
A Simulation Tool for Traffic Engineering Methods and
QoS Evaluation of MPLS Networks

Sylwester Kaczmarek
Gdansk University of Technology

ul. G. Narutowicza 11/12
80-952 Gda�sk, Poland

+48 58 3472767

sylwester.kaczmarek@eti.pg.gda.pl

Krzysztof Nowak
Nokia Siemens Networks

ul. �upnicza 11
03-821 Warszawa, Poland

+48 604 490336

krzysztof.nowak@nsn.com

ABSTRACT

The architecture of Multiprotocol Label Switching (MPLS) is

successfully deployed in networks of many service providers,

including telecommunication companies. The technology

promises to provide Quality of Service (QoS) in IP networks and

introduce a mechanism for effective traffic control. Because of the

great complexity of analytical models, simulation is an effective

technique for evaluating traffic engineering methods and new

algorithms. In this paper, we present a model and the application

msim, a C++-based simulator of MPLS networks. Its open

structure allows for easy extension of new models and algorithms.

Measurements results generated by the tool for networks of up to

100 nodes in size were presented at several international traffic

engineering conferences. We present the logical structure of the

program as well as example measurements scenarios and results,

for packet and connection level simulations. We also describe

shortly the Vims, a graphical extension to the msim simulator.

Categories and Subject Descriptors

I.6.3 [Simulation And Modeling]: Applications.

Keywords

Simulation tool, Modeling, QoS, MPLS.

General Terms

Measurement, Performance, Experimentation.

1. INTRODUCTION

1.1 MPLS history
Multiprotocol Label Switching (MPLS) is a network architecture

developed in the late 90’s. MPLS was originally proposed as a

remedy to insufficient speed of IP routers facing fast growing of

IP networks. The idea came from different technologies, like

Asynchronous Transfer Mode (ATM) or Cisco Tag Switching.

Several years later it became clear that the routing speed is no

longer a problem. In the meantime fast hardware-based line

modules for routers were developed, which greatly increased the

routing speed. However, support for traffic engineering methods

offered by MPLS met growing demand for quality of service and

better control of network resources. This made MPLS a very

attractive solution for many network providers.

1.2 MPLS architecture
The architecture of MPLS network is defined in details in

RFC3031 [1]. Here we want to give very basic information about

it, especially on the routing principle.

Data transport in MPLS requires having the complete path

established in advance. If this is provided, IP packets entering an

MPLS network are encapsulated with an additional header, which

is used for forwarding instead of the IP header. The main field in

the MPLS header is the 20-bit label, which is the identifier of the

path which the packet belongs to. Routing is performed by

changing the value of the label before sending the packet to the

next hop. The actual label value for every hop is set locally

between the neighboring routers and in general has no relation to

the IP address.

The MPLS networks are designed for the core of the network,

rather than from, and to the end user. Paths usually gather many

IP streams so the traffic carried in a path is normally quite large.

One of the practical examples of a path may be an IP connection

of two local offices of a company. The path works in this case like

a virtual link between the two locations.

Paths must have bandwidth reserved for them in the control plane

to guarantee the QoS and enable traffic engineering methods. As a

consequence, one must record the reserved bandwidth values on

every port and check free bandwidth value when choosing a route

for a path. That is possible thanks to extensions to existing link-

state routing algorithms, like OSPF-TE and ISIS-TE, where TE

denotes the traffic engineering extension.

The nodes in MPLS networks are IP routers extended by MPLS

functionality and protocols. They use so called label distribution

protocols to automatically create the necessary paths without

bandwidth reservation. (It is difficult to automate bandwidth

reservation because the traffic amount is usually unknown at the

time of path creation.) The most common label distribution

protocols are RSVP-TE (Reservation Protocol with Traffic

Engineering) [2] and LDP (Label Distribution Protocol) [3]. The

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIMUTools 2009, March 3–5, 2009, Rome, Italy.

Copyright 2009 ICST, ISBN 978-963-9799-45-5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5689
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5689

LDP relies entirely on the information provided by the IP routing

protocol when selecting routes, whereas the RSVP-TE is more

flexible and gives an option for the explicit routing, where the

route is either completely or partly pre-defined. This in turn gives

possibilities to compute the route outside the protocol instance,

eg. by a specialized offline tool.

1.3 Evaluation methods in MPLS
Research in MPLS can be based on an analytical or simulation

approach. However, the application of analytical methods is very

restricted. This is due to the great complexity of the nodes

architecture, especially buffering systems employed in the routers.

An additional problem is the complexity of IP traffic, which does

not follow any classical models and requires novel and

complicated tools. Indeed, the mathematical models are very

complex and difficult to analyze. In contrast, the simulation

approach is much more suitable for research of MPLS networks.

In simulations we use a model of MPLS networks, which takes

advantage of some simplifications regarding the node architecture

and the traffic structure. We don’t simulate the protocols, like

RSVP or OSPF, as this would not bring enough added value to

the quality of the results. Instead, our goal is to concentrate on

different traffic engineering methods and new ideas and their

influence on quality of service.

1.4 Contents
The paper is organized as follows. In the second chapter we

present the MPLS network model used for implementation. The

third chapter we devoted to the structure of the simulation

program. We also highlight there some implementation aspects. In

the fourth chapter we included examples of research areas where

the program proved its usefulness. In the last chapter we introduce

the Vims, a graphical extension to the simulator. Finally, we

present conclusions and features we want to introduce to msim in

the near future.

2. NETWORK MODEL

2.1 Simulation
We use a discrete event simulation with a common event queue.

The simulation can be performed either on a packet level or on a

connection level. The first one is used when we are interested in

measurements of traffic characteristics. It provides detailed

information about the quality of service, but the simulation time is

often restricted to a fraction of a second. In contrast, the

connection level simulation can be used to simulate long-term

network behavior, especially to evaluate routing or preemption

mechanisms.

2.2 Node architecture
Packet forwarding is based on the RFC3031 [1]. The node is a

pure MPLS node, without IP routing functionality. The MPLS

forwarding routine uses three arrays: NHLFE, ILM and FTN, as

shown in fig. 1. The NHLFE (Next Hop Label Forwarding Entry)

contains information about the next hop and a new label, which is

assigned to the packet when it leaves the router. The ILM

(Incoming Label Map) contains bindings between the incoming

label value and the proper NHLFE entry. If the router is the access

node and incoming packets have no MPLS header yet, then the

FTN (FEC To NHLFE, FEC – Forwarding Equivalence Class)

entries are checked, where the translations from the IP address

prefix and the NHLFE entry are stored.

Figure 1. Structure of forwarding arrays.

After the forwarding decision is made and the outgoing label

assigned, the packet is sent to a buffer in an output port. The

buffering system is defined in the node description part of the

configuration file. Our implementation offers flexibility in

building different combinations of buffers by connecting smaller

logical blocks. Currently there are limitations because of

simplified syntax of this part of the configuration file and there

are three possibilities: simple queue, PQ (Priority Queuing) and

the combination of PQ and WFQ (Weighted Fair Queuing). The

latter can be used with the DiffServ class model (fig. 2). The

assignment of the outgoing packets to the specific queue is based

on the class of service assigned to them. The queue length is

defined in the configuration file.

Figure 2. Implemented buffering scheme. EF - Expedited

Forwarding, AF - Assured Forwarding, BE - Best Effort.

The packet delay in the model is the sum of three values: waiting

time in queues, transmission times and propagation delays. The

last value is calculated from the declared physical length of the

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5689
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5689

output link, assuming that the link is a fiber, for which the speed

of light is ca. 2e+8 m/s. That gives about 0.5ms propagation delay

for every 100 km of fiber.

Packet losses in our model are caused by buffer overflow only.

Currently we do not simulate losses in the transmission channel,

e.g. caused by crosstalk or errors, as we focus on fiber links.

2.3 Sources
The sources in the model simulate aggregated data streams, which

is the typical case in MPLS networks. We implemented a quite

simple but open for extensions source definition. How it works,

depends on the simulation level, which is indicated in the

configuration file.

If we perform simulations on the connection level then the source

is acting only as a trigger to create a path with declared bandwidth

reservation. This mode is used by the topology manager, which

automatically creates and shuts down the sources.

For the simulations on the packet level, the source generates

packets at declared average speed and length. Both time and

length can be set constant or selected randomly with uniform or

exponential distribution. The implementation can be easily

extended to other distributions.

The configuration file contains definitions of a given number of

source types, including parameters like speed and packet length

characteristics, class of service and activity duration (for

connection level simulations).

3. SIMULATOR APPLICATION

3.1 Introduction
The msim simulator evolved from an ATM connection level

simulator casino, written from scratch to evaluate connection

admission control (CAC) methods. With growing popularity of

MPLS, we decided to implement MPLS logic and introduce the

packet-level simulations. Since then virtually any module of the

msim has undergone major changes to make it more useful and

universal.

There are many popular simulation tools available, including open

community based ns-2 [4] and OMNeT++ [5] or commercially

available OPNET [6]. Unlike these universal tools, the msim has

been developed and optimized as an MPLS simulator only and

currently it is not planned to extend it to other technologies or

transport techniques. Thanks to this principle, configuration files

of msim are usually much simpler, because the simulated network

is preconfigured as an MPLS network. An important feature is the

way the results are gathered by our application. It automatically

calculates a set of network-wide parameters so as the user only

needs to declare the list of requested parameters. After the

simulation finishes, the average values are collected and written to

the file, along with the confidence periods for every measured

value. This also greatly fastens the process of interpreting the

results. The fact that the tool is specific to MPLS, makes it less

complex than the other tools and therefore easier to troubleshoot.

The primary goal of the implementation has been to create a tool

which would serve the authors in research of traffic engineering

methods at a network level, including new routing or preemption

methods. The application should be easy to configure and capable

to perform series of simulations and the results from different

series should be presented in a common report file.

The msim application has been implemented as a C++ program

consisting of 25 modules and ca. 11,000 lines of code. Currently

the running platform is the Windows XP operating system.

Though it should work properly in different Windows versions,

these were not tested. The source code has been written using

class hierarchy: most of the classes inherit from the class “basis”

and every object capable of emitting and interpreting events

inherits from the network object class “netob”. The program has a

very basic user interface (fig. 3) and it records more detailed

messages to the log file.

 MPLS Network Simulator, K. Nowak, 2003-2008.

 Creating configuration manager.

 Creating connection manager.

 Creating report manager.

 Reading configuration and creating the network.

 Checking network integrity.

 Creating topology manager.

 Begin of simulation.

 1i>....>....>

 End of simulation.

 Finished without problems!

Figure 3. Typical console output of msim for single iteration.

The simulation starts with a preparation phase, in which the

control objects and the network are created. The second phase is

the simulation of the network, and in the last phase the results are

written to the files and the objects are destroyed.

The simulation phase begins with the initial period, which is used

to reach the stable state of the network. After the initial period

finishes a number of regular (simulation) periods of equal

duration pass. At the end of each of them partial results are

collected (fig. 4). Thanks to such division the final results consist

not only of the average value, but also the confidence periods,

calculated from the differences between the partial results using

the T-Student distribution.

���������	

����

�	�����

�����

�	�
����

�����

���
����

�����

���
����

�����

���������	
��

������
�
��

������
�������

���

����������	
��
��	��
�������

Figure 4. Initial period and simulation periods.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5689
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5689

The paths can be either static ones, declared in the configuration

file, or created automatically during the simulation. The latter case

is necessary to perform nontrivial connection level simulations.

The topology manager object is responsible for the changes.

3.2 Program structure
In fig. 5 we show the structure of the program that contains the

major objects. The main object is the simulation manager, which

is controlling the simulation flow, including creation of other

major objects and dividing the simulation time between initial and

regular periods.

The other important objects are: configuration manager, which

reads the configuration and creates the network, connection

manager, which stores information about the paths, and report

manager, which collects and saves the measurement results. Here

we describe how the simulation objects are constructed.

Just after its start (1) the program creates the message stream msgs

(2) for debug and output messages, and the random generator

object (3).

The first network object created is the simulation manager (4),

which then takes over control of creating other objects and

performing the simulation.

The first task of the simulation manager is to interpret the

command line parameters, which always include the configuration

file name and optionally other information, e.g. the debugging

level. In the next step the fixed network objects are created. These

are: event queue manager (5), configuration manager (6),

connection manager (7) and report manager (8).

When the fixed objects are created, the network structure can be

built. The configuration manager reads the configuration file and

creates network objects (9) including nodes, sources and the

topology manager. At that point the network structure is ready and

the simulation can start, so control is passed to the event queue

manager. Its main task is to distribute events in a loop, until any

event remains in the queue. To stop the simulation at a certain

time point, the simulation manager simply requests deleting all

remaining events from the queue.

After the event loop ends, the next iteration can start, if requested.

In this case the simulation manager deletes all the objects of the

simulated network and resets the state of the fixed objects, what

for most of the objects has a similar effect like deleting and

creating them again (This is not the case for the report manager,

which has to keep the results from previous iterations.) At that

point the configuration manager has no information about the

network and it reads the configuration file again, now using the

values which correspond to the new iteration. Then the event

queue starts again, like during previous iterations.

The ending of the last iteration is signaled with broadcast message

CM_END_SIM, which triggers creating combined reports by the

report manager. After the reports are created, the network is

deleted and the simulation quits.

main()

msgs stream

Random

generator

Simulation

managerReport

manager

Connection

manager

Event queue

manager

Configuration

manager

Configuration

file

Terminal

window

Topology

manager

Log files

Report files

Nodes

Simulated network

Sources

1

2

3

4

5

6

7

8

9

10

11

Figure 5. Structure of the program and objects creation order.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5689
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5689

3.3 Main features

3.3.1 Discrete event simulation
The simulation principle is based on events, which are distributed

between the simulated objects. An event corresponds to an action

in the network, like generation of a packet, creation of a new

source, ending the simulation, etc. The event is put into the queue,

which is sorted based on delivery time. A simplified form of the

event loop looks like following:

1 while (queue->first_item != NULL) {

2 event = queue->fetch_first_item();

3 sim_time = event->time;

4 event->receiver->handle_event(event);

5 delete_event(event);

6 };

The loop is executed while the queue is not empty. The first event

(which has the smallest delivery time) is fetched from the queue

and its delivery time becomes the current simulation time (line 3).

The event is sent to the receiver object for processing and than

deleted. Such procedure works well, because of the principle, that

only the events trigger changes in the network. It is also used in

many other simulators, including OMNeT++ [7]. In our

implementation the events can be addressed to a specific object or

broadcasted to every network object. An example of the broadcast

message is the event CM_END_SIM, which is generated by the

simulation manager and delivered to every network object when

the simulation must finish.

3.3.2 Network definition in a text file
The simulation parameters and the topology are defined in a text

file which is easy to edit and interpret. The file consists of

simulation parameters, node and sources definition, static paths

configuration, classes of service description and report files

structure. Every line starts with the command name, followed by

colon and the comma-separated parameters in the form of

name=value, and finishes with semicolon, for example:

link: id=44, bw=1e+09, pt=0.001, [...] ;

3.3.3 Direct report generation
The measurement results are written to a set of files. The included

measurements and order of values are defined in the configuration

file. The values are organized in tables with user defined

separators. This allows for creating tab-delimited or comma-

separated values (CSV) file. The number representation can be set

to any locale to ease the post-processing of the results. Properly

defined report files are ready to create graphs of them.

3.3.4 Iterations
The simulation can be automatically repeated several times, using

the same configuration file. Thanks to a special syntax virtually

any configuration parameter can be defined as a list of values, so

as the n-th element of the list is used as the current value for the

n-th simulation repetition. At the end of the last simulation, a

single report file is generated, which combines values of every

iteration in a manner which makes it easy for graph generation or

just for comparison. This greatly simplifies preparing and

processing the results of a series of simulations, where only one

parameter changes, which is a common scenario.

3.4 Main objects

3.4.1 Simulation manager
The simulation manager is the engine of every simulation. It is

created first and deleted as the last object. It carries the simulation

flow and keeps record of every created network object. Its main

tasks are the following.

1. Read and interpret the command line parameters.

2. Store pointers to every network object. This allows for mass

operations performed for all objects, like deleting the simulated

network or sending broadcast messages.

3. Store keywords, which correspond to network objects. Every

object has associated with them one or more text strings called

keywords. Any network object which needs to know the pointer to

another object can get this information from the simulation

manager by providing the keyword.

4. Control the simulation flow. The simulation manager executes

the iteration loop, creates and deletes the network objects, and

starts the event queue manager. It also generates most of the

control events.

3.4.2 Event queue manager
The event queue manager is a passive object that stores the event

queue, which is sorted by the delivery time. When requested by

the simulation manager, the object executes the event loop which

in fact keeps the simulation running. It simply fetches the event

from the queue head and runs the handler procedure in the

receiver. That in turn generates an action in the receiver object

and possibly generates another event.

3.4.3 Configuration manager
The main task of the configuration manager is to read the

configuration file, perform necessary syntax and consistency

checks, store the read information and properly create the

simulated network.

The process of reading the configuration file and creating the

network is done every time the iteration starts.

3.4.4 Connection manager
The connection manager keeps track of current connections

(paths) created in the network. It performs creation of every

connection, using implemented traffic engineering methods,

including routing and admission control. If defined so in the

configuration file, it also performs preemption of existing paths

when there is no free bandwidth.

3.4.5 Report manager
The report manager stores centrally the measurement results

collected by every object and performs necessary calculations, e.g.

average values and the confidence interval.

At the end of the simulation, after the last iteration, the report

manager combines all the requested statistics and creates the

result files. The contents and format of the files is defined in the

configuration file.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5689
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5689

3.4.6 Topology manager
The topology manager is an optional object, which is created only

if there is a need for changing network topology during the

simulation. Currently it supports mass creating and deleting

sources to trigger creation of paths. One of the applications of this

feature is to evaluate methods like routing or admission control,

which need to be evaluated by creating new connections.

3.5 Generating reports
The configuration file contains definitions of the result files called

reports. Such definitions include file name, list of measurements,

separator character, locale used to format numbers and

corresponding header labels, for example:

report: id=1, file="europe.pree.csv", obj=preem,

ires=line, sep=";", loc="Pl_PL",

params = "*|src+|fail+|pre+",

labels = " CoS|Src|+/-|Fail|+/-|Preem|+/-";

This definition creates the file “europe.pree.csv” to include values

associated with preemption methods. Iteration results will be

ordered line-by-line and the numbers converted to the locale

“Pl_PL” with semicolons as value separators. Three

measurements will be added (src, fail, pre) with corresponding

period of confidence (+). The first item (*) is the default

parameter used as the value of the first column, which in this case

is the number of the class of service (CoS). (Another example of a

default parameter can be the link number for link statistics.) The

specified labels will be added as table headers. Assuming that four

iterations have been performed, such definition would generate

results similar to the following.

[...]

CoS;Src;+/-;Fail;+/-;Preem;+/-

0 [1];14 995,9;69,40;2 884,2;31,94;9 500,1;106,91

0 [2];14 990,5;64,30;3 000,2;48,15;9 787,2;113,90

0 [3];15 049;80,84;2 793,2;51,85;9 482,8;154,22

0 [4];14 943,9;70,49;2 980,3;33,10;17 496,9;337,54

[...]

Such format of report files can be directly used as input for further

processing, e.g. for creating tables or graphs.

4. SIMULATIONS
The program is developed as a universal tool and there are many

different measurements scenarios. In this section we present two

examples. The first one uses the packet level simulation to

evaluate the performance of some static and dynamic routing

mechanisms. In the second example we compare preemption

algorithms by simulating long-term networks behavior on the call

level only. The results presented in this section illustrate different

applications of the program only so we do not provide analysis of

the results here.

4.1 Dynamic routing
We implemented a dynamic routing algorithm which reroutes

some of the paths which face excessive packet loss ratio. The idea

is that after the initial period several next periods are used to

evaluate packet loss ratio and delay. Several paths experiencing

the worst QoS are rerouted at the end of the period (fig. 6).

In fig. 7 we show the network topology we use. We compared the

resulting packet loss ratio value with corresponding results of the

static routing method, i.e. without any rerouting. In both cases we

performed a series of simulations with different priority of the

routing algorithm.

Figure 6. Additional simulation periods are used for path

relocation based on QoS measurements results.

The hop count priority is the typical case when always the shortest

path is selected, provided that there is enough free bandwidth.

When bandwidth priority is used, then the path with the highest

available bandwidth will be chosen even if it is not the shortest

one. Additional constraint is defined using the parameter d, which

is equal to the biggest possible difference in hop counts between

the selected path and the shortest path. If d=0 then only the

shortest path can be chosen, but with availability of more then one

equal routes, the one which is less occupied will be chosen. If

d=∞, then the free bandwidth is the only criterion and length of

the path does not count.

Figure 7. Topology used for routing evaluation.

Table 1 contains results obtained from such scenarios. We can see

that using the static routing with the shortest path priority

generates the worst results. The loss ratio can be greatly improved

if dynamic routing is used or if longer paths are allowed to be

chosen. What may be surprising is the fact, that the best results

can be achieved for the bandwidth priority with d=1, but without

the dynamic routing mechanism. In fact, the results scored by

implementing the dynamic routing don’t depend much on the

routing priority.

Table 1. Packet loss ratio PLR for different routing priorities

 Static routing Dynamic routing

Priority PLR
Conf.

period
PLR

Conf.

period

Hop cnt. 0,095610 0,004718 0,061996 0,006701

Bw, d=0 0,088942 0,004672 0,077342 0,011955

Bw, d=1 0,038858 0,008060 0,063055 0,012427

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5689
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5689

4.2 Preemption algorithms
Preemption is one of the traffic engineering methods and can be

used in cases when there is not enough free bandwidth on selected

route available. The remedy called preemption is to collect the

missing bandwidth by removing some of the existing paths of

lower priority. The procedure can be used if the new path has not

the lowest priority and there are paths of lower priority with

enough bandwidth available on the selected route.

It is possible, that there are many different sets of paths which

satisfy the request. In fact it was proved, that the problem of

selecting the best set of paths to be removed is NP-complete. For

that reason, different heuristic algorithms have been developed.

Currently we implemented two methods, one decentralized RFC

[8] and one centralized KN [9]. As the two methods can be

adjusted at different priorities, we performed two series of

simulations for both methods. For the relocation count priority

(REL) the aim is to minimize the number of preempted paths,

whereas for the bandwidth priority (BW) the sum of preempted

bandwidth must be minimized instead.

We performed simulations of several published real topologies

[10] as well as a 100 nodes random network (fig. 8). In fig. 9 we

present results of the combined metric, which is defined as a

normalized value, which calculates both the number of preempted

paths and the amount of preempted bandwidth. The value is

greater for preemption methods that perform closer to an ideal,

hypothetical method. The most important conclusion is the

following: with growing network size the effectiveness of

preemption methods declines. More results and analysis can be

found in [11].

Figure 8. Random network of 100 nodes used in connection

level simulations.

Effectiveness

0

0,05

0,1

0,15

0,2

0,25

10 100

Nodes#

KN-RC

KN-BW

RFC-RC

RFC-BW

20 30 5040

C
o
m

b
in

ed
 m

e
tr

ic

Figure 9. Performance of preemption methods

for networks of different size.

5. VIMS: GUI FOR MSIM
When the simulated networks are bigger than several nodes, the

process of creating the configuration file can become challenging.

One problem is the large number of definitions and the second

one is the growing chance for making mistakes. To overcome

these problems, we developed the Vims – a visual extension to the

msim application, which allows for creating the visual

representation of a network and automate generation of proper

configuration file. The main window of the application is shown

in fig. 10.

Figure 10. Vims: main window.

The main purpose of the application is to create network maps,

configure parameters of the objects and create the configuration

file based on a predefined template. When the configuration file is

created, the simulation can be started directly from the main menu

of Vims.

The Vims program can be used not only to generate fully defined

networks. It also includes procedures to generate random

networks using different modifications of the Waxman algorithm

[12]. Additional useful feature of the application is topology

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5689
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5689

analysis function that builds histograms of nodes connectivity and

route length, like shown in fig. 11.

Figure 11. Vims: topology analysis window.

The application has typical editing and file manipulation features.

We used the XML file as a standard format for topology files. Its

main advantages are invulnerability to slight format changes, i.e.

some parameters can be added to the file by future version of the

application and still the old files will be read without problems.

Another useful feature of the XML format is the possibility to

easily view or edit the contents with any text file editor.

To increase importing and exporting functionality, we introduced

two additional features. A customized XML filter is used to read

the network topologies gathered in the library of Zusse Instatut

Berlin (ZIB) [10]. We also implemented network topology

exporting as the SVG graphic format for further processing. The

topology shown in fig. 8 was created in this way.

6. CONCLUSIONS
The simulation application presented in this paper is an effective

tool used in research of traffic engineering methods and QoS

analysis of MPLS networks. Its main advantages are universality,

support for quick result presentation and iteration mechanism for

performing a series of simulations. The graphical extension

program Vims greatly simplifies creation of configuration files,

especially for bigger networks, and offers a topology analysis

feature. The simulator program is serving the authors as the main

research tool for analysis of MPLS networks and the results have

been published at several scientific conferences.

The implementation based on the object model makes the program

open for new extensions and improvements. In fact, we constantly

improve it and do not consider it as a finished work. Some of the

current implementation plans include additional preemption

algorithms, histograms generation and changes in configuration

file syntax to allow building any buffering systems.

The applications described in the paper are available for

download [13]. There are also example configuration files and a

description provided.

7. REFERENCES
[1] Rosen, E., Viswanathan, A. and Callon, R. 2001.

Multiprotocol Label Switching Architecture. RFC 3031,

January 2001.

[2] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V. and

Swallow, G. 2001. RSVP-TE: Extensions to RSVP for LSP

Tunnels. RFC 3209. December 2001.

[3] Andersson, L., Minei, I. and Thomas, B. 2007. LDP

Specification. RFC 5036, October 2007.

[4] The NS-2 main page.

http://nsnam.isi.edu/nsnam/index.php/Main_Page.

[5] The OMNeT++ Discrete Event Simulation System.

http://www.omnetpp.org/.

[6] OPNET Technologies, Inc. http://www.opnet.com/.

[7] The OMNeT++ User Manual.

http://www.omnetpp.org/doc/manual/usman.html.

[8] Oliveira, J. de, Ed. 2007. Label Switched Path (LSP)

Preemption Policies for MPLS Traffic Engineering.

RFC 4829, April 2007.

[9] Kaczmarek, S. and Nowak, K. 2006. A New Heuristic

Algorithm for Effective Preemption in MPLS Networks. In

proceedings of the Workshop on High Performance

Switching and Routing, Pozna� 2006, 337-342.

[10] SND network library. Zusse Institut Berlin.

http://www.sndlib.zib.de/.

[11] Kaczmarek, S. and Nowak, K. 2008. Performance of LSP

Preemption Methods in Different MPLS Networks. In

proceedings of the 5th Polish-German Teletraffic Symposium

(Berlin, Germany, October 6-7, 2008). Logos Verlag Berlin

GmbH 2008, 195-204.

[12] Zegura, E. W., Calvert, K. L. and Donahoo, M. J. 1997.

A Quantitative Comparison of Graph-based Models for

Internet Topology. IEEE/ACM Transactions on Networking.

Vol. 3, Issue 6, Dec. 1997, 770-783.

[13] The msim application page,

http://www.eti.pg.gda.pl/katedry/kst/pracownicy/

Sylwester.Kaczmarek/badania/msim/index.html.

This work was supported in part by the Polish National Central

for Research and Development under project PBZ MNiSW –

02/II/2007.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5689
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5689

