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ABSTRACT 
Ubiquitous computing (ubicomp), as envisaged by Weiser [22], is 
heavily  user-centric and largely concerned with applications 
specifically  designed to meet end-user needs.  Sensor populated 
ubicomp environments differentiate these applications from 
existing mobile and distributed systems through context 
awareness.  For the system developer, the problems of 
heterogeneity and scalability are felt most keenly when designing 
this adaptive behaviour.  A context-aware ubicomp system needs 
to operate reliably over the wide variety of situations that may be 
encountered.  In this paper we present a technical architecture 
which has been implemented to support scalable, cost-effective, 
runtime experimentation using a framework of models to support 
informed decision making in an iterative design cycle.   

Categories and Subject Descriptors 
I.6.8 [Simulation and Modelling]: Types of Simulation, 
Animation and Gaming; C.4 [Performance of Systems]: Design 
Studies; D.2.m [Miscellaneous]: Rapid Prototyping 

General Terms 
Design, Experimentation. 

Keywords 
Ubiquitous computing, adaptive behaviour, context awareness. 

1. INTRODUCTION 
Ubiquitous computing (ubicomp), as envisaged by Weiser [22], is 
heavily  user-centric and largely concerned with applications 
specifically  designed to meet end-user needs.  Sensor populated 
ubicomp environments differentiate these applications from 
existing mobile and distributed systems through context 
awareness.  Context awareness means that these systems must 
respond and adapt to the social, task and environmental context 
[21], in which they are deployed, if they are to achieve Weiser's 
application-centric vision.   

For designers of these systems, heterogeneity of sensor data and 
scalability of environments are major challenges during the 
design cycle [17].  Specifically  when designing this adaptive 
behaviour.  A context-aware ubicomp system needs to operate 
reliably over the wide variety of situations that may be 
encountered. This wide variety of situations encountered arises 
from the combinations of physical settings, environmental and 
location sensing and, most unpredictably, the behaviour of users 
in such situations.   

These design challenges have resulted in even basic, everyday 
ubicomp systems, such as simple motion sensor driven lighting 
systems and smart air-conditioning units failing due to the 
designer not fully appreciating the specific factors present in a 
specific situation  e.g. the lighting timer is set to too short a cycle 
for a particular user. These nuances in how users actually carry 
out their daily activities and how they differ from the way 
designers and developers expected the system to be used, present 
challenges that successful applications need to overcome. 

Although existing design tools for distributed systems, using 
traditional software design and evaluation techniques, are a useful 
basis for design in ubicomp, they cannot address the complexity 
introduced by context-awareness.  A rapid iterative prototyping 
approach alleviates this problem by speeding up the design cycle 
and enabling developers to evaluate early system implementations 
with low investment and fewer repercussions if a system fails.  
Prototyping approaches have proven a successful choice for many 
ubicomp design tools [3, 13, 14, 15].   

However, to date these toolkits have largely favoured rapid 
creation and deployment of applications [9] with less emphasis on 
structured feedback as part of the cyclical design process to 
support informed decision making during the next design 
iteration.  New factors affecting user acceptance of ubicomp 
systems raise the need to develop new analytical approaches that 
will enable investigation of the underlying causal relationships 
which precede any instance of unwanted behaviour being 
exhibited to an end user. 

Through this research, we have identified the following issues, 
which can be addressed through simulation-based tool support to 
help developers and designers as they explore this relatively 
immature field.  There are three core issues: 

x Systematic investigation of relevant context and its change 
over time to determine areas of unwanted adaptive behaviour 
in the system. 
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x The capability to reliably configure environmental 
conditions to repeatedly visit a scenario which is problematic 
for the ubicomp system under test (SUT). 

x Supporting tools to determine causal relationships behind a 
SUT behaving in an unexpected and unwanted manner. 

In this paper, we start in section 2 by discussing related work with 
a focus on the role of both real-time and non-real time simulation 
in context-aware system design, the success of rapid-prototyping 
for ubicomp development and finally issues surrounding 
requirements engineering for ubicomp.  In section 3 we discuss 
our requirement considerations for this work, followed in section 
4 by a brief case study of a real-world problematic ubicomp 
system which we have observed.  Section 5 describes the 
framework of models we use to support this informed design 
approach and section 6 describes the technical architecture 
implemented for runtime experimentation.  Finally section 7 
discusses our evaluation so far and some future work, followed by 
section 8 which draws conclusions about this paper. 

2. RELATED WORK 
Ubiquitous computing has seen many uses of simulation in design 
tools [2, 3, 4, 16] and has allowed researchers to conduct 
otherwise costly and time-consuming research more affordably.   
Ubiwise [2] one of the earliest ubicomp simulators enabled 
prototyping of hardware and low-level software e.g. protocols.  At 
the time of Ubiwise’s development, the ubicomp research 
community were caught in a situation where application 
developers were waiting for protocols and hardware to be 
developed, while hardware developers were waiting to see what 
kind of applications would need to run on their devices.  Ubiwise 
offered simulation as a way to break this circle of dependence.  
Ubiwise was developed as a first person interactive simulator 
because it needed to allow users to interact with device interfaces. 

Discrete event simulations have also proved useful for ubicomp 
systems, specifically smart traffic management systems.   
Reynolds et al [4] have developed a large-scale 2D grid 
simulation tool to model sensors, actuators and the environment.  
For added flexibility, they propose an emulation framework for 
testing applications and middleware.  As an initial test case, they 
focus on city-wide traffic simulations and model a wide range of 
ubicomp scenarios.  Their 2D discrete simulation approach is very 
well suited to issues such as traffic light communication however 
we propose a more user centric approach that is needed when 
trying to anticipate user acceptance of ubicomp systems. 

Rapid prototyping is another technique which has been very 
successful for ubicomp development.  Carter and Mankoff [7] 
found paper prototypes very useful when trying to identify useful 
aspects of their system design.  This is only really a very early 
stage design tool as they also uncovered that this technique just 
doesn’t scale and so can only address very narrowly defined 
questions.  A more advanced ubicomp design tool was context 
widgets [18] which insulated developers from the underlying 
sensor network in much the same way as graphical user interface 
tools do.  These widgets provide benefits of abstraction and 
reusability  and are very useful when creating new ubicomp 
applications or retrofitting existing applications to support 
context-awareness.  Widgets are specifically an implementation 
tool and speed up the development process. 

The team behind Topiary have demonstrated a lot of success 
providing a graphical tool to rapidly prototype both ubicomp 
scenarios and ubicomp applications.  Topiary is specifically 
designed to look at applications for mobile devices and is capable 
of generating a deployable prototype from very high level 
instruction.  Prototypes can be run on a 2D desktop simulation 
where users are moved around in much the same way as a board 
game.  Alternatively prototypes can be deployed on devices in the 
wild so that users can interact with the system interface on a 
mobile device.  This latter form of testing takes a sort of Wizard 
of Oz approach since a tester must follow the test-user to play the 
role of the SUT. 

As already mentioned simulation and prototyping have proved to 
be very useful tools in the design and development of ubicomp 
systems.  We will build on this proven success to enable user-
centric testing of adaptive context-aware systems but including 
model-driven experimentation with prototypes to support 
feedback on causal relationships in the adaptive behaviour and 
assist informed decision making in subsequent iterations of the 
prototyping cycle. 

3. REQUIREMENTS 
3.1 Requirements Considerations 
The ubicomp applications we are targeting with this platform are 
those that the user experiences in their environment but not 
specifically  on mobile devices.  We are not concerned with user 
interface design but more with evaluating the adaptivity presented 
to end-users at run time.  We are particularly interested in 
evaluation of ubicomp applications which adapt along the 
temporal and spatial dimensions.  Bandini et al [8] have identified 
orientation, proximity and containment as the key spatial relations 
for ubicomp in their Common Sense Model.  As part of their 
future work they list enabling applications to reason along the 
time axis about changes in the environment as a key concern.    

The approach in this document uses the factors in figure 1 to 
describe the primary factors that influence users' acceptance of 
these target context aware applications.  The factors considered in 
this diagram are explained as follows: 

x Behavioural Envelope: The bounds of potential service 
behaviour that can be exhibited. 

x Context changes:  Changes in the task, social or physical 
context surrounding an ubicomp system. 

x Exhibited Behaviour:  The behaviour as seen by the end-
user. 

To find a solution that universally resolves these factors is a study 
that intersects many fields taking in both technical issues and 
human factors, many of which are highly subjective and difficult 
to concretely measure.  In addition, no single standardised set of 
criteria exist to define good behaviour in an adaptive service, 
although work is underway on this front [1].  To help alleviate 
this situation, the method presented here is aimed at conducting a 
thorough investigation of both the adaptive behaviour space and 
the context space of a SUT, to identify occurrences of unwanted 
behaviour that may lead to a prototype service being rejected by 
end users. 
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Figure 1. Factors affecting Ubicomp Service end user 
Acceptance 

3.2 Requirements 
Our overall objective is to enable identification of the causal 
relationships leading to unwanted occurrences of adaptive 
behaviour.  Based on this, the factors laid out above, the need for 
cost effectiveness and both Davidoff’s [9] and our own 
identification of a gap in the research for ubicomp analysis tools, 
we set out the following requirements for this evaluation tool: 

1. An iterative experimental approach must be developed that 
supports reasoning about users, the system and the 
environment with a view to identifying unwanted system 
behaviour. 

2. A technical architecture must be implemented to actualise 
the result from requirement 1. 

3. The tool must have access to a cost-effective test 
environment suff iciently flexible to test many situations and 
provide a diverse, heterogeneous flow of context 
information. 

4. Tool must enable rapid reconfigurations of the test 
environment and models to support the iterative prototyping 
cycle that has proven successful for ubicomp application 
development. 

4. CASE STUDY 
Before we go on to discuss our implementation, we present here a 
short case study of a real-life problematic smart lighting system.  
We have used this case study to supplement our requirements 
gathering process for this evaluation tool and will refer to it 
throughout the remainder of this paper. 

4.1 Real World Smart Lighting System 
A smart lighting system is designed to automatically switch lights 
on in public access areas for building occupants.  Lights are timed 
to switch off a set period after a user has been detected.  Offices 
and lab areas remain on a manual light system.  Motion sensors 
switch lights on when they detect movement.  A timer is 

incorporated to switch lights off following a period in which no 
occupant has been detected.  Essentially the system performs the 
simple action of toggling between on and off states.  Figure 2 
shows a simple diagram of this system. 

 

 

4.2 Run Time Problem 
Figure 3 shows the building floor plan where this system was 
deployed.  Stairwells and lift lobbies are the entrance and exit 
points on each floor.  Motion sensors controlling each floor’s 
lighting are installed in each stairwell and lobby.  Offices space is 
marked in grey and is accessible only with a key; white space is 
publicly accessible. 

A problem occurs for late night workers when the number of 
occupants in the building is very low.  When a worker emerges 
from their room after working for a couple of hours, the timers 
have switched off the lights and the lights will not turn on again 
until the worker has reached the exit for that floor.  The user must 
find their way to an exit in the dark but the lights switch on just as 
the worker exits the hallway, beneficial to neither the user nor the 
energy saving scheme. 

 

 

 

4.3 Problem Discussion 
Although Figure 2 clearly depicts how the system operates, it 
omits two important elements that significantly impact on the 
operation of the system.  The position of motion detectors in the 
environment heavily  impacts on the usefulness of this system and 
how accurately the system selects lights to switch on.   

Figure 2. Simple System Diagram 

Figure 3. Lighting System Floor Plan 
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The framework and modelling approach which we present in the 
next section attempts to uncover problems such as the one 
presented in this section by assisting testers to fully  explore the 
behavioural and context spaces for a service using a rapid 
prototyping and simulation approach. 

5. FRAMEWORK MODELS 
This section discusses the models that satisfy requirement one in 
section 3.2.  The models listed below will be described in detail 
through the following subsections before beginning the discussion 
of the technical architecture.  

The following models have been defined for this framework: 

x System Logical Requirements Model (SLRM): The set of 
logical requirements, written as rules, within which the 
system should operate at runtime 

x System State Model (SSTM):  Describes all possible states 
for the system. 

x ‘Safe’ Assumptions Model (SAM):  Set of safe assumptions 
drawn up as guidelines of the maximum-minimum range of 
boundaries/limits within which the system will be expected 
to operate.  These assumptions will be used to drive 
experimental cases and full evaluations of the behavioural 
envelope of a system. 

x System Alert Report (SAR): Record of requirements 
violations generated during an experiment 

x Environment Model (ENVM): The environment is modelled 
using 3D simulation tools, modified to accommodate sensor 
placement and configuration.  The will be discussed in 
Section 4.5 as part of the technological framework. 

5.1 Modelling Requirements as Rules: SLRM 
Requirements here are termed as conditions that should be 
considered non-negotiable and where an application does not 
meet these, the system is no longer useful to the stakeholders 
involved.  The SLRM defines the requirements that a system must 
operate within when performing any adaptivity.  In the absence of 
a universal benchmark for good ubicomp design, this approach 
focuses on determining whether an ubicomp application falls into 
the trap of unwanted behaviour [12] or whether it can survive 
everyday use [11]. 

To conduct this evaluation, requirements modelled as JBoss Rules 
[5] act as the yardstick against which the ubicomp system’s 
usefulness and effectiveness is evaluated.  JBoss Rules works 
efficiently to minimize the number of conditions that must be 
evaluated through the use of rule patterns.  The benefits of using 
JBoss Rules for this work are: 

x Vocabularies:  JBoss Rules are built on top of vocabularies 
implemented as Java beans.  This enables creation of an 
extensible vocabulary specifically  designed to cater for 
ubicomp applications. 

x Separation of Logics/Data: Separation of logic (rules) and 
data (facts) is well suited to keeping the 3D simulator loosely 
couple with the rest of the system to support rapid 
(re)configuration. 

x Java OO facts: OO design provides a convenient way to 
encode context from the environment. 

x Speed:  JBoss Rules works fast which is essential for large 
experiments where the flow of context from the environment 
happens quickly. 

Potential pitfalls in using JBoss Rules arise if rules are poorly 
written resulting in excessive cross products.  JBoss is fast to 
calculate cross product results, however badly designed rules 
running on large data sets can fail due to insufficient memory.  In 
this approach, good rule design and an optimised environment 
model will be used to avoid this potential problem.  Cross 
products are an issue for all rule engines and not a problem 
unique to JBoss Rules. 

At runtime when a SUT’s behaviour is outside the boundaries of 
its requirements not all test conditions will succeed and the Rule 
Engine will generate an Alert in the SAR (discussed in detail in 
section 5.4).  For example in the case of the smart lighting 
example, a verbose requirement for the system states that ‘A user 
should never be left in the dark’.  The rule checks the user’s 
current state; if the user is in the dark then an alert is raised 
detailing the relevant context.  Important context for this event 
includes the user’s location and the user’s identification. 

5.2 Modelling the System: SSTM 
The SSTM models the behavioural states of an ubicomp system, 
and although not directly used by the technological framework, it 
was the driving element in recognising the need for the SAM 
(Safe Assumptions Model), discussed in section 5.3.  Figure 2 
showed the SSTM for the lighting case study described in section 
4.  Modelling the lighting system as in Figure 2 does not 
accommodate the effects of context on this system.  In the case of 
this system, the problem was known in advance of the assessment 
and so by reverse engineering it was recognised that the post-
deployment temporal and spatial issues that would impact on this 
system were not fully investigated. 

Logically the lighting system works well.  A user enters a public 
access area in the building and the lights switch on.  Public access 
areas are marked in white in figure 3.  After a defined period of 
time, the lights switch off again.  However since all corridors are 
not covered by motion sensors, exiting an office will not 
reactivate the lights.   

The SSTM demonstrated the need to supplement the design 
evaluation with additional information, specifically because 
design experts are relatively non-existent in this field, there are 
few people qualified to spot errors such as this one even in this 
very simple system.  To assist evaluation of ubicomp systems and 
exploration of their behaviours within specified context spaces, a 
general approach was abstracted in the form of the SAM model to 
drive experimentation and full evaluations based on safe everyday 
assumptions. 

5.3 Exploring the Behavioural Space with 
Safe Assumptions: SAM 
The manner in which users work/live alongside an ubicomp 
system and the idiosyncrasies found in their daily activities, 
impact heavily on the success of an ubicomp system.  A 
modelling approach is required to explore the situation space.  
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The situation space refers to the many situations that may be 
forced upon the system in its deployment environment.  To design 
a system that will, not only support the defined use cases, but also 
operate successfully  within the bounds of non-task related user 
attributes, designers need extra guidance to assist them in 
performing a thorough exploration of the design space.   

To this end, the ‘safe’ assumption model (SAM) provides a list of 
safe assumptions (axioms) about conditions in which the SUT can 
be expected to operate within.  The purpose of the assumptions is 
to provide guidance to experimental designers about the minimum 
and maximum limits, within which the system should be tested.  
Assumptions take the place of behavioural patterns for a specific 
environment and users, when these behavioural patterns are 
unknown.  This approach is taken because information about 
behavioural patterns and user idiosyncrasies is not always 
available to systems designers e.g. in the case of a previously 
unoccupied building.  Assumptions should be tested up to and 
including the limits they set out for the system, the following 
illustrates a worked example. 

5.3.1 SAM Example 
Background:  Case Study from Section 4 

Scenario 1:  OfficeWorkerA arrives to work, enters their office 
building.  OfficeWorkerA must cross three public access areas to 
walk to their office.   

Safe Assumption 1:  OfficeWorkerA will spend up to, but no 
more than, 4 hours continuously at their desk before they will 
need a refreshment break.  Experimental Factor:  Experiments 
should be run to investigate regular time intervals from ~1mins to 
4 hours. 

Safe Assumption 2:  Offices have peak and off-peak times.  A 
building occupant working late may find themselves working 
alone on their floor.  Experimental Factor: Experiments should be 
run for low and high building occupancy. 

Experimental Design:  Based on these assumptions, experiments 
should be run to investigate how the system behaves at regular 
time intervals from ~1min to 4 hours and also to investigate 
behaviours at low and high building occupancy. 

5.4 System Alert Report: SAR 
The aim of this framework is to produce a report of alerts raised 
during an experiment for post experimental analysis.  Alerts are 
generated at runtime during an experiment when system 
deployment/behaviour is not inline with the system requirements 
set out for the SUT.   

Requirements are tested continually  during an experiment.  The 
evaluation of these requirements will for the most part be affected 
by user activity inside the smart environment and thus must be 
evaluated for all potential user behaviour.  An example of a live 
requirement for a smart lighting system might state that a ‘user 
must not be left in the dark’.  This would have to be evaluated 
throughout the experiment as the user changes location to ensure 
that the system’s design meshes well with the building’s sensor 
configuration. 

The resulting alerts are compiled into a report which will include 
information to identify the specific requirement that was violated, 

the context surrounding the violation and the user involved.  An 
example of a generated alert report for the smart lighting system 
design is shown below. 

 

Figure 4. Excerpt from Sample SAR Report: Reporting an 
instance of unwanted behaviour 

6. TECHNICAL ARCHITECTURE 
This section discusses the technical architecture which has been 
built to support runtime experimentation using the model 
framework from section 5.  The implemented framework consists 
of a simulated experimental test environment, database of models, 
a JBoss Rules based adaptive engine and finally a proxy acting as 
the integrating link for the platform.  Each of these components 
will be discussed in the following sections after first discussing 
the process model used for the framework and the configuration 
tools used during the experimental set up procedure. 

6.1 Process Model 
The overall aim of this experimental platform is to produce a 
report of alerts raised during an experiment for post experimental 
analysis.  Alerts are generated at runtime during an experiment 
when exhibited ubicomp SUT behaviour is not inline with the 
requirements set out for the SUT.   

The process model which this platform has been designed to 
support is an iterative cycle, illustrated in Figure 5.  An 
experimental cycle begins with setup, to create and configure the 
virtual test environment.  The virtual environment used in the 
platform is a modified version of the Half-Life 2 games engine 
[10] which is supplied with its own SDK.  We have modified the 
map editor to allow developers position and configure sensors in 
the virtual world. 

The execution phase of an experimental cycle allows for either 
multi-player or single user, bot populated experiments.  
Multiplayer simulations allow up to 32 users to experiment with 
the SUT simultaneously in the context of the virtual world.  Bot 
driven simulations on the other hand involve a single user testing 
the service while role playing bots also roam the virtual world 
testing defined scenarios.  We also intend to use role playing bots 
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to conduct large scale experiments at higher speeds for rapid 
scenario testing where a user is not required. 

 

Figure 5. Process Model 

During either user driven or bot driven executions, alerts are 
generated to create the SAR file stored in an eXist database.  This 
data is generated for post experimental analysis and to lead 
informed decision making in the next design cycle.  Analysis of 
this data is not something we will address in this paper, we will  
focus largely on the experimental process involved in generating 
SAR reports. 

6.2 Experimental Configuration Tool 
The virtual sensors featured in this platform have been added to 
an existing Half-Life SDK tool called Hammer, see figure 6.  
Hammer is used to construct maps for the game engine.  Our 
modifications allow a designer to configure the simulated world 
using a range of sensors.  The availability of Hammer as part of 
the SDK enables rapid reconfigurations and diverse sensor types 
since we can add any of the sensors to this tool which we develop 
for the virtual environment. 

In more general terms for gaming purposes Hammer is also used 
to: 

x Construct the physical space i.e. walls and doors. 

x Add bots and bot trajectories 

Although developing a large map takes some effort, considerable 
productivity can be achieved by using a blank version of an 
existing environment to outline an experiment.  The effort to 
populate blank maps with sensors is minimal by comparison to 
developing a map of a new environment from scratch. The 
experimental design and set-up process makes use of reusable 
resources in keeping with the iterative and incremental approach 
required by rapid development, testing and experimentation.  
Among these reusable resources are the map files that define the 

experimental environment, the sensors and the experiment 
definition XML profiles for a service. 

 

 

6.3 3D Interactive Simulation Environment 
The cost and effort involved in creating smart environments are 
still prohibitively expensive for large scale or frequently 
reconfigured testing.  A virtual model of the deployment 
environment provides the flexibility  to overcome this and carry 
out experiments in many settings.  For this reason, a simulation 
environment is used in the place of a live environment, figures 7 
and 8. 

The additional benefit of the simulation environment over a lab-
based setting is the ease with which the environment can be 
reconfigured, both in terms of the sensor deployment and 
configuration, and the physical layout and construction of the 
building.  The simulation environment called Pudecas [6] builds 
directly upon an earlier smart simulation prototype called Tatus 
[16].  The functionality  from Tatus, originally programmed into 
the Half-Life engine, has been moved and upgraded to the Half-
Lif e 2 engine improving the quality of the simulations, see Figure 
7 and 8. 

The simulator presented here allows: 

x Generation of simulated sensor data at runtime.  Primarily 
these are location sensors but we also use pressure mats and 
work has been done modelling Ubisense and ZigBee outside 
of the games engine [19]. 

x Actuations of entities in the virtual world e.g. lights, 
automated doors.  These actuations happen when signalled 
by the SUT.   

x Virtual sensors are activated when players move around the 
virtual world, in the same manner as would happen in the 
real world.  This provides the stream of context required to 
drive the SUT.  To improve the fidelity of the platform, work 
has been done by McGlinn [19] to produce more realistic and 
reasonable context, for example so that location information 
is not supplied to the SUT with absolute accuracy that is 
inherent with the grid based positioning system of a games 
engine. 

Figure 6. Hammer Configuration Tool 
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Figure 7. Real Building (left); Simulated Building (right) 

Simulated sensors have been modelled to be visible or invisible.  
We use visible simulated sensors to represent physical devices 
e.g. pressure mats or wireless access points.  Invisible simulated 
sensors are used to model the field of view or signal range of 
these devices where required.  The sensors are programmed to be 
event-driven, polling or a combination of the two.  For instance, a 
pressure mat responds to the event of a user stepping on it, where 
as a Bluetooth master polls to detect new slaves.  Using a game 
engine allows flexibility in the type and quantity of sensors 
featured by the test environment.  For the most part, this is not yet 
realisable in the real-world where the expense and logistics are 
prohibitive. 

6.4 Proxy 
Interfacing the SUT to the simulator is done via a Java application 
or Proxy.  The platform can host and manage the connections 
between multiple services and multiple test environments 
simultaneously.  This allows multiple services to access a single 
environment, or vice versa, a single service to access multiple 
environments.  Services are not obliged to subscribe to all 
simulated environments and only receive information about 
relevant experiments.   

A new experiment commences when a service contacts the 
simulator with an experiment configuration file. This 
configuration file contains an experiment ID, a map name, a 
game-server address and data subscription information. The 
service is registered and the simulator creates a new database [8] 
collection using sensor information parsed from the map file. The 
simulator invokes a new game-server on the remote host and 
subsequently establishes a connection with the simulation for 
experimental data transfer.  

At run-time, messages flow between the virtual environment and 
the adaptive service. Data leaving the simulator becomes the 
contextual information on which services base their decisions and 
thus respond to the user’s needs. In response, services send 
asynchronous instructions to alter the state of the environment 
through device or entity actuation, e.g. opening a door or 
switching on a light.  Only a single connection to game-server 
hosting the experiment is required since underlying game 
infrastructure ensures game-clients are also updated in a time that 
is imperceptible to the player/developer. Ultimately, the sensors 
will send their information to the services under test via a 
contextual services layer. 

 

6.5 Adaptive Engine 
In this work we are using an adaptive engine originally designed 
for eLearning purposes [20].  In the place of the original 
eLearning models we have developed a set of models specifically 
tailored towards ubicomp design analysis.  The major benefit for 
us in using this adaptive engine has been the separation of 
concerns between the engine and the models.  Model semantics 
are not embedded in the adaptive engine meaning development 
and integration of new models is relatively quick and easy. 

The adaptive engine is designed to reconcile the input models, 
SLRM, SAM and the flow of simulated context, resulting in the 
output model, the SAR file.  The biggest challenge in the 
integration work was accommodating the significantly dynamic 
nature of this type of experimentation.  Context changes are much 
more rapid than in an eLearning course where adaptation is user 
invoked as the user achieves learning goals.  However in this 
experimental platform, context is pushed on the adaptive engine 
by activity in the simulated environment.  An update service was 
developed to handle this extra functionality for the adaptive 
engine.  Figure 9 shows an overview of the integrated system. 

In addition to the cost benefit of the simulated environment, 
another major benefit is access to environmental information.  
This has been key to the success of this approach.  In order to 
analyse the lighting system from the case study in section 4, we 
needed to determine when the lights went on or off.  In the real-
world we would have need observers or light sensors for this task.  
However in the virtual world we can set up a system of 
notifications which ensure that the adaptive engine is updated 
with information when a light’s status changes.  Having this 
information, while also being 100% certain of users’  location at 
all times, we can easily  determine if any user is in darkness. 

When we are generating context, the high accuracy of the games 
engine is not ideal and so work continues to improve the fidelity 
of this [19, 16].  However, when it comes to analysis, this level of 
accuracy allows us to compare the services ability to meet user 
needs with the user’s actual current situation. 

6.6 Performance 
For the lighting case study, the adaptive engine is driven by 
changes in a user’s location and changes in a light’s status.  The 
engine runs each new contextual situation through the rules base.  
So far we have found JBoss Rules is capable of supporting our 

Figure 8. Office space in the simulated environment 
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analysis however we intend to monitor this for larger rule-bases 
and larger context spaces. 

Our virtual three storey office building features 104 rooms, 
comprised of offices, computer labs and lecture rooms and is 
furnished with 520 desks, 352 chairs and 257 replica desktop 
computers.  Optimised mapping techniques continue to allow 
experimental environments to grow in size and complexity.  The 
latency of messages, between game-server or game-client, and a 
service, is of the order of milliseconds when crossing up to four 
LAN connections.  The platform architecture has proved to be a 
viable solution. Services receive data in a timely manner while 
users do not suffer perceivable or adverse delays in service 
response times. 

 

 

Figure 9.  System Overview 

6.7 Summary of Integrated Framework 
This section presented the technological framework which has 
been implemented to support runtime experimentation using the 
modelling approach from section 5.  A first person, interactive, 
3D simulator provides affordable, cost-effective easily 
configurable test environments.  An adaptive engine has been 
integrated to reason about behaviour exhibited by the SUT.  
Finally a proxy has been developed to integrate the system 
components and the eXist database. 

7. EVALUATION 
Evaluation of the work presented here is being completed in two 
steps: 

x Evaluation of the framework against the requirements from 
section 3.2 

x Evaluation of the framework when used to investigate known 
problems in the lighting case study (section 4). 

7.1 Evaluation against requirements 
This section discusses how we satisfied the requirements from 
section 3.2 in our design. 

Requirement 1: An iterative experimental approach must be 
developed that supports reasoning about users, the system and the 
environment with a view to identifying unwanted system 
behaviour. 

Design Solution 1:  Using our multi-model approach we can 
reason about: 

x Users in terms of their activity in the virtual environment and 
the resulting context which they force on the SUT. 

x The system in terms of its ability  to meet its requirements 
(SLRM) under a wide range of context situations (SAM). 

x The environment in terms of the spatial relationships that 
exist in the 3D simulation, specifically containment (i.e. 
room granularity), proximity and orientation. 

Requirement 2: A technical architecture must be implemented to 
actualise the result from requirement 1. 

Design Solution 2:  We have modified a state of the art computer 
game to generate simulated context at runtime based on player 
activity .  A JBoss Rules powered adaptive engine reasons about 
the behaviour exhibited by the system in relation to the actual 
context of the user.  The combination of a games engine and rules 
engine enables extensive testing in large scale environments.  We 
currently test in a simulated version of a real-life 3 storey office 
block.  A second virtual office block is currently under 
development to recreate an office block which is affiliated with 
another university. 

Requirement 3: The tool must have access to a cost-effective test 
environment sufficiently flexible to test many situations and 
provide a diverse, heterogeneous flow of context information. 

Design Solution 3:  The modification of a games engine and its 
SDK reduces the cost significantly compared to field studies. 

Requirement 4: Tool must enable rapid reconfigurations of the 
test environment and models to support the iterative prototyping 
cycle. 

Design Solution 4:  The modifications to the Hammer map editor 
allow rapid placement of sensors, configuration of bots and bot 
activity and construction of the physical space.  Our experience 
with our on site Ubisense installation shows that Hammer is both 
more convenient and exceedingly faster than trying to work with 
a real world installation.  We have also seen continued success 
over the past three years, with large numbers of undergraduate, 
masters and PhD students choosing to work with the virtual 
ubicomp environment rather than integrate their systems with a 
real sensor network for testing due to the time and effort involved.  
Some of the applications these students have tested included 
location based games, location based instant messaging and 
policy based managed systems. 
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7.2 Case Study Evaluation 
Evaluation of this approach will be conducted in three parts.  The 
first focussed on evaluating the tool against the requirements set 
out for it.  The second two parts will evaluate the tool in terms of: 

x Efficiency: 

1. Determines the effort involved in setting up and 
configuring an experimental iteration i.e. efficiency in 
terms of human effort. 

2. Determines the effort required to develop suitable 
models for uncover a system’s flaws 

x Reliability: Determines how often the framework falsely 
reports unwanted behaviour by using sanity checking on 
results. 

x Repeatability : Determines the ability to recreate situations 
which generated alerts for closer inspection. 

7.2.1 Bot Driven Simulation 
Bot-driven simulations are used to rapidly perform a massive 
exploration of the temporal and spatial design space of a system. 
This experiment investigates the reliability, efficiency and 
repeatibility with which role-playing bots can uncover the 
unwanted behaviour exhibited in the ubicomp lighting system.  
Role-playing bots will be configured to explore the behavioural 
envelope of the system guided by the set of assumptions about 
how building occupants will use that space. 

x Efficiency will be evaluated in terms of the effort involved in 
creating a bot-driven experiment; time to take to create 
suitable bot roles, time taken to set up the environment. 

x Reliability will be evaluated by using sanity checking on the 
SAR files generated during bot-driven experimentation. 

x Repeatability  will  be evaluated by taking alert instances from 
the SAR reports and recreating them for a human, first 
person test.  

7.2.2 Design Team Led Experiments 
This experiment involves pairs of ubicomp researchers working as 
test users of the design tool.  The objective of the experiment is to 
determine that using this approach a developer/designer can 
identify the problem behaviour of the smart lighting application 
and the root cause of the unwanted behaviour.  Developers will be 
supplied with instructions for the design tool, the implemented 
lighting system and a configured simulation environment.  To 
complete the experiment, the test users will  need to derive: 

x The set of JBoss Rules required to generate the SAR report. 

x The set of assumptions that drives thorough scenario 
investigation. 

8. CONCLUSIONS 
This research has developed an approach for conducting thorough 
investigations of both the adaptive behaviour space and the 
context space of a service, to identify occurrences of unwanted 
behaviour that may lead to a prototype service being rejected by 
end users.  The approach features a set of models which define an 

experiment in terms of users, the environment, the SUT and the 
requirements which that system must satisfy throughout the 
context space in which it operates.   

To test the service at runtime, a technical architecture has been 
developed linking the test environment, an adaptive engine, the 
SUT and the definition of expected behaviour for the SUT.  The 
platform has the capability to capture a full snapshot of context 
surrounding instances of unwanted behaviour.  This information 
is recorded in the SAR report for analysis and informed decision 
making in subsequent design iterations.   

We have designed this platform specifically to address design 
issues for adaptive systems that largely exhibit their behaviour in 
the user’s environment rather than on handheld devices.  We have 
not been concerned with user interface design in this research but 
are more interested in the identification of situations which are 
problematic for a SUT.  Through our work in helping system 
designers to identify unwanted behaviour in their systems, we 
hope to support the analysis phase between iterative cycles.  We 
expect that for more complex systems it may not be possible to 
fully  resolve all instances of unwanted behaviour however we 
think that the comprehensive information that we can provide 
using this framework will be a useful tool in assisting negotiations 
within design teams.  We also consider that the ability  to replay 
scenarios exactly and determine causal relationships in these 
complex systems, are useful tools for designers of ubicomp 
systems. 
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