
A Simulation-based Approach to Highly Iterative
Prototyping of Ubiquitous Computing Systems

Eleanor O’Neill, David Lewis, Owen Conlan

Knowledge and Data Engineering Group | KDEG
School of Computer Science and Statistics

Trinity College Dublin, Dublin, Ireland

{Eleanor.ONeill | Dave.Lewis | Owen.Conlan} @cs.tcd.ie

ABSTRACT
Ubiquitous computing (ubicomp), as envisaged by Weiser [22], is
heavily user-centric and largely concerned with applications
specifically designed to meet end-user needs. Sensor populated
ubicomp environments differentiate these applications from
existing mobile and distributed systems through context
awareness. For the system developer, the problems of
heterogeneity and scalability are felt most keenly when designing
this adaptive behaviour. A context-aware ubicomp system needs
to operate reliably over the wide variety of situations that may be
encountered. In this paper we present a technical architecture
which has been implemented to support scalable, cost-effective,
runtime experimentation using a framework of models to support
informed decision making in an iterative design cycle.

Categories and Subject Descriptors
I.6.8 [Simulation and Modelling]: Types of Simulation,
Animation and Gaming; C.4 [Performance of Systems]: Design
Studies; D.2.m [Miscellaneous]: Rapid Prototyping

General Terms
Design, Experimentation.

Keywords
Ubiquitous computing, adaptive behaviour, context awareness.

1. INTRODUCTION
Ubiquitous computing (ubicomp), as envisaged by Weiser [22], is
heavily user-centric and largely concerned with applications
specifically designed to meet end-user needs. Sensor populated
ubicomp environments differentiate these applications from
existing mobile and distributed systems through context
awareness. Context awareness means that these systems must
respond and adapt to the social, task and environmental context
[21], in which they are deployed, if they are to achieve Weiser's
application-centric vision.

For designers of these systems, heterogeneity of sensor data and
scalability of environments are major challenges during the
design cycle [17]. Specifically when designing this adaptive
behaviour. A context-aware ubicomp system needs to operate
reliably over the wide variety of situations that may be
encountered. This wide variety of situations encountered arises
from the combinations of physical settings, environmental and
location sensing and, most unpredictably, the behaviour of users
in such situations.

These design challenges have resulted in even basic, everyday
ubicomp systems, such as simple motion sensor driven lighting
systems and smart air-conditioning units failing due to the
designer not fully appreciating the specific factors present in a
specific situation e.g. the lighting timer is set to too short a cycle
for a particular user. These nuances in how users actually carry
out their daily activities and how they differ from the way
designers and developers expected the system to be used, present
challenges that successful applications need to overcome.

Although existing design tools for distributed systems, using
traditional software design and evaluation techniques, are a useful
basis for design in ubicomp, they cannot address the complexity
introduced by context-awareness. A rapid iterative prototyping
approach alleviates this problem by speeding up the design cycle
and enabling developers to evaluate early system implementations
with low investment and fewer repercussions if a system fails.
Prototyping approaches have proven a successful choice for many
ubicomp design tools [3, 13, 14, 15].

However, to date these toolkits have largely favoured rapid
creation and deployment of applications [9] with less emphasis on
structured feedback as part of the cyclical design process to
support informed decision making during the next design
iteration. New factors affecting user acceptance of ubicomp
systems raise the need to develop new analytical approaches that
will enable investigation of the underlying causal relationships
which precede any instance of unwanted behaviour being
exhibited to an end user.

Through this research, we have identified the following issues,
which can be addressed through simulation-based tool support to
help developers and designers as they explore this relatively
immature field. There are three core issues:

x Systematic investigation of relevant context and its change
over time to determine areas of unwanted adaptive behaviour
in the system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTools’09, March 2–6, 2009, Rome, Italy.
Copyright 2009 ICST, ISBN 978-963-9799-45-5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5685
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5685

x The capability to reliably configure environmental
conditions to repeatedly visit a scenario which is problematic
for the ubicomp system under test (SUT).

x Supporting tools to determine causal relationships behind a
SUT behaving in an unexpected and unwanted manner.

In this paper, we start in section 2 by discussing related work with
a focus on the role of both real-time and non-real time simulation
in context-aware system design, the success of rapid-prototyping
for ubicomp development and finally issues surrounding
requirements engineering for ubicomp. In section 3 we discuss
our requirement considerations for this work, followed in section
4 by a brief case study of a real-world problematic ubicomp
system which we have observed. Section 5 describes the
framework of models we use to support this informed design
approach and section 6 describes the technical architecture
implemented for runtime experimentation. Finally section 7
discusses our evaluation so far and some future work, followed by
section 8 which draws conclusions about this paper.

2. RELATED WORK
Ubiquitous computing has seen many uses of simulation in design
tools [2, 3, 4, 16] and has allowed researchers to conduct
otherwise costly and time-consuming research more affordably.
Ubiwise [2] one of the earliest ubicomp simulators enabled
prototyping of hardware and low-level software e.g. protocols. At
the time of Ubiwise’s development, the ubicomp research
community were caught in a situation where application
developers were waiting for protocols and hardware to be
developed, while hardware developers were waiting to see what
kind of applications would need to run on their devices. Ubiwise
offered simulation as a way to break this circle of dependence.
Ubiwise was developed as a first person interactive simulator
because it needed to allow users to interact with device interfaces.

Discrete event simulations have also proved useful for ubicomp
systems, specifically smart traffic management systems.
Reynolds et al [4] have developed a large-scale 2D grid
simulation tool to model sensors, actuators and the environment.
For added flexibility, they propose an emulation framework for
testing applications and middleware. As an initial test case, they
focus on city-wide traffic simulations and model a wide range of
ubicomp scenarios. Their 2D discrete simulation approach is very
well suited to issues such as traffic light communication however
we propose a more user centric approach that is needed when
trying to anticipate user acceptance of ubicomp systems.

Rapid prototyping is another technique which has been very
successful for ubicomp development. Carter and Mankoff [7]
found paper prototypes very useful when trying to identify useful
aspects of their system design. This is only really a very early
stage design tool as they also uncovered that this technique just
doesn’t scale and so can only address very narrowly defined
questions. A more advanced ubicomp design tool was context
widgets [18] which insulated developers from the underlying
sensor network in much the same way as graphical user interface
tools do. These widgets provide benefits of abstraction and
reusability and are very useful when creating new ubicomp
applications or retrofitting existing applications to support
context-awareness. Widgets are specifically an implementation
tool and speed up the development process.

The team behind Topiary have demonstrated a lot of success
providing a graphical tool to rapidly prototype both ubicomp
scenarios and ubicomp applications. Topiary is specifically
designed to look at applications for mobile devices and is capable
of generating a deployable prototype from very high level
instruction. Prototypes can be run on a 2D desktop simulation
where users are moved around in much the same way as a board
game. Alternatively prototypes can be deployed on devices in the
wild so that users can interact with the system interface on a
mobile device. This latter form of testing takes a sort of Wizard
of Oz approach since a tester must follow the test-user to play the
role of the SUT.

As already mentioned simulation and prototyping have proved to
be very useful tools in the design and development of ubicomp
systems. We will build on this proven success to enable user-
centric testing of adaptive context-aware systems but including
model-driven experimentation with prototypes to support
feedback on causal relationships in the adaptive behaviour and
assist informed decision making in subsequent iterations of the
prototyping cycle.

3. REQUIREMENTS
3.1 Requirements Considerations
The ubicomp applications we are targeting with this platform are
those that the user experiences in their environment but not
specifically on mobile devices. We are not concerned with user
interface design but more with evaluating the adaptivity presented
to end-users at run time. We are particularly interested in
evaluation of ubicomp applications which adapt along the
temporal and spatial dimensions. Bandini et al [8] have identified
orientation, proximity and containment as the key spatial relations
for ubicomp in their Common Sense Model. As part of their
future work they list enabling applications to reason along the
time axis about changes in the environment as a key concern.

The approach in this document uses the factors in figure 1 to
describe the primary factors that influence users' acceptance of
these target context aware applications. The factors considered in
this diagram are explained as follows:

x Behavioural Envelope: The bounds of potential service
behaviour that can be exhibited.

x Context changes: Changes in the task, social or physical
context surrounding an ubicomp system.

x Exhibited Behaviour: The behaviour as seen by the end-
user.

To find a solution that universally resolves these factors is a study
that intersects many fields taking in both technical issues and
human factors, many of which are highly subjective and difficult
to concretely measure. In addition, no single standardised set of
criteria exist to define good behaviour in an adaptive service,
although work is underway on this front [1]. To help alleviate
this situation, the method presented here is aimed at conducting a
thorough investigation of both the adaptive behaviour space and
the context space of a SUT, to identify occurrences of unwanted
behaviour that may lead to a prototype service being rejected by
end users.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5685
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5685

Figure 1. Factors affecting Ubicomp Service end user
Acceptance

3.2 Requirements
Our overall objective is to enable identification of the causal
relationships leading to unwanted occurrences of adaptive
behaviour. Based on this, the factors laid out above, the need for
cost effectiveness and both Davidoff’s [9] and our own
identification of a gap in the research for ubicomp analysis tools,
we set out the following requirements for this evaluation tool:

1. An iterative experimental approach must be developed that
supports reasoning about users, the system and the
environment with a view to identifying unwanted system
behaviour.

2. A technical architecture must be implemented to actualise
the result from requirement 1.

3. The tool must have access to a cost-effective test
environment suff iciently flexible to test many situations and
provide a diverse, heterogeneous flow of context
information.

4. Tool must enable rapid reconfigurations of the test
environment and models to support the iterative prototyping
cycle that has proven successful for ubicomp application
development.

4. CASE STUDY
Before we go on to discuss our implementation, we present here a
short case study of a real-life problematic smart lighting system.
We have used this case study to supplement our requirements
gathering process for this evaluation tool and will refer to it
throughout the remainder of this paper.

4.1 Real World Smart Lighting System
A smart lighting system is designed to automatically switch lights
on in public access areas for building occupants. Lights are timed
to switch off a set period after a user has been detected. Offices
and lab areas remain on a manual light system. Motion sensors
switch lights on when they detect movement. A timer is

incorporated to switch lights off following a period in which no
occupant has been detected. Essentially the system performs the
simple action of toggling between on and off states. Figure 2
shows a simple diagram of this system.

4.2 Run Time Problem
Figure 3 shows the building floor plan where this system was
deployed. Stairwells and lift lobbies are the entrance and exit
points on each floor. Motion sensors controlling each floor’s
lighting are installed in each stairwell and lobby. Offices space is
marked in grey and is accessible only with a key; white space is
publicly accessible.

A problem occurs for late night workers when the number of
occupants in the building is very low. When a worker emerges
from their room after working for a couple of hours, the timers
have switched off the lights and the lights will not turn on again
until the worker has reached the exit for that floor. The user must
find their way to an exit in the dark but the lights switch on just as
the worker exits the hallway, beneficial to neither the user nor the
energy saving scheme.

4.3 Problem Discussion
Although Figure 2 clearly depicts how the system operates, it
omits two important elements that significantly impact on the
operation of the system. The position of motion detectors in the
environment heavily impacts on the usefulness of this system and
how accurately the system selects lights to switch on.

Figure 2. Simple System Diagram

Figure 3. Lighting System Floor Plan

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5685
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5685

The framework and modelling approach which we present in the
next section attempts to uncover problems such as the one
presented in this section by assisting testers to fully explore the
behavioural and context spaces for a service using a rapid
prototyping and simulation approach.

5. FRAMEWORK MODELS
This section discusses the models that satisfy requirement one in
section 3.2. The models listed below will be described in detail
through the following subsections before beginning the discussion
of the technical architecture.

The following models have been defined for this framework:

x System Logical Requirements Model (SLRM): The set of
logical requirements, written as rules, within which the
system should operate at runtime

x System State Model (SSTM): Describes all possible states
for the system.

x ‘Safe’ Assumptions Model (SAM): Set of safe assumptions
drawn up as guidelines of the maximum-minimum range of
boundaries/limits within which the system will be expected
to operate. These assumptions will be used to drive
experimental cases and full evaluations of the behavioural
envelope of a system.

x System Alert Report (SAR): Record of requirements
violations generated during an experiment

x Environment Model (ENVM): The environment is modelled
using 3D simulation tools, modified to accommodate sensor
placement and configuration. The will be discussed in
Section 4.5 as part of the technological framework.

5.1 Modelling Requirements as Rules: SLRM
Requirements here are termed as conditions that should be
considered non-negotiable and where an application does not
meet these, the system is no longer useful to the stakeholders
involved. The SLRM defines the requirements that a system must
operate within when performing any adaptivity. In the absence of
a universal benchmark for good ubicomp design, this approach
focuses on determining whether an ubicomp application falls into
the trap of unwanted behaviour [12] or whether it can survive
everyday use [11].

To conduct this evaluation, requirements modelled as JBoss Rules
[5] act as the yardstick against which the ubicomp system’s
usefulness and effectiveness is evaluated. JBoss Rules works
efficiently to minimize the number of conditions that must be
evaluated through the use of rule patterns. The benefits of using
JBoss Rules for this work are:

x Vocabularies: JBoss Rules are built on top of vocabularies
implemented as Java beans. This enables creation of an
extensible vocabulary specifically designed to cater for
ubicomp applications.

x Separation of Logics/Data: Separation of logic (rules) and
data (facts) is well suited to keeping the 3D simulator loosely
couple with the rest of the system to support rapid
(re)configuration.

x Java OO facts: OO design provides a convenient way to
encode context from the environment.

x Speed: JBoss Rules works fast which is essential for large
experiments where the flow of context from the environment
happens quickly.

Potential pitfalls in using JBoss Rules arise if rules are poorly
written resulting in excessive cross products. JBoss is fast to
calculate cross product results, however badly designed rules
running on large data sets can fail due to insufficient memory. In
this approach, good rule design and an optimised environment
model will be used to avoid this potential problem. Cross
products are an issue for all rule engines and not a problem
unique to JBoss Rules.

At runtime when a SUT’s behaviour is outside the boundaries of
its requirements not all test conditions will succeed and the Rule
Engine will generate an Alert in the SAR (discussed in detail in
section 5.4). For example in the case of the smart lighting
example, a verbose requirement for the system states that ‘A user
should never be left in the dark’. The rule checks the user’s
current state; if the user is in the dark then an alert is raised
detailing the relevant context. Important context for this event
includes the user’s location and the user’s identification.

5.2 Modelling the System: SSTM
The SSTM models the behavioural states of an ubicomp system,
and although not directly used by the technological framework, it
was the driving element in recognising the need for the SAM
(Safe Assumptions Model), discussed in section 5.3. Figure 2
showed the SSTM for the lighting case study described in section
4. Modelling the lighting system as in Figure 2 does not
accommodate the effects of context on this system. In the case of
this system, the problem was known in advance of the assessment
and so by reverse engineering it was recognised that the post-
deployment temporal and spatial issues that would impact on this
system were not fully investigated.

Logically the lighting system works well. A user enters a public
access area in the building and the lights switch on. Public access
areas are marked in white in figure 3. After a defined period of
time, the lights switch off again. However since all corridors are
not covered by motion sensors, exiting an office will not
reactivate the lights.

The SSTM demonstrated the need to supplement the design
evaluation with additional information, specifically because
design experts are relatively non-existent in this field, there are
few people qualified to spot errors such as this one even in this
very simple system. To assist evaluation of ubicomp systems and
exploration of their behaviours within specified context spaces, a
general approach was abstracted in the form of the SAM model to
drive experimentation and full evaluations based on safe everyday
assumptions.

5.3 Exploring the Behavioural Space with
Safe Assumptions: SAM
The manner in which users work/live alongside an ubicomp
system and the idiosyncrasies found in their daily activities,
impact heavily on the success of an ubicomp system. A
modelling approach is required to explore the situation space.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5685
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5685

The situation space refers to the many situations that may be
forced upon the system in its deployment environment. To design
a system that will, not only support the defined use cases, but also
operate successfully within the bounds of non-task related user
attributes, designers need extra guidance to assist them in
performing a thorough exploration of the design space.

To this end, the ‘safe’ assumption model (SAM) provides a list of
safe assumptions (axioms) about conditions in which the SUT can
be expected to operate within. The purpose of the assumptions is
to provide guidance to experimental designers about the minimum
and maximum limits, within which the system should be tested.
Assumptions take the place of behavioural patterns for a specific
environment and users, when these behavioural patterns are
unknown. This approach is taken because information about
behavioural patterns and user idiosyncrasies is not always
available to systems designers e.g. in the case of a previously
unoccupied building. Assumptions should be tested up to and
including the limits they set out for the system, the following
illustrates a worked example.

5.3.1 SAM Example
Background: Case Study from Section 4

Scenario 1: OfficeWorkerA arrives to work, enters their office
building. OfficeWorkerA must cross three public access areas to
walk to their office.

Safe Assumption 1: OfficeWorkerA will spend up to, but no
more than, 4 hours continuously at their desk before they will
need a refreshment break. Experimental Factor: Experiments
should be run to investigate regular time intervals from ~1mins to
4 hours.

Safe Assumption 2: Offices have peak and off-peak times. A
building occupant working late may find themselves working
alone on their floor. Experimental Factor: Experiments should be
run for low and high building occupancy.

Experimental Design: Based on these assumptions, experiments
should be run to investigate how the system behaves at regular
time intervals from ~1min to 4 hours and also to investigate
behaviours at low and high building occupancy.

5.4 System Alert Report: SAR
The aim of this framework is to produce a report of alerts raised
during an experiment for post experimental analysis. Alerts are
generated at runtime during an experiment when system
deployment/behaviour is not inline with the system requirements
set out for the SUT.

Requirements are tested continually during an experiment. The
evaluation of these requirements will for the most part be affected
by user activity inside the smart environment and thus must be
evaluated for all potential user behaviour. An example of a live
requirement for a smart lighting system might state that a ‘user
must not be left in the dark’. This would have to be evaluated
throughout the experiment as the user changes location to ensure
that the system’s design meshes well with the building’s sensor
configuration.

The resulting alerts are compiled into a report which will include
information to identify the specific requirement that was violated,

the context surrounding the violation and the user involved. An
example of a generated alert report for the smart lighting system
design is shown below.

Figure 4. Excerpt from Sample SAR Report: Reporting an
instance of unwanted behaviour

6. TECHNICAL ARCHITECTURE
This section discusses the technical architecture which has been
built to support runtime experimentation using the model
framework from section 5. The implemented framework consists
of a simulated experimental test environment, database of models,
a JBoss Rules based adaptive engine and finally a proxy acting as
the integrating link for the platform. Each of these components
will be discussed in the following sections after first discussing
the process model used for the framework and the configuration
tools used during the experimental set up procedure.

6.1 Process Model
The overall aim of this experimental platform is to produce a
report of alerts raised during an experiment for post experimental
analysis. Alerts are generated at runtime during an experiment
when exhibited ubicomp SUT behaviour is not inline with the
requirements set out for the SUT.

The process model which this platform has been designed to
support is an iterative cycle, illustrated in Figure 5. An
experimental cycle begins with setup, to create and configure the
virtual test environment. The virtual environment used in the
platform is a modified version of the Half-Life 2 games engine
[10] which is supplied with its own SDK. We have modified the
map editor to allow developers position and configure sensors in
the virtual world.

The execution phase of an experimental cycle allows for either
multi-player or single user, bot populated experiments.
Multiplayer simulations allow up to 32 users to experiment with
the SUT simultaneously in the context of the virtual world. Bot
driven simulations on the other hand involve a single user testing
the service while role playing bots also roam the virtual world
testing defined scenarios. We also intend to use role playing bots

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5685
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5685

to conduct large scale experiments at higher speeds for rapid
scenario testing where a user is not required.

Figure 5. Process Model

During either user driven or bot driven executions, alerts are
generated to create the SAR file stored in an eXist database. This
data is generated for post experimental analysis and to lead
informed decision making in the next design cycle. Analysis of
this data is not something we will address in this paper, we will
focus largely on the experimental process involved in generating
SAR reports.

6.2 Experimental Configuration Tool
The virtual sensors featured in this platform have been added to
an existing Half-Life SDK tool called Hammer, see figure 6.
Hammer is used to construct maps for the game engine. Our
modifications allow a designer to configure the simulated world
using a range of sensors. The availability of Hammer as part of
the SDK enables rapid reconfigurations and diverse sensor types
since we can add any of the sensors to this tool which we develop
for the virtual environment.

In more general terms for gaming purposes Hammer is also used
to:

x Construct the physical space i.e. walls and doors.

x Add bots and bot trajectories

Although developing a large map takes some effort, considerable
productivity can be achieved by using a blank version of an
existing environment to outline an experiment. The effort to
populate blank maps with sensors is minimal by comparison to
developing a map of a new environment from scratch. The
experimental design and set-up process makes use of reusable
resources in keeping with the iterative and incremental approach
required by rapid development, testing and experimentation.
Among these reusable resources are the map files that define the

experimental environment, the sensors and the experiment
definition XML profiles for a service.

6.3 3D Interactive Simulation Environment
The cost and effort involved in creating smart environments are
still prohibitively expensive for large scale or frequently
reconfigured testing. A virtual model of the deployment
environment provides the flexibility to overcome this and carry
out experiments in many settings. For this reason, a simulation
environment is used in the place of a live environment, figures 7
and 8.

The additional benefit of the simulation environment over a lab-
based setting is the ease with which the environment can be
reconfigured, both in terms of the sensor deployment and
configuration, and the physical layout and construction of the
building. The simulation environment called Pudecas [6] builds
directly upon an earlier smart simulation prototype called Tatus
[16]. The functionality from Tatus, originally programmed into
the Half-Life engine, has been moved and upgraded to the Half-
Lif e 2 engine improving the quality of the simulations, see Figure
7 and 8.

The simulator presented here allows:

x Generation of simulated sensor data at runtime. Primarily
these are location sensors but we also use pressure mats and
work has been done modelling Ubisense and ZigBee outside
of the games engine [19].

x Actuations of entities in the virtual world e.g. lights,
automated doors. These actuations happen when signalled
by the SUT.

x Virtual sensors are activated when players move around the
virtual world, in the same manner as would happen in the
real world. This provides the stream of context required to
drive the SUT. To improve the fidelity of the platform, work
has been done by McGlinn [19] to produce more realistic and
reasonable context, for example so that location information
is not supplied to the SUT with absolute accuracy that is
inherent with the grid based positioning system of a games
engine.

Figure 6. Hammer Configuration Tool

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5685
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5685

Figure 7. Real Building (left); Simulated Building (right)

Simulated sensors have been modelled to be visible or invisible.
We use visible simulated sensors to represent physical devices
e.g. pressure mats or wireless access points. Invisible simulated
sensors are used to model the field of view or signal range of
these devices where required. The sensors are programmed to be
event-driven, polling or a combination of the two. For instance, a
pressure mat responds to the event of a user stepping on it, where
as a Bluetooth master polls to detect new slaves. Using a game
engine allows flexibility in the type and quantity of sensors
featured by the test environment. For the most part, this is not yet
realisable in the real-world where the expense and logistics are
prohibitive.

6.4 Proxy
Interfacing the SUT to the simulator is done via a Java application
or Proxy. The platform can host and manage the connections
between multiple services and multiple test environments
simultaneously. This allows multiple services to access a single
environment, or vice versa, a single service to access multiple
environments. Services are not obliged to subscribe to all
simulated environments and only receive information about
relevant experiments.

A new experiment commences when a service contacts the
simulator with an experiment configuration file. This
configuration file contains an experiment ID, a map name, a
game-server address and data subscription information. The
service is registered and the simulator creates a new database [8]
collection using sensor information parsed from the map file. The
simulator invokes a new game-server on the remote host and
subsequently establishes a connection with the simulation for
experimental data transfer.

At run-time, messages flow between the virtual environment and
the adaptive service. Data leaving the simulator becomes the
contextual information on which services base their decisions and
thus respond to the user’s needs. In response, services send
asynchronous instructions to alter the state of the environment
through device or entity actuation, e.g. opening a door or
switching on a light. Only a single connection to game-server
hosting the experiment is required since underlying game
infrastructure ensures game-clients are also updated in a time that
is imperceptible to the player/developer. Ultimately, the sensors
will send their information to the services under test via a
contextual services layer.

6.5 Adaptive Engine
In this work we are using an adaptive engine originally designed
for eLearning purposes [20]. In the place of the original
eLearning models we have developed a set of models specifically
tailored towards ubicomp design analysis. The major benefit for
us in using this adaptive engine has been the separation of
concerns between the engine and the models. Model semantics
are not embedded in the adaptive engine meaning development
and integration of new models is relatively quick and easy.

The adaptive engine is designed to reconcile the input models,
SLRM, SAM and the flow of simulated context, resulting in the
output model, the SAR file. The biggest challenge in the
integration work was accommodating the significantly dynamic
nature of this type of experimentation. Context changes are much
more rapid than in an eLearning course where adaptation is user
invoked as the user achieves learning goals. However in this
experimental platform, context is pushed on the adaptive engine
by activity in the simulated environment. An update service was
developed to handle this extra functionality for the adaptive
engine. Figure 9 shows an overview of the integrated system.

In addition to the cost benefit of the simulated environment,
another major benefit is access to environmental information.
This has been key to the success of this approach. In order to
analyse the lighting system from the case study in section 4, we
needed to determine when the lights went on or off. In the real-
world we would have need observers or light sensors for this task.
However in the virtual world we can set up a system of
notifications which ensure that the adaptive engine is updated
with information when a light’s status changes. Having this
information, while also being 100% certain of users’ location at
all times, we can easily determine if any user is in darkness.

When we are generating context, the high accuracy of the games
engine is not ideal and so work continues to improve the fidelity
of this [19, 16]. However, when it comes to analysis, this level of
accuracy allows us to compare the services ability to meet user
needs with the user’s actual current situation.

6.6 Performance
For the lighting case study, the adaptive engine is driven by
changes in a user’s location and changes in a light’s status. The
engine runs each new contextual situation through the rules base.
So far we have found JBoss Rules is capable of supporting our

Figure 8. Office space in the simulated environment

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5685
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5685

analysis however we intend to monitor this for larger rule-bases
and larger context spaces.

Our virtual three storey office building features 104 rooms,
comprised of offices, computer labs and lecture rooms and is
furnished with 520 desks, 352 chairs and 257 replica desktop
computers. Optimised mapping techniques continue to allow
experimental environments to grow in size and complexity. The
latency of messages, between game-server or game-client, and a
service, is of the order of milliseconds when crossing up to four
LAN connections. The platform architecture has proved to be a
viable solution. Services receive data in a timely manner while
users do not suffer perceivable or adverse delays in service
response times.

Figure 9. System Overview

6.7 Summary of Integrated Framework
This section presented the technological framework which has
been implemented to support runtime experimentation using the
modelling approach from section 5. A first person, interactive,
3D simulator provides affordable, cost-effective easily
configurable test environments. An adaptive engine has been
integrated to reason about behaviour exhibited by the SUT.
Finally a proxy has been developed to integrate the system
components and the eXist database.

7. EVALUATION
Evaluation of the work presented here is being completed in two
steps:

x Evaluation of the framework against the requirements from
section 3.2

x Evaluation of the framework when used to investigate known
problems in the lighting case study (section 4).

7.1 Evaluation against requirements
This section discusses how we satisfied the requirements from
section 3.2 in our design.

Requirement 1: An iterative experimental approach must be
developed that supports reasoning about users, the system and the
environment with a view to identifying unwanted system
behaviour.

Design Solution 1: Using our multi-model approach we can
reason about:

x Users in terms of their activity in the virtual environment and
the resulting context which they force on the SUT.

x The system in terms of its ability to meet its requirements
(SLRM) under a wide range of context situations (SAM).

x The environment in terms of the spatial relationships that
exist in the 3D simulation, specifically containment (i.e.
room granularity), proximity and orientation.

Requirement 2: A technical architecture must be implemented to
actualise the result from requirement 1.

Design Solution 2: We have modified a state of the art computer
game to generate simulated context at runtime based on player
activity . A JBoss Rules powered adaptive engine reasons about
the behaviour exhibited by the system in relation to the actual
context of the user. The combination of a games engine and rules
engine enables extensive testing in large scale environments. We
currently test in a simulated version of a real-life 3 storey office
block. A second virtual office block is currently under
development to recreate an office block which is affiliated with
another university.

Requirement 3: The tool must have access to a cost-effective test
environment sufficiently flexible to test many situations and
provide a diverse, heterogeneous flow of context information.

Design Solution 3: The modification of a games engine and its
SDK reduces the cost significantly compared to field studies.

Requirement 4: Tool must enable rapid reconfigurations of the
test environment and models to support the iterative prototyping
cycle.

Design Solution 4: The modifications to the Hammer map editor
allow rapid placement of sensors, configuration of bots and bot
activity and construction of the physical space. Our experience
with our on site Ubisense installation shows that Hammer is both
more convenient and exceedingly faster than trying to work with
a real world installation. We have also seen continued success
over the past three years, with large numbers of undergraduate,
masters and PhD students choosing to work with the virtual
ubicomp environment rather than integrate their systems with a
real sensor network for testing due to the time and effort involved.
Some of the applications these students have tested included
location based games, location based instant messaging and
policy based managed systems.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5685
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5685

7.2 Case Study Evaluation
Evaluation of this approach will be conducted in three parts. The
first focussed on evaluating the tool against the requirements set
out for it. The second two parts will evaluate the tool in terms of:

x Efficiency:

1. Determines the effort involved in setting up and
configuring an experimental iteration i.e. efficiency in
terms of human effort.

2. Determines the effort required to develop suitable
models for uncover a system’s flaws

x Reliability: Determines how often the framework falsely
reports unwanted behaviour by using sanity checking on
results.

x Repeatability : Determines the ability to recreate situations
which generated alerts for closer inspection.

7.2.1 Bot Driven Simulation
Bot-driven simulations are used to rapidly perform a massive
exploration of the temporal and spatial design space of a system.
This experiment investigates the reliability, efficiency and
repeatibility with which role-playing bots can uncover the
unwanted behaviour exhibited in the ubicomp lighting system.
Role-playing bots will be configured to explore the behavioural
envelope of the system guided by the set of assumptions about
how building occupants will use that space.

x Efficiency will be evaluated in terms of the effort involved in
creating a bot-driven experiment; time to take to create
suitable bot roles, time taken to set up the environment.

x Reliability will be evaluated by using sanity checking on the
SAR files generated during bot-driven experimentation.

x Repeatability will be evaluated by taking alert instances from
the SAR reports and recreating them for a human, first
person test.

7.2.2 Design Team Led Experiments
This experiment involves pairs of ubicomp researchers working as
test users of the design tool. The objective of the experiment is to
determine that using this approach a developer/designer can
identify the problem behaviour of the smart lighting application
and the root cause of the unwanted behaviour. Developers will be
supplied with instructions for the design tool, the implemented
lighting system and a configured simulation environment. To
complete the experiment, the test users will need to derive:

x The set of JBoss Rules required to generate the SAR report.

x The set of assumptions that drives thorough scenario
investigation.

8. CONCLUSIONS
This research has developed an approach for conducting thorough
investigations of both the adaptive behaviour space and the
context space of a service, to identify occurrences of unwanted
behaviour that may lead to a prototype service being rejected by
end users. The approach features a set of models which define an

experiment in terms of users, the environment, the SUT and the
requirements which that system must satisfy throughout the
context space in which it operates.

To test the service at runtime, a technical architecture has been
developed linking the test environment, an adaptive engine, the
SUT and the definition of expected behaviour for the SUT. The
platform has the capability to capture a full snapshot of context
surrounding instances of unwanted behaviour. This information
is recorded in the SAR report for analysis and informed decision
making in subsequent design iterations.

We have designed this platform specifically to address design
issues for adaptive systems that largely exhibit their behaviour in
the user’s environment rather than on handheld devices. We have
not been concerned with user interface design in this research but
are more interested in the identification of situations which are
problematic for a SUT. Through our work in helping system
designers to identify unwanted behaviour in their systems, we
hope to support the analysis phase between iterative cycles. We
expect that for more complex systems it may not be possible to
fully resolve all instances of unwanted behaviour however we
think that the comprehensive information that we can provide
using this framework will be a useful tool in assisting negotiations
within design teams. We also consider that the ability to replay
scenarios exactly and determine causal relationships in these
complex systems, are useful tools for designers of ubicomp
systems.

9. ACKNOWLEDGMENTS
This work is supported by Enterprise Ireland under the
PUDECAS project [TD 2005 217-A/B].

10. REFERENCES
[1] Jean Scholtz, Sunny Consolvo, "Toward a Framework for

Evaluating Ubiquitous Computing Applications," IEEE
Pervasive Computing, vol. 3, no. 2, pp. 82-88, Apr-Jun, 2004

[2] UbiWise, A Ubiquitous Wireless Infrastructure Simulation
Environment John J. Barton, HP Labs Vikram
Vijayaraghavan, Stanford University Copyright 2002, HP

[3] Li, Y., Hong, J. I., and Landay, J. A. 2004. Topiary: a tool
for prototyping location-enhanced applications. In
Proceedings of the 17th Annual ACM Symposium on User
interface Software and Technology (Santa Fe, NM, USA,
October 24 - 27, 2004). UIST '04. ACM, New York, NY,
217-226. DOI=
http://doi.acm.org/10.1145/1029632.1029671

[4] Reynolds, V., Cahill, V., and Senart, A. 2006. Requirements
for an ubiquitous computing simulation and emulation
environment. In Proceedings of the First international
Conference on integrated internet Ad Hoc and Sensor
Networks (Nice, France, May 30 - 31, 2006). InterSense '06,
vol. 138. ACM, New York, NY, 1. DOI=
http://doi.acm.org/10.1145/1142680.1142682

[5] JBoss Rules

http://www.jboss.com/products/rules

[6] Eleanor O'Neill, David Lewis, Kris McGlinn, Simon
Dobson: Rapid User-Centred Evaluation for Context-Aware
Systems. DSV-IS 2006: 220-233

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5685
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5685

[7] Carter, S. and Mankoff, J. 2005. Prototypes in the Wild:
Lessons from Three Ubicomp Systems. IEEE Pervasive
Computing 4, 4 (Oct. 2005), 51-57. DOI=
http://dx.doi.org/10.1109/MPRV.2005.84

[8] Stefania Bandini, Alessandro Mosca, Matteo Palmonari,
2005. A Hybrid Logic for Commonsense Spatial Reasoning.
AI*IA 2005: Advances in Artific ial Intelligence, Volume
3673/2005, pp 25-37

[9] S. Davidoff, S. Carter and J. Mankoff. Can Early-Stage
Tools and Techniques for Iterative Design Help Researchers
Understand a Problem Space? Pervasive 2005 UbiApp
Workshop, Munich, Germany, May 2005.

[10] Half- life 2 / Hammer

http://www.half-life2.com/
http://developer.valvesoftware.com/wiki/M ain_Page

[11] Abowd, G. D. 1999. Software engineering issues for
ubiquitous computing. In Proceedings of the 21st
international Conference on Software Engineering (Los
Angeles, California, United States, May 16 - 22, 1999).
International Conference on Software Engineering. IEEE
Computer Society Press, Los Alamitos, CA, 75-84.

[12] Sitou, W. and Spanfelner, B. 2007. Towards Requirements
Engineering for Context Adaptive Systems. In Proceedings
of the 31st Annual international Computer Software and
Applications Conference - Vol. 2- (COMPSAC 2007) -
Volume 02 (July 24 - 27, 2007). COMPSAC. IEEE
Computer Society, Washington, DC, 593-600. DOI=
http://dx.doi.org/10.1109/COMPSAC.2007.223

[13] Balasubramanian, M., Chaturvedi, N., Chowdhury, A. D.,
and Ganesh, A. 2006. A framework for rapid-prototyping of
context based ubiquitous computing applications. In
Proceedings of the IEEE international Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing -Vol 1
(Sutc'06) - Volume 01 (June 05 - 07, 2006). SUTC. IEEE
Computer Society, Washington, DC, 306-311. DOI=
http://dx.doi.org/10.1109/SUTC.2006.7

[14] Liogkas, N., MacIntyre, B., Mynatt, E. D., Smaragdakis, Y.,
Tilevich, E., and Voida, S. 2004. Automatic Partitioning:
Prototyping Ubiquitous-Computing Applications. IEEE
Pervasive Computing 3, 3 (Jul. 2004), 40-47. DOI=
http://dx.doi.org/10.1109/MPRV.2004.1321027

[15] Bannach, D., Amft, O., and Lukowicz, P. 2008. Rapid
Prototyping of Activity Recognition Applications. IEEE
Pervasive Computing 7, 2 (Apr. 2008), 22-31. DOI=
http://dx.doi.org/10.1109/MPRV.2008.36

[16] Eleanor O'Neill , Martin Klepal, David Lewis, Tony
O'Donnell, Declan O'Sullivan, Dirk Pesch, "A Testbed for
Evaluating Human Interaction with Ubiquitous Computing
Environments," tridentcom,pp.60-69, First International
Conference on Testbeds and Research Infrastructures for the
DEvelopment of NeTworks and COMmunities
(TRIDENTCOM'05), 2005

[17] Pham, H. N., Mahmoud, Q. H., Ferworn, A., and Sadeghian,
A. 2007. Applying Model-Driven Development to Pervasive
System Engineering. In Proceedings of the 29th
international Conference on Software Engineering
Workshops (May 20 - 26, 2007). ICSEW. IEEE Computer

Society, Washington, DC, 193. DOI=
http://dx.doi.org/10.1109/ICSEW.2007.43

[18] Salber, D., Dey, A. K., and Abowd, G. D. 1999. The context
toolkit: aiding the development of context-enabled
applications. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems: the CHI Is the Limit
(Pittsburgh, Pennsylvania, United States, May 15 - 20,
1999). CHI '99. ACM, New York, NY, 434-441. DOI=
http://doi.acm.org/10.1145/302979.303126

[19] Kris McGlinn, Eleanor O'Neill, David Lewis, 2007.
Modelling of Context and Context-Aware Services for
Simulator Based Evaluation. MUCS 2007, 4th International
Workshop on Managing Ubiquitous Communications and
Services (part of IM 2007)

[20] Conlan, O., Wade, V., Bruen, C., and Gargan, M. 2002.
Multi-model, Metadata Driven Approach to Adaptive
Hypermedia Services for Personalized eLearning. In
Proceedings of the Second international Conference on
Adaptive Hypermedia and Adaptive Web-Based Systems
(May 29 - 31, 2002). P. D. Bra, P. Brusilovsky, and R.
Conejo, Eds. Lecture Notes In Computer Science, vol. 2347.
Springer-Verlag, London, 100-111.

[21] Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith,
M., and Steggles, P. 1999. Towards a Better Understanding
of Context and Context-Awareness. In Proceedings of the 1st
international Symposium on Handheld and Ubiquitous
Computing (Karlsruhe, Germany, September 27 - 29, 1999).
H. Gellersen, Ed. Lecture Notes In Computer Science, vol.
1707. Springer-Verlag, London, 304-307.

[22] Weiser, M. 1995. The computer for the 21st century. In
Human-Computer interaction: Toward the Year 2000, R. M.
Baecker, J. Grudin, W. A. Buxton, and S. Greenberg, Eds.
Morgan Kaufmann Publishers, San Francisco, CA, 933-940.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5685
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5685

