).

The paper is organized as follows. Section 2 points out this work
contribution compared to other state-of-art works, while Section 3
introduces the technologies upon which DisSimJADE has been
built (i.e., JADE and SimArch). Section 4 gives a detailed
description of the proposed framework and, finally, Section 5
illustrates an example scenario of use.

2. RELATED WO RK
DisSimJade provides the following two main innovative
contributions:

(i) the incorporation of distributed simulation facilities into
existing agent-based frameworks;

(ii) the effortless development of distributed simulation
systems as a transparent extension of the corresponding
conventional (i.e., centralized) simulation system.

As regards contribution (i), DisSimJADE can be compared to
similar works, such as SIM_AGENT [6], the Time-Extension for
MAS [7] and JADE-HLA [8].

SIM_AGENT provides a framework to develop agent-based
modeling and simulation systems. It differs from DisSimJADE
because it does not formulate the simulation in terms of agent-
based system and binds the reasoning, planning, etc. mechanisms
to the framework. Differently, DisSimJADE deals only with the
issues related to the simulation, and therefore allows the use of
JADE-compliant frameworks currently available (e.g.: Jess rule
engine [9] or JADEx [10]).

The Time-Extension shares with DisSimJADE the partial
objective of bringing the simulation time concept into agent-based
systems. However, there are considerable differences. First of all,
DisSimJADE has a wider scope. It presents a formulation of
discrete-event simulation (DES) systems as agent-based systems.
Secondly, the Time-Extension uses innovative aspect-oriented
methodologies [11] to bring the duration concept within agent-
based systems. Differently, DisSimJADE shows how
conventional object-oriented techniques can effectively support
this through the mere application of the Decorator Pattern
concept [12]. Thirdly, the Time-Extension mechanism introduces
some discontinuities between an agent-based system and the
corresponding simulated agent-based system. They are due to the
use of the aspect oriented technology, which is specifically used
to produce the simulated agent-based system, and to the non-
encapsulation of the implicit wall -clock time concept that agents
have.

Both SIM_AGENT and the Time-Extension do not deal with
distributed simulation of agent-based systems, as instead
DisSimJADE does.

A contribution that, similarly to DisSimJADE, provides
distributed simulation facilities is JADE-HLA, which is built on
top of JADE and makes us of the High Level Architecture (HLA)
distributed simulation standard [13]. However, the following
differences between JADE-HLA and DisSimJADE can be found:

x DiSSimJADE adopts a general DES modelling
approach, and therefore is not related to any specific
distributed simulation standard;

x DisSimJADE implements an agent-based
conceptualisation of DES systems;

x DisSimJADE is compliant with the JADE design
outline, and therefore enables JADA developers to
easily carry out agent-based modeling and simulation
activities.

With respect to contribution (ii) , i.e., the effortless development
of distributed simulation systems as transparent extension of the
corresponding conventional – local – simulation system,
DisSimJADE can be compared to works carried out in the
distributed simulation community, such as PDNS [14],
DisSimJava [15], DEVS/HLA [16], OSA [17] and JAMES [18].

All such works provide valuable contributions in the field of
distributed simulation, but fail to address point (i), which refers to
the issue of incorporating distributed simulation facilities into
agent-based frameworks.

Therefore, in this paper case, the benefits of contribution (ii) are
amplifi ed by combination to contribution (i), which is the
application of (ii) to the development of distributed agent-based
simulation system. In such a setting, DisSimJade allows
developers of multi-agent systems to easily produce distributed
versions of agent-based simulation systems with a very limited
effort and without being required to gain specific knowledge
about distributed simulation standards and implementations.

The distributed simulation of multi-agent systems using HLA as
underlying platform has already been targeted in [19]. This paper
contribution however differs from the above one since it is not a
methodology to produce distributed agent-based simulation
systems but only a method to effortlessly incorporate distributed
simulation facilities into existing agent-based frameworks, as
results from the combination of contributions (i) and (ii).

Moreover, the proposed approach does not pretend to give an
answer to overcome the pitfalls of agent-based systems outlined
by Jennings and Wooldridge [1]. Indeed, the approach is only
intended to reuse existing agent-based systems (e.g., JADE-based
systems) into distributed simulation contexts.

3. BACK GROUND
The following sub-sections introduce the JADE framework and
the SimArch software architecture, respectively.

3.1 JADE
JADE [3] is a Java-based framework for the implementation of
agent-based systems. It provides a base element, the agent, which
maintains an internal state and whose dynamics can be configured
through a set of pluggable behaviours. Each behaviour consists of

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5725
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5725

a sequence of internal operations and interactions with other
agents, or other behaviours, which can be composed according to
several constructs (e.g. parallel, serial, etc.).

The fundamental JADE aspect is the communication [20], which
is carried out according to FIPA specifications [4] through an
asynchronous mailbox-based mechanism. As FIPA defines, JADE
messages are composed of the following attributes: sender, list of
recipients, performative action, content, content language
reference, content ontology reference, and a set of minor fields to
control concurrent conversations. Besides attributes of immediate
understanding, the message contains a performative action
attribute, and two references to the content coding language and
to the shared ontology, which needs further details.

The performative action attribute specifies the type of
communication, which has been classified by FIPA into twenty-
five different communicative acts. For example, it can be of value
REQUEST when the sender agent asks for a service request to the
recipient agents, or can be of value INFORM in the case of a
“notification” of state change.

Concerning the reference attributes to the content language and
content ontology, they provide the information needed to decode
and interpret the semantics of the content field, respectively.
JADE ontologies are in turn to be built on top of the basic
ontology, which provides basic concepts for primitive data types,
and can define three types of elements [20]: predicates, concepts,
and actions.

Predicates represent facts in the modelled world, and can be true
or false. Concepts represent complex data structures, which are
composed of standard simple types like String, Integer, etc., while
actions are a specialization of concepts that are internally
associated to the actions performed by agents.

3.2 SimArch
SimArch is a software architecture that offers a layered view of
simulation systems. Figure 1 illustrates the four layers, whose
detailed description is given in [4].

Distributed Discrete
Event Simulation Layer

Discrete Event Simulation
Service Layer

Simulation Components
Layer

Simulation Model Layer

Layer 0

Layer 1

Layer 2

Layer 3

Layer 4

Distributed Computing
Infrastructure

General Purpose
(CORBA, WS,
Globus, etc.)

Simulation
oriented (DIS,
HLA, ALSP)

Figure 1 SimArch's layered architecture [4]

Layer 4 is the top layer where the simulation model is defined
through the invocation of the simulation language primitives.

The primitives’ implementation, i.e., the components’ simulation
logic and the model configuration services, are provided by Layer
3, while Layer 2 deals with the transparent synchronization and
communication among simulation components, for both local and
distributed execution. The distributed version of this layer uses in
turn Layer 1 to achieve global time synchronization and to
provide communication with the remote simulation components.

Finally, Layer 1 provides a DES (discrete-event simulation)
abstraction [21], such as sendEvent, waitNextDistributedEvent
and waitNextDistributedEventBeforeTime, on top of the
distributed computing infrastructure conventionally identified by
Layer 0. Such bottom layer does not belong to SimArch and
therefore the interfaces between Layers 1 and 0 are not defined. In
the case of a HLA-based implementation of Layer 1, such
interfaces are subsets of the RTI-Ambassador and
FederateAmbassador interfaces for the communication between
Layers 1 and 0 and between Layers 0 and 1, respectively.

The communications between the layers are bidirectional and the
provided interfaces have to be implemented to successfully use
the available layers implementations. For example, when using
Layer 1, the Layer1ToLayer2 interface is to be implemented and
its implementation is to be provided as reference to Layer 1. In
the specific case, Layer1ToLayer2 interface intercepts the
distributed events and takes care of scheduling a proper handler in
the local event list.

4. DisSimJADE
DisSimJADE is a Java framework for agent-based modelling and
simulation. It is built on top of JADE and structured according to
SimArch. Distinctive features of DisSimJADE are the compliance
with the FIPA specifications [4], inherited from JADE, and the
integration with HLA, given by SimArch.
The framework is implemented with the objective of simplify ing
the development of distributed agent-based simulation systems.
Specifically, DisSimJADE aims to:

1. making the development of agent-based simulation
systems similar to the development of conventional
agent-based systems;

2. enabling the transparent execution of agent-based
simulation systems either in a local or a distributed
environment.

To achieve objective 1, DisSimJADE introduces a set of software
components that conform to the JADE and FIPA standards and
that can encapsulate conventional JADE components, while
objective 2 is achieved by integrating DisSimJADE into the
SimArch software architecture. Specifically, DisSimJADE uses
the Layer 1 provided by SimArch and implements the SimArch
Layer 2 interface.
In particular, the DisSimJADE framework consists of the
following components:

x a simulation ontology;
x a simulation agent society and a set of agents;
x an interaction protocol;
x a set of simulation behaviours;
x a set of simulation event handlers.

The simulation ontology, named DES-Ontology and illustrated in
Section 4.1, defines the semantic base for the communications
among the simulation agents. It consists of DES concepts

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5725
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5725

(simulation time) and actions (DES and simulation li fe cycle
management services), and allows the incorporation of any other
JADE ontology thus enabling the reuse of standard agent-based
components.

The simulation agent society, illustrated in Section 4.2, is
structured hierarchically and is based on two types of simulation
agents, the simulation entity agent and the simulation engine
agent, with the former encapsulating the simulation logic, i.e. the
sequence of states and DES service requests, and the latter
managing the agents. The society defines which agents (types and
names) can be part of the simulation execution. DisSimJADE
defines local societies, which are composed of a specified number
of simulation entity agents and are managed by a locally running
simulation engine agent, and a global society, which interconnects
the local societies. A local society can be run in isolation, in case
of local simulation execution, or can be interconnected with other
societies, in case of distributed simulation execution.

The interaction protocol, illustrated in Section 4.3, defines the
communication rules between agents belonging to the same
society. Due to the hierarchical structure of the society, the
communication takes place only between the entity agents and the
engine. The distributed execution extends the interaction protocol
for the local version by transparently masking the synchronization
and communication issues behind SimArch and HLA services,
which are out of entity agents visibility.

The simulation behaviours define the actions taken by both types
of agents in response to the reception of any of the DES-Ontology
action, by implementing the interaction protocols. They conform
to the JADE interfaces and can encapsulate standard JADE
behaviours.

The simulation event handlers define the routines that must be
locally processed by the engine agent to deal with the scheduled
requests, such as wake up or event notification. They can be
considered as support components that are visible to the engine
only.

4.1 DES-Ontology
The DES-Ontology extends the JADE standard ontology [19]
introducing concepts and actions that characterize the simulation
domain. The concepts are related to the simulation time, while the
actions are related to the interaction between simulation entities
and simulation engines.

As regards concepts, the DES-ontology defines two different
representations of the simulation time: AbsoluteSimulationTime,
for absolute values of the simulation time; and
RelativeSimulationTime, for relative values of the simulation
time, with “relative” having default semantics “with respect to the
current time”. The two concepts are related by the fact that the
AbsoluteSimulationTime is given by the sum of the current
AbsoluteSimulationTime and the RelativeSimulationTime.
Nevertheless, the definition of a relative time concept is included
in the ontology because it is a parameter required by several DES
services.

As regards actions, the ontology defines simulation management
services and DES services.

A simulation management service defines an action that manages
the simulation life cycle, i.e.,:

x register agent: to request to join a simulation society;
x registration successful: to acknowledge the acceptance

of a registration request;
x remove agent: to resign from the society;
x move agent: to move the agent to another society;
x simulation end: to notify that the society objective has

been reached.

The actions register agent and remove agent, which are both of
performative type REQUEST, have no attributes because the
action object, i.e. the name of the agent requesting the action, can
be inferred from the message envelope.
The move agent action is of performative type REQUEST and is
characterized by the name of the recipient engine where the agent
is to be started with the initial state (also provided).
The actions registration successful and simulation end, which are
both of performative type INFORM, inlcude an instance of
AbsoluteSimulationTime that specifies either the simulation start
time (in case of registration successful action) or the simulation
end time (in case of simulation end action).

The DES services define actions of the following types:

x conditional hold time: to request an hold for a given
simulated time, under the condition that no event
notifications are received;

x hold time: to request an unconditional hold for a
specified simulated time;

x notify time: to inform that the specified time has been
reached;

x notify message: to inform that the specified event was
requested to be scheduled for the receiving agent, at
the current time;

x send message: to request the delivery of the specified
event at the specified time to another simulation entity
agent;

x wait message: to request a wake up when a simulation
message is to be notified.

The conditional hold time and hold time actions, which are both
of performative type REQUEST, are characterized by a relative
simulation time that specifies the simulation sleep time.
The notify time action, which is of performative type INFORM,
informs the receiving agent of the absolute simulation time
reached. The notify message action, which instead notifies a
message, is described by the following four attributes: sender
agent, recipient agent, message and time. The first three attributes
are of type String, while the fourth is of type
AbsoluteSimulationTime.
The send message action is complementary to the notify message
action. It is described by the same attributes, but it is of
performative type REQUEST. In the specific case, to maintain a
logical uniformity with the common practice in DES, the time is
of type RelativeSimulationTime.
Finally, the wait message action, which is of performative type
REQUEST, informs the engine that the sender agent is blocked
and waiting for new messages.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5725
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5725

With the exception of the move agent action, all the actions are
indifferently used by the entity agents either with the a local or a
distributed engine agent.

4.2 Simulation Agents
A simulation agents’ society is populated by two types of agents:
the simulation entity agents and the simulation engine agents.
The simulation entity agents incorporate the simulation logic by
use of custom simulation behaviours, while a simulation engine
agent is in charge of coordinating the society, and therefore
includes a list of the simulation events and a record of the society
composition, as detailed in the following sub-sections.

4.2.1 Simulation entity agent
Figure 2 describes the state diagram that defines the lifecycle of a
simulation entity agent. The states in the diagram of Figure 2 are
simulation states built on top of the standard states of a JADE
agent [19] and are transparently integrated with them.
The state diagram of a simulation entity agent looks similar to the
state diagram of a conventional DES simulation and therefore this
section only focuses on the differences, while additional details
on the rest of the diagram can be found in [22].
The changes introduced by the state diagram of a simulation
entity agent concern the Waiting for Registration Acknowledge
state and the Mobility state. In the former, the simulation engine
collects the registration requests and checks when the society is
ready to execute the simulation. In the latter, the agent forwards
the request to the engine and terminates the life cycle. These
differences are due to the decentralised and dynamic nature of the
agent-based simulation framework, which differently from a
conventional DES framework allows the creation and termination
of logic processes.

Figure 2 State diagram of the simulation entity agent

To implement the above described dynamics, the entity’s
behaviour is configured as a serial composition of the
RegisterAgentBehaviour and EntityMainCycleBehaviour
behaviours, with the latter to be configured according to the
model specifications.
In order to allow the easy plugging of any conventional JADE
behaviour into the EntityMainCycleBehaviour behaviour, the
simulation entity agent interface must be consistent with the
JADE agent standard interface. To achieve this, the simulation
entity agent must therefore invoke the simulation actions
conditional hold time, hold time, send event, and wait event by

use of the JADE standard methods blockingReceive(millisecs),
doWait(), send(), and blockingReceive(), respectively.

4.2.2 Simulation engine agent
The simulation engine agent can be similarly described both for
local and distributed engines. The distributed engine is indeed
built by extending the local, which is therefore presented first in
the following sub-section.

4.2.2.1 Local engine
Figure 3 describes the state diagram of the simulation local engine
agent.
The local engine state diagram consists of a sequence of states
that can be grouped in three phases, denoted as Phase 0 through
Phase 2 in Figure 3.
Phase 0 is the registration phase that takes care of synchronizing
the start-up phase through the Waiting for Registration Requests
and Confirm Registration Successful states. In such a phase, the
engine accepts incoming register agent requests while checking
whether the simulation society becomes complete. Once the
society is completed, the engine notifies the registration
successful to all the registered agents. Such states are not present
in a conventional DES framework because the entities registration
is carried out through the static invocation of local methods at
coding time. Similarly to the entity agent state diagram, the Phase
0 states originate from the inherent decentralised nature of the
system.

Figure 3 State diagram of the simulation local engine agent [24]

After completing this phase, the engine proceeds to the Phase 1
that consists of the states Waiting for Simulation Requests and
Processing Internal Event, which contribute to define the
EngineMain-CycleBehaviour. Such behaviour executes the
following algorithm:

While (numberOfRunningAgents > 0) {
 wait for a simulation message;
 Case of:
 SendEvent: schedule sendEventHandler;
 break;

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5725
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5725

 HoldTime: numberOfRunningAgents--;
 schedule wakeUpHandler;
 break;
 WaitEvent: numberOfRunningAgents--;
 break;
 RemoveAgent:
 numberOfRunningAgents--;
 start RemoveAgentBehaviour;
 break;
 ConditionalWaitEvent:
 numberOfRunningAgents--;
 schedule wakeUpHandler;
 store agentName in conditionalList;
 break;
 RegisterAgent:
 numberOfRunningAgents++;
 registerAgent;

 start RegistrationSuccessfulBehaviour;
 } // end case
} // end while

If (eventsList.size() > 0) {
 nextEvent = eventsList.remove(0);
 nextEvent.process();
} else {
 setSimulationEnd();
}

The algorithm is composed of two main blocks: a while block for
the requests collection at a given simulation time, and an if-then-
else block to process the next scheduled event and advance the
simulation time.
The algorithm is based on the following assumptions:

x the cardinality of the simulation society is known from
the previous phase and stored in the local variable
numberOfRunningAgents;

x the agents requesting hold time, conditional hold or wait
event simulation services block their execution and do
not process further requests until they receive proper
simulation notifications.

The second assumption defines the interaction protocol between
entity and engine agents, and guarantees that within the if-then-
else block the actual number of running agents is zero, as verified
through the value of the local variable numberOfRunningAgents.
The while block executes until there are running agents in the
society. In this block, the activities follow a sequential wait-and-
serve cycle that processes the requests by properly updating the
numberOfRunningAgents variable and by performing the relevant
action: either the scheduling of a new event handler in the list or
the activation of a simulation service behaviour. As an example,
upon receiving a send event request, the engine schedules a new
local SendEventHandler with the proper data (recipient, time,
message, etc.). Similarly, in case of wait event requests, the
engine verifies that the requesting agent is blocked and will not
proceed until a local event unblocks the agent.
The algorithm also manages the dynamic composition of the
agent society by processing register agent and remove agent
requests.
Once the simulation end event is reached, the engine stops and the
EngineMainCycleBehaviour terminates.

After that the engine proceeds to the last phase, denoted as Phase
2, which includes the Simulation End Notification state. In such a
phase, the engine notifies a simulation end message to the entire
society before terminating its li fe cycle and removing itself from
the agent container.

4.2.2.2 Distributed engine
The distributed simulation engine agent makes use of the JADE
framework for the local interactions and uses SimArch Layer 1
and HLA for the synchronization and communications among
distributed entities, as illustrated in Figure 4.
The choice of not using JADE as distributed platform is motivated
by the following considerations:

x SimArch and its HLA-based implementation allow the
integration with other simulation systems developed by
use of such technologies;

x the integration with SimArch allows to obtain a multi-
paradigm (e.g. agent-based, process interaction, event
scheduling, etc.) distributed simulation environment;

x HLA proves to perform better in terms of simulation
workload compared to RMI-based communications
between the JADE nodes [19];

x the implementation remains extremely simplif ied and
conforms to a general reuse and integration trend
currently observed in the software and simulation
industry.

The distributed engine is compliant with the local engine for what
concerns the interactions to be carried out with the simulation
entity agents, which can be therefore deployed regardless the type
of engine. Vice versa, the distributed engine deals with the
following extra issues:

1. synchronization and communication between local and
distributed environment;

2. agent mobility between simulators;
3. handling of distributed events in the framework.

Figure 4 DisSimJADE archit ecture

The synchronization and communication concern the consistency
between the local and distributed environments with the addition
of event delivery to agents running on remote simulators. The
agent mobility allows simulation time-stamped transfer of an
agent from a given simulator to a remote one. All such

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5725
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5725

functionalities require that new event handlers are introduced to
properly processing such requests.

The engine deals with the above issues using SimArch Layer 1 in
conjunction with:

x An improved life cycle and algorithm;
x Mobility Event;
x Distributed event handlers, for which interested users

are sent to [4].

The agent life cycle is described by the diagram in Figure 5. It
consists of five phases, denoted as Phase 0 through Phase 4. Phase
0 is the initialization of the distributed environment and proceeds
as illustrated in [4][22]. Phase 1 is shared with the local version;
and similarly Phase 2 (Simulation main cycle), which however
presents two significant differences.

Figure 5 State diagram of the simulation distr ibuted engine agent

The first is that the local events cannot be processed before
advancing the distributed time, which is carried out within the
Advancing Distributed Time state. The transition from this state to
the next state only occurs when either the time has been granted
or a distributed event has been received. In this last case, the
distributed event is transparently scheduled as a local event by
SimArch layer 1.
The second difference is that, when an agent is moving to the
simulator, the simulation has to temporarily block until the agent
is loaded up and joins the local simulation society. In case of an
agent mobility event, the society composition is updated and the
society complete condition is no longer satisfied. This

corresponds to the transition from the processing next internal
event state to the waiting for registration requests state of Phase 1
in Figure 5.
Phase 3 follows the main processing cycle and concerns the
notification of the simulation end event to all the local agents. It is
activated by Phase 2 when receiving the corresponding event
from the distributed environment.
Phase 4 concludes the engine life cycle restoring the distributed
environment set up. It follows the operations specified in [4] and
[22].

The distributed engine li fe cycle is implemented similarly to the
locale engine one, with the addition of the advancement of the
distributed time and the transition from the processing next
internal event state to the waiting for registration requests state.
The adapted algorithm is as follows:

While (numberOfRunningAgents > 0) {
 wait for a simulation message;
 Case of:
 SendEvent: schedule sendEventHandler;
 break;
 HoldTime: numberOfRunningAgents--;
 schedule wakeUpHandler;
 break;
 WaitEvent: numberOfRunningAgents--;
 break;
 RemoveAgent:
 numberOfRunningAgents--;
 start RemoveAgentBehaviour;
 break;
 ConditionalWaitEvent:
 numberOfRunningAgents--;
 schedule wakeUpHandler;
 store agentName in conditionalList;
 break;
 RegisterAgent:
 numberOfRunningAgents++;
 registerAgent;

 start RegistrationSuccessfulBehaviour;
MoveAgent:
 forward mobility request to recipient simulator;

 numberOfRunningAgents--;
 start RemoveAgentBehaviour;
 break;

 } // end case
} // end while

If (eventsList.size() > 0) {
 nextEvent = eventsList.read(0);
 waitNextDistributedEventBeforeTime(nextEvent.time);
 nextEvent = eventsList.remove(0);
 nextEvent.process();
} else {
 waitNextDistributedEvent();
 nextEvent = eventsList.remove(0);
 nextEvent.process();
}

where the bold text denotes the changes with respect to the
algorithm of the local engine. The handling of a mobility event

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5725
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5725

request consists of the forwarding of the request to the remote
simulator, the update of the society cardinality and finally the
removal of the agent from the society.

When all the agents have been executed and are blocked waiting
for a response from the engine, differently from the local engine,
the distributed version proceeds by checking the size of the events
list. If the list contains at least one event, the distributed engine
will verif y if events are available in the distributed environment
before the next local event, by use of a call to the SimArch
service waitNextDistributedEvent. Once the service call returns,
the next local event is processed and one or more agents will be
reactivated, as in the local version. The case of the events list
empty is slightly different. In such a case, the service
waitNextDistributedEvent is to be invoked. Similarly, when the
service call returns, the next local event is to be retrieved from the
list and processed.

The mobility event logic, which is triggered in response to a Move
Agent request, is to be implemented by accepting the incoming
agent and locally removing the migrated agent. This is achieved
using SimArch Layer 1. To use this layer, the engine has to
implement the Layer 1 to Layer 2 interface to allow the reception
of the distributed simulation events. The interface implementation
includes the code to carry out the transition from the processing
next internal event state to the waiting for registration requests
state.

In case of a standard event, e.g., a communication between two
agents, the event will be scheduled as an internal event that
specifies the remote sender. Differently, in case of an incoming
agent, the engine state variable denoting the society cardinality is
properly updated to include the incoming agent. The engine will
then block the processing and will wait for the registration request
to proceed on. Concurrent requests will still be collected by the
engine, but none of them will be actually processed because of the
extra running agent not yet in a blocked state. Such request
collection does not compromise the validity of the algorithm
because it does not allow any agents to run over the current local
simulation time.
The discrimination between a standard event and a mobility event
is to be specified when sending the RemoveAgent event. This can
be easily achieved with SimArch Layer 1 service sendEvent,
which allows the specification of an event tag that discriminates
the type of event. By setting a different value for both types, the
discrimination becomes trivial for the receiving engine.

The distributed execution requires that event handlers are
introduced to specifically deal with distributed events. They are
similar to the handlers introduced within the SimArch software
architecture and are presented in the following subsection.

4.3 Interacti on Protocol
The interaction protocol defines the rules upon which the
conversation between the agents takes place, e.g. which agent
talks, which listens, which expects what. It can be distinguished in
intra-society protocol and inter-society protocol. The former takes
place for the communications in a local environment, both in the
case of local and distributed simulation. Differently, the latter is
used in the distributed environment only and involves agents,

either engines or entities, which are running within different
societies.

The intra-society protocol is used between the entity agents and
the engine agent to request and acknowledge the simulation
actions defined in the DES-Ontology. It is based on the blocking
and non-blocking properties of the simulation services. On the
entity agent side, the action requests such as register agent, wait
time or hold time need that the agent interrupts its execution until
given proper conditions are met. Such conditions are monitored
by the engine agent, which has the entire view of the society and
the agents’ request and which activates the individual agents by
responding to their request. For the correct execution of the
simulation it is fundamental that the entity agents are aware and
respect such protocol.

The inter-society protocol complements the intra-society rules
when operating in a distributed environment. The distributed
engine implements such a protocol in addition to the intra-society
one and therefore can immediately replace the local engine
without modifying the simulation entity agents. The inter-society
protocol defines two types of interactions: the sending of an event
to a remote entity agent, and the mobility of an agent on a remote
society.

The sending of an event to a remote entity agent occurs when a
local entity agent requests the delivery of a message to a specified
entity agent. The engine collects the request and verifies if the
recipient is running locally or on a remote machine. In both cases,
the intra-society protocol is applied for the interaction between
the engine and the entity agent. In the case of a distributed
recipient, the protocol assumes that the engine forwards the
request to the remote agent before continuing the local
processing. The communication between the two engines is
obtained by SimArch and HLA and therefore is not compliant to
the FIPA standard. However, such an approach brings several
advantages – as shown above, and does not affect the peculiarities
of the local interaction, which is still FIPA compliant.

The agent mobility is based on a similar approach but is more
complex. Figure 6 shows an example of agent mobility with the
actors of this phase and the sequences of steps. Besides the entity
agent and the engines of the source and destination sites, another
agent supports this action. It is the resource manager, which is in
charge of starting the agent on the remote site. The presence of
this agent is essential because to guarantee the proper application
specific initialization typical of an agent start-up.

Figure 6 Example of agent mobility

Let’s assume that Agent A in Figure 6 wants to move from
Society A to Society B at simulation time t. It first sends a JADE-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5725
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5725

compliant mobility r equest to engine A (step 1). The request
consists of a simulation event to be delivered to the remote
Resource Manager and an attached serialization of agent state.
Engine A sends the event to engine B by specify ing that the event
is of type mobility (step 2). At the specified time t, SimArch and
HLA deliver the event to engine B (steps 2A and 2B), which
processes the event by updating the society composition and
delivering the event to the Resource Manager (step 3), as initially
specified by Entity A. Differently from a conventional event, the
delivery and the processing of the mobility event does not allow
Engine B to continue. The local society on site B is now
incomplete and engine B cannot proceed until it receives the
request of joining the society. After having operated the
initialization of the agent parameters, the Resource Manager
activates entity A agent with the provided state (step 4). Once
running, the agent first requests to join the local society and after
proper acknowledge starts its simulation cycle as at the fi rst
activation (step 5). Such mechanism guarantees that the mobility
is operated transparently and in synchronization with the
simulation clock, local and distributed.

5. EXAMPLE SCENARIO OF USE
A significant scenario for the application of DisSimJADE can be
found within the domain of manufacturing system simulation. For
the sake of simplicity, let us consider a simplified system where
workers move around a manufacturing factory premises in order
to reach the machines they need to use. In such a scenario, a
significant aspect for the paper scope is represented by the
movement of the workers. A possible space modelling for this
system is represented by a graph whose nodes identify the
possible positions, and whose edges represent the possible
movements of workers between two positions. The nodes also
represent physical resources that can exclusively be used by only
one worker at a time, whereas the edges can simultaneously be
traversed by more workers at the same time.

A possible agent-based modelling of such system could include
two types of agents: a ResourceManager agent, which coordinates
the access to the physical points; and a Worker agent, which is
provided with a self-updated view of the world, a decision model,
a motion model and a set of machines to use. A synthetic
sequence diagram of a local simulation system for two worker
agents and a resource manager is shown in Figure 7. The workers
inform the ResourceManager when they reach the node and then
wait for an authorization event. The ResourceManager authorizes
the movement when the required node is free and delays
authorizations when the node is busy. The diagram does not
include the engine agent because it is not visible at system
modelling level.

Figure 7 Example sequence diagram [24]

Assuming that the simulated space is vast and largely populated,
it could be appropriate, if not necessary, to execute it in a
distributed environment. This can be obtained by simply
substituting the local engine with the distributed engine, for what
concerns the framework, and by instructing the resource manager
and the worker agents to support the application specific logic for
the mobility event. This regards in particular three aspects, which
are however related to the specific application:

1. the definition of the mobility trigger condition;

2. the serialization of the state to transfer on the remote
simulator;

3. the deserialization of such state at the remote simulator.

The first aspect concerns the boundaries of the world simulated
by each of the simulators. It can be easily addressed by specifying
the ResourceManager name on each node. In such a way, the
workers can easily determine whether the mobility triggering
condition is true by checking that the resource manager name of
the destination node differs from the name of the current node
resource manager.

The second and the third aspects are standard operations in Java
and many libraries support the automatic serialization of object on
String, such as XStream String [25]. The control of the data to be
serialized remains in charge of the application, however. Only at
application level it is possible to determine which data has to be
carried on and which is to be reconstructed on the destination
simulator. In the shown application, the workers are provided
with a detailed map of the local world, as in the local simulator,
and a condensed representation of the remote world. This
includes, for example, main gateways, stairs, as well connections
between the simulated areas. To the purpose of demonstrating the
framework, we locally stored constant data and reduced the
mobility data. In particular, each resource manager maintains a
copy of the world view from the local area and replicates for each
of the incoming workers. At the same time, each worker brings
with it only the specific parameters of the decision and motion
model, in addition to the list of the machines to use. The mobility
of the workers that reach a border node follows the procedure
described in Section 4.3. The procedure and the functionalities of
the framework are independent from the modelling characteristics
of the workers and more accurate decisions and motion models
can also be used. Their implementation is out of the scope of this
paper and therefore not discussed here.

6. CONCLUSIONS
The adoption of an agent-based approach has proven effective
when simulating complex scenarios consisting of a large number
of autonomous and interacting entities. In such settings, it is often
required to exploit distributed simulation to deal with the required
scalability and accuracy characteristics.

This paper has introduced DisSimJADE, a simulation framework
which provides a uniform approach to develop agent-based
simulation systems that can be transparently executed either in a
local or distributed environment.

The paper has described the several benefits that DisSimJADE
provides with respect to comparable contributions. Most of such
benefits come from the use of JADE as the underlying agent-
based platform and from the integration with the SimArch
simulation architecture, and can be summarized as follows:

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5725
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5725

x the incorporation of distributed simulation facilities into
conventional agent-based frameworks;

x the effortless development of distributed simulation
systems as a transparent extension of the corresponding
conventional (i.e., centralized) simulation system;

x the provision of a mobility facility to easily migrate
simulation agents from a given simulation society to a
remote simulation society.

An example scenario of use has also been illustrated to give the
flavor of the effectiveness provided by the DisSimJADE
framework.

7. ACK NOWLEDGMEN TS
This research has been partially funded by the ALADDIN project,
funded by BAE and EPSRC, by the euHeart project, funded by
European Union FP7, by the FIRB project on “Software
frameworks and technologies for the development and
maintenance of open-source distributed simulation code”, funded
by the Italian Ministry of Research, and by the University of
Roma TorVergata CERTIA Research Center.

8. REFERENCES
[1] N.R. Jennings, and M. Wooldridge, “Application of

Intelligent Agents”, Agent technology: foundations,
applications, and markets, Springer-Verlag, 1998, pp. 3 – 28.

[2] R. Fujimoto, Parallel and Distributed Simulation Systems,
Wiley (2000).

[3] JADE project home, http://jade.tilab.it,Telecom Italia.

[4] D. Gianni, A. D’Ambrogio and G. Iazeolla, “A Layered
Architecture for the Model-driven Development of
Distributed Simulators”, The First International Conference
on Simulation Tools and Technologies (SIMUTOOLS08),
Marseille, March, 2008.

[5] FIPA Specification, http://www.fipa.org.

[6] A. Sloman and B. Logan, “Building cognitively rich agents
using the SIM_Agent toolkit”, Communication of the ACM,
vol. 42, n. 3, 1999, pp. 71 – 77.

[7] A. Helleboogh, T. Holvoet, D. Weyns, and Y. Berbers,
“Extending Time Management Support for Multi-agent
Systems”. Proceedings of the 2004 Workshop on Multi Agent
Simulation and Multi Agent-based Systems, LNCS
3415/2005, Springer Verlag, 2004, pp. 37 – 48.

[8] F. Wang, S.J. Turner, and L. Wang, “Agent Communication
in Distributed Simulations”, Proceedings of the Multi-Agent
and Multi-Agent-Based Simulation (MABS 2004), Springer-
Verlag, LNAI 3415, 2005, pp. 11–24.

[9] Jess Project http://www.jessrules.com.

[10] A. Pokahr, L. Braubach, and W. Lamersdorf, “JADEx:
Implementing a BDI-Infrastructure for JADE Agents”, EXP -
In Search of Innovation (Special Issue on JADE), vol 3, n. 3,
Telecom Italia Lab, Turin, Italy, 2003, pp. 76-85.

[11] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C.
Lopes, J. Loingtier, and J. Irwin, “Aspect-oriented
programming”, Proceedings of the European Conference on
Object-Oriented Programming, Vol. 1241, Springer-Verlag,
1997, pp. 220 – 242.

[12] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison Wesley (2000).

[13] IEEE 1516, Standard for Modeling and Simulation (M&S)
High Level Architecture (HLA) – Framework and Rules.

[14] G.F. Riley, M.H. Ammar, R.M. Fujimoto, A. Park, K.
Perumalla, and D. Xu, “A federated approach to distributed
network simulation”, ACM Transaction on Modeling and
Computer Simulation (TOMACS), Vol. 14 N. 2, April 2004.

[15] E.H. Page, R.L. Moose and S.P. Griffi n, “Web-Based
Simulation in SimJava using Remote Method Invocation”,
Proceedings of the 1997 Winter Simulation Conference,
Atlanta, GA, pp 468-474, December 1997.

[16] B.P. Ziegler, G. Ball, H. Cho, J.S. Lee, and H. Sarjoughian,
“ Implementation of the DEVS Formalism over the
HLA/RTI: Problems and Solutions”, Proceedings of the
1999 Simulation Interoperability Workshop (SIW99).

[17] O. Dalle, “The OSA Project: an Example of Component
Based Software Engineering Techniques Applied to
Simulation”, The 2007 Summer Computer Simulation
Conference (SCSC’07), San Diego, USA, July 15–18, 2007.

[18] A.M. Uhrmacher and B. Schattenberg, “Agents in Discrete
Event Simulation,” European Simulation Symposium
(ESS98), 1998, pp. 129 – 136.

[19] M. Lees, B. Logan, G.K. Theodoropoulos, Distributed
simulation of agent-based systems with HLA, ACM
Transaction on Modeling and Computer Simulation
(TOMACS), vol. 17, n. 3, 2007.

[20] F. Bellifemine, G. Caire, and D. Greenwood, “Developing
Multi-A gent Systems with JADE”, Wiley (2007).

[21] Richard E. Nance, “The time and state relationships in
simulation modeling”, Communications of the ACM, vol. 24,
n. 4, April 1981, pp. 173-179.

[22] D. Gianni and A. D’Ambrogio, “A Language to Enable
Distributed Simulation of Extended Queueing Networks”,
Journal of Computer, Vol. 2, N. 4, July, 2007, Academy
Publisher, pp. 76 – 86.

[23] I. Sommerville, Software Engineering, 7th ed., Addison
Wesley (2007).

[24] D. Gianni, “Bringing Discrete Event Simulation Into Multi
Agent Systems” , 10th International Conference on Computer
Modelling and Simulation, EuroSIM/UKSIM, Cambridge,
April, 2008.

[25] XStream project home page, http://xstream.codehaus.org/.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5725
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5725

