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ABSTRACT
Simulation has been an important resource for functional
and performance analyses of computer networks. Although
the number of widely adopted network simulators is small,
new ones continue to be created to address gaps in the func-
tionality of existing tools. It can be argued, however, that
the greatest need of the scientific community is to raise the
credibility of published simulation studies. In this paper, we
show that this need can be addressed by enabling network
simulators to provide fool-proof automation of the experi-
mental process. Ideally, the simulator’s interface would pro-
vide users with an environment to minimize set up time for
experiments and to guarantee their reproducibility, and to
safeguard the statistical rigor of data analysis. We demon-
strate that advances toward this goal have been made by
three different tools. Our contributions in this paper cul-
minate with the derivation of requirements for automation
tools from recent literature and from our own experience
in tool construction. Once these requirements are fulfilled,
network simulation tools can have a stronger impact in ed-
ucation, in carrying out large simulation studies, and in en-
hancing the credibility of simulation results.

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation support
systems—environments; G.3 [Mathematics of Comput-

ing]: Probability and Statistics—statistical software; D.2.6
[Software Engineering]: Programming environments—
performance measures

General Terms
Experimentation, Measurement, Performance
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1. INTRODUCTION
It is undeniable that stochastic simulation has been of

crucial importance in the development and in the analysis
of protocols for computer networks. Simulation has been
used to produce qualitative results in the verification of the
correctness of protocol interactions. It has also been helpful
in producing estimates of various metrics to predict, quanti-
tatively, the performance of networks under user-defined and
user-controlled conditions. There are inherent challenges in
carrying out simulation studies that produce solid scientific
value, however.

We have learned from the literature that a number of pro-
cedural difficulties stand in the way of the production of
credible simulation-based studies of computer networks [1,
2]. These papers enumerate problems in methodology that
cast doubts on the accuracy of simulation studies. Extrap-
olating from the observations that these and other related
papers have brought to light, we can state a hypothesis to
explain what lies at the root of the problem: The level of
complexity of rigorous simulation methodology requires more
from networking researchers than they are capable of han-
dling without additional support from software tools.

Consider the most cited network simulators in research lit-
erature: ns-2 [3], GloMoSim [4], Qualnet [5], and OPNET
[6]. The learning curve associated with the simple appli-
cation of these tools is non-trivial for all but the savviest
users. To aggravate the problem, most often, the needs of
network research lead users to customize one or more com-
ponents of the simulator before they can apply it in their
studies. This customization requires intimate knowledge of
the framework upon which the simulation engine is built,
as well as a clear understanding of the interactions between
components of the larger simulation model. The process de-
mands time, effort, and skills that potential users cannot
always contribute and, commonly, results in solutions that
aren’t reusable or accurate. In this paper we focus on three
use-cases which can benefit from advances in the level of
support offered by network simulation tools: education, the
execution of large simulation studies, and the reproducibility
of scientific results.

First, we consider the user of network simulation in the
education of graduate and undergraduate students. At the
University of Pisa, students use the ns-2 network simulator
to study performance evaluation fundamentals in a class in
their fifth year (that is, their last). Experience has shown
that the time students spend on activities outside the core
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of their project assignment is about 80% of the total. Ide-
ally, students are supposed to concentrate on implementing
a scheduler and on understanding its performance through
the statistical analysis of data produced by simulation ex-
periments. What happens in practice is that they spend
more time than it is reasonable learning to use and to cus-
tomize the simulator to produce the data of interest. They
also have to spend time creating custom tools to parse sim-
ulator output and compute statistics from it. The accuracy
of the results they obtain is as limited as their knowledge
of rigorous statistical methodology. Due to the constrained
time for the assignment, this required investment in set up
for the study compromises the achievement of the main goal
of the simulation activity.

Second, we discuss the suitability of current simulation
tools to the realization of large simulation studies. Simu-
lation is often used as a resource for testing some kind of
hypothesis about a system. It is also often applied in the
evaluation of the sensitivity of the system to a potentially
large number of parameters. When the latter is the case,
a study requires large numbers of simulation runs, under a
number of different conditions that challenges one’s organi-
zational skills, and produces inordinate amounts of output
data. More to the point, when such studies are carried out
by teams, rather than single persons, the lack of organization
in the output data may considerably slow down the progress
of the whole study.

Finally, we submit that there exists a pressing need for the
development of solutions to address problems that compro-
mise the reproducibility of published simulation studies. All
too often, as indicated in [1], the experiments described in
a large number of papers on network simulation cannot be
reproduced by third parties. The causes behind this effect
include the lack of space in publication vehicles to enumer-
ate all conditions in the scenario, but also lack of attention
to detail. As a result, scientists find it difficult (if not im-
possible) to directly build upon published results and are
left with no option but to try to recreate entire studies from
vague information, without much guarantee of success.

We argue that the needs of the three use-cases above
can be addressed by standardizing the network simulation
workflow with the use of automation tools. As long as the
network simulator provides some measure of support, one
can construct around it a framework to organize scenarios
for simulation experiments, execute simulation runs, process
output data, and store results in a system that guarantees
access in future references. The automation tools can be
designed as a higher layer of abstraction that augments the
functionality offered by the underlying network simulator.
In the sense that a high-level programming language cre-
ates a safer environment for the development of programs,
a network simulation automation tool can meet the needs
of the less experienced user. At the same time, it can help
the more experienced user by enforcing best-practices that
enhance the credibility and the reproducibility of the sim-
ulation study. The use of automation tools would create
common benefits to both constituencies such as reduced set
up times for experiments and strict adherence to methodol-
ogy.

Our contributions are threefold. We analyze existing open
source network simulators with respect to the level of sup-
port they provide for the creation of automation tools. We
discuss three tools that aim to automate the simulation

workflow and reflect on their strengths and shortcomings.
Finally, we reflect upon on our experience and evidence from
the literature to present requirements that would produce
significant advance in the development of automation tools.

The remainder of the paper is structured as follows. Sec-
tion 2 discusses the complexity of the workflow of the sim-
ulation process in its current context. Section 3 discusses
the current state of development of different network simu-
lators via case studies of well-known projects. Section 4 de-
scribes tools for experiment automation and statistical anal-
ysis highlighting the impact of their features on the usability
of networks simulators and on the credibility they can im-
part to simulation studies. Section 5 concludes the paper
by summarizing what we identified as desirable features for
simulation automation tools.

2. THE SIMULATION WORKFLOW
Computer simulation is a powerful technique that has

been in use for nearly as long as computers have been around.
Nonetheless, a considerable number of people are skeptical
about it and for a very good reason. Simulation goes well
beyond “writing some code to test a few ideas.” In order for
simulation results to be credible, they must have been pro-
duced by a sequence of actions that follows the established
methodology. The complete process is enumerated and de-
scribed in detail in [7]. In this section, we consider a higher
level abstraction of these steps with the goal of identifying
opportunities for the application of automating tools to aid
in the process.

A simulation study starts with the definition of its objec-
tives, that is, what one wants to learn from the study. For
instance, whether a new protocol for wireless ad hoc routing
outperforms existing ones. Before that kind of conclusion be
reached, however, one must have defined a set of criteria to
assess the performance of the routing protocol. This involves
the definition of metrics to characterize what “performance”
means for the specific goals of the study. To illustrate this
and other points in this section, we use the example of a
mobile wireless ad hoc network simulation. We might say
that protocol X is better than another protocol Y , if a net-
work built with X reaches higher data throughput than a
network built with Y , with all other operational conditions
being equal.

Once objectives are defined, the next step involves cre-
ating models that abstract away some of the complexity of
the real system. The models must retain enough detail to
allow for the goals of the simulation study to be met. Mod-
eling is a complex activity; one that requires a good dose of
insight and a fair amount of experimentation. The model
chosen to represent a wireless ad hoc network, for instance,
might include a variety of sub-models to account for radio
propagation, node mobility patterns, the composition of the
protocol stack software in each node, and the packet traffic
generation. Each of these sub-models will contain factors
to represent configurable parameters. Models need to be
validated, that is, one must make sure that they correctly
represent the systems for which they stand in. The compu-
tational implementation of the models need to be verified,
that is, debugged.

The choice of a simulator might determine the extent to
which the experimenter can directly use pre-constructed,
validated, and verified models. Commonly, one chooses a
simulator that offers a selection of the largest number of re-
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quired models. Assuming that those models have been vali-
dated and verified, they can be relied upon without modifi-
cation. Otherwise, any newly constructed models must un-
dergo the usual scrutiny of validation, verification, and de-
bugging. This requires executing pilot runs and fine-tuning
the factors in the chosen models to ensure that the desired
scenario indeed matches the specification of the simulation
experiment.

Up to the design of experiments stage, there are limited
opportunities for using automation tools in the simulation
process. Our experience has shown, however, that from this
point on, automation tools can be used to guide the user
through the well-established methodology and to enhance
the credibility of the results.

Some of the most important considerations in the simula-
tion setup appear early in the design of experiments. One
must determine whether the type of the simulation is ter-
minating or steady-state. One must determine the length of
each simulation run, that is, end time of the simulated clock.
For steady-state simulations, one must determine the length
of the warm-up period for the model so that initialization
biases can be avoided through data deletion. As indicated
in [1], a large number of simulation studies of computer net-
works have relied on arbitrary choices for the length of the
simulation and altogether failed to consider initialization bi-
ases. These practices, which compromise the credibility of
the entire study, can be avoided by automation. The sequen-
tial simulation techniques discussed in [8] make it possible
for the simulator to recognize the end of warm-up periods
and to extend the simulation run until enough samples of
metrics have been collected to guarantee the coverage of pre-
specified confidence intervals. Finally, in order to produce
valid statistical analyses for the simulation experiment, at
this stage, one must specify the pseudo-random generator
seeds for each simulation run.

Simulation set up also includes the development and the
selection of scenarios that agree with the goals of the study.
Scenario development is a complex topic that deserves care-
ful attention, but one which cannot be automated and there-
fore falls beyond the scope of our discussion. We refer the
interested reader to [9] for a thorough exploration of this
topic. The choice of scenario determines the levels for all
factors, or parameter settings, in the simulation model. A
very large number of factors commonly appears in the sim-
ulation of wireless ad hoc networks. The experimenter must
take care of keeping detailed records of these values and
make them available to anyone interested in reproducing
the study. The completeness and the integrity of this body
of data determine whether the experiment can ever be re-
produced. The simulator or an additional support tool can
better take care of this bookkeeping and reporting operation
than the experimenter.

The design space of the simulation study is determined by
the number of possible combinations of parameter settings
that need to be investigated. When the study requires sim-
ulations with multiple levels for multiple factors, as is the
case in sensitivity analysis, a combinatorial explosion may
require a very large number of simulation runs. When this
is the case, the use of 2k factorial or 2k−p fractional factorial
experimental designs can produce a substantial reduction of
the number of runs that is required to meet the goals of the
study [10].

A complementary option to reduce the total execution

time of simulation runs is to exploit parallelism, which can
be achieved through different approaches. The parallel discrete-
event simulation (PDES) approach partitions the simula-
tion model into a collection of sub-components. These sub-
components execute on multiple processors under the coor-
dination of a mechanism that guarantees that the simulation
advances to a consistent global state. PDES has been the fo-
cus of much research in the last 30 to 40 years and, although
great advances have been made, it continues to be a com-
plex subject. Among the several network simulators that
use this approach to parallelism, we can cite SSFNet [11],
PRIME [12] and GTNetS [13]. The Multiple Replications
in Parallel (MRIP) approach offers a simpler alternative by
executing different replications of sequential simulations in
different processors. Each independent simulation run can
explore a different point of the experimental design space. It
is also possible to have multiple runs of the same point of the
experimental design space execute with different seeds for
pseudo-random number generators (PRNGs); in this case
the combined effort of the parallel replications reduce the
time to produce statistical estimates of the metrics of inter-
est. The MRIP approach is used in support tools for network
simulation such as Akaroa 2 [14] and SWAN Tools [15]. All
the network simulation tools cited above automate paral-
lelization to some extent.

The next step of the simulation workflow includes extract-
ing the metrics of interest from the output of simulation
runs, processing the extracted data according to rigorous
statistical methodology, and storing them for later refer-
ence. In the execution of these tasks, one must pay careful
attention to detail so as to avoid procedural errors that can
compromise the validity of the simulation’s results. Fortu-
nately, since they follow repetitive patterns dictated by well-
established methodology, they can be easily automated.

The automation framework for processing and storing sim-
ulation data can have a significant impact in the documen-
tation and in the reporting of the results of a study. As
we discuss later, as long as the framework is constructed
around a relational database, it can unequivocally associate
the output data of a study with its previously recorded ex-
perimental setup. This can guarantee that, when the time
comes for the dissemination of the results, the information
reported is complete and accurate. Another important con-
sequence is the database can serve as a central repository of
information for anyone interested in pursuing further anal-
ysis of the experiment or in reproducing it.

Having presented the case for increasing the level of au-
tomation in the simulation workflow, in the next section, we
evaluate the existing resources and the challenges for this
task in three different situations. The case studies we dis-
cuss include modern network simulators, such as ns-2 , ns-
3 , and those based on the Scalable Simulation Framework
(SSF) standard.

3. REFLECTIONS ON THE STATUS QUO
The number of different simulators for wireless ad hoc

networks is not small and continues to grow. Although it
is hard to speculate on the reasons that connect individual
users with particular simulators, it is fair to expect that they
include attraction to particular feature sets.

More often than not, the purpose of a simulation study is
more in line with the study of characteristics of the system
than with the development of the simulation tool. For that
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reason, it is natural for the user to want to remain a user
by selecting an existing simulator that can serve the goals of
the study without requiring extensive modifications. When
the choice is made, the user bites the proverbial bullet to
accept the simulator features together with its shortcomings.
Regrettably, not enough regard has been given to how the
construction of network simulation tools might affect the
outcomes of study produced with them.

The credibility of a simulator depends in great part on
how closely the models in its libraries relate to the realities
of the physical system as well as to prescribed standards,
as is commonly the case for network protocol models. The
credibility of a simulation study, however, depends on how
closely the process follows the best practices described in
Section 2. Looking at network simulation tools from a us-
ability perspective, however, one can explore the relation
between the credibility of the simulation tools and of the
simulation studies produced with them.

It can be argued that the majority of open source net-
work simulators has a target audience that is comprised of
power users. There seems to be an expectation that peo-
ple who engage in the simulation of computer systems are
skilled in the use of computer systems. It is due to this
expectation that, at times, network simulators have steep
learning curves even for less ambitious users. The level of
difficulty in working with a network simulator rises fast and
in direct proportion to the level of customization it requires
in a study. Consequently, the potential for the introduction
of errors in simulation methodology is tightly coupled with
customization.

Ideally, network simulators would be like bicycles for chil-
dren. They could provide mechanisms analogous to train-
ing wheels to protect the less experienced users from their
own mistakes. Either the simulator or some support tool
could optionally constrain the user to follow the methodol-
ogy while, at the same time, minimizing the requirements of
knowledge of programming languages and other system util-
ities. Unfortunately, the most popular network simulators
don’t include many protections for the experimenter.

We argue that there exists a potentially large number of
ways in which one can make mistakes in setting up the sce-
nario for a simulation study or in processing output data.
The extent to which these errors might affect the goals of
the study is unpredictable, but troubling. There can be a
substantial difference between what the user intends to do
and what the user actually ends up doing. When that is the
case, all the resources spent in the execution of the simula-
tion study will have been wasted.

Experience has shown that scenario construction is a hard
problem on its own [16]. No tool can possibly prevent the
simulation user from constructing an inconsistent, implausi-
ble scenario. It is possible, however, to construct tools that
help the user avoid introducing errors in simulation workflow
that would result from mishandling scenario configuration.
For instance, Graphical User Interfaces (GUIs) can be imple-
mented as an additional layer on top of the simulator’s exist-
ing configuration functionality. This type of interface can be
very effective in bridging the distance between a user’s men-
tal model of the configuration and the text files that describe
it for the simulator. Another effective use of the GUI is to
expose to the user a reduced number of configurable parame-
ters for the simulation model. The raised level of abstraction
not only hides complexity, but can be used to prevent less

experienced users from accessing parameters that could ren-
der the simulation meaningless if misconfigured. The GUI
can also be tasked to perform validation of the user input,
serving as a first line of defense against errors of type and
range. Visual configuration tools are available in commer-
cial simulators such as OPNET [6] and QualNet [5], but also
in open source tools, such as OMNeT++ [17] and NCTUns
[18]. Just as high-level languages raise the level of abstrac-
tion for programming and create a safer environment for the
developer in comparison with assembly, we should consider
tools that produce analogous benefit in simulation.

In order to promote an understanding of the current state
of development in the interfaces between experimenter and
network simulator, in the remainder of this section, we ex-
plore three different cases. This discussion presents evidence
of the need for support tools to protect users from making
egregious mistakes in the configuration of simulation scenar-
ios and in output data processing.

3.1 Case study: ns-2
The Network Simulator version 2 (ns-2 ) [3] is widely used

in the networking community to perform a broad variety of
simulation studies, ranging from the evaluation of Medium
Access Control (MAC) protocols in personal area networks
to Internet transport protocols. A development community
has supported ns-2 throughout the years by continually con-
tributing with a large number of simulation models. A con-
siderable number of contributed models eventually became
part of the simulator distribution. Although the ns-2 core
and its modules are released under mixed licences, the users
have open access to source code and face no limitations of
use. ns-2 is written in a mix of C++ and OTcl, the object-
oriented extension of the Tcl scripting language, in a design
that implements the concept of split-level programming [19].
The configuration of simulation experiments uses an inter-
preted language, which means that the simulator doesn’t
have to be recompiled when new model structures are de-
fined.

A negative consequence of ns-2 ’s growth was that core’s
features received contributions from uncoordinated, inde-
pendent research groups over time. Since no refactoring took
place to impose a broad-scope design vision, additional de-
velopment often had to resort to work-around solutions to
make different components fit together. To illustrate the
point, we look at how ns-2 supports the simulation of wire-
less networks. The core structure of the simulator was origi-
nally created around the idea of a generic model for network
node for which different protocols layers could be defined.
This didn’t turn out to be possible and a second kind of node
model had to be introduced to allow for nodes constructed
with models of wireless physical, MAC, and link layers. We
can still observe the use of this pattern of patching the de-
sign to solve individual problems rather than rethinking the
global structure of the simulator to provide a more general
framework in [20, 21].

From the perspective of its users, ns-2 poses several chal-
lenges. The documentation is sparse, particularly for most
contributed modules, and often out of date. The user is ex-
pected to have at least basic knowledge of Tcl, a language
of decreasing popularity. Worse yet, the user is often re-
quired to understand internals of the simulator such as how
the event scheduler and classifier work, which contradicts
the split-level programming model. There are few conven-
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tions in the code in what regards the naming of variables
and the use of units of measure. Managing the installation
of contributed models requires the applications of patches,
which is not always automated. The combination of these
factors makes for a steep learning curve and long setup time.
Novice users have to undergo a significant amount of studies
and spend considerable time in trial-and-error experimenta-
tion. While this effort can be justified for larger research
projects, it discourages the use of ns-2 in education.

Another uninviting characteristic of ns-2 is the complexity
of scenario configuration. It is not always clear for the user
where to find the parameters of interest in each component
of the simulation model. At times, the parameters appear in
Tcl files. In others cases, they might be defined as literals in
C++ header files and changes in parameter settings require
one to rebuild the simulator executable. (This showcases
another violation of the goals of the split-level programming
model.)

In configuring an experimental scenario, one must also
consider the fact that the simulator works with a large num-
ber of default values for parameters, defined in file tcl/lib/
ns-default.tcl. The contents of this file, which spans
more than 1,000 lines of Tcl code, can change with differ-
ent versions of the simulator. Comparing the results of the
simulation of one same scenario executed on different ver-
sions of the simulator, we might observe significant changes.
As discussed in [1], this can impact the reproducibility of
the experiment. It should also be noted, that due to the
overwhelming volume of configurable parameters, the user
shouldn’t be held responsible for configuring them all with-
out assistance.

There is no provision in ns-2 to expose to the users only
the subset of parameters in a simulation model that is perti-
nent to the goals of their simulation study. One must wade
through tcl/lib/ns-default.tcl and determine what is
safe to change and what ought not to be touched. As a
further complication, there is no indication of the accept-
able ranges for each parameter in this file.

An interesting idea that can be used as a solution to the
scenario configuration problem is presented in [22]. While
the paper is focused on the development of a description lan-
guage for web-based network simulation, its main contribu-
tion is portable to a broader context. It would be beneficial
to use a hierarchy of documents in the Extensible Markup
Language (XML) to encapsulate the entire set of parameter
values used in the simulator and in the components of its li-
brary of models. The documents could include annotations
that explain the function of each parameter and one could
build XML Schemas to validate the specific values with re-
spect to range and type.

A standard language for scenario description would en-
able a number of additional improvements to the simulation
workflow. We can envision that the results of scenario de-
velopment efforts, such as what is described in [9], would
lead to the creation of a repository of valid scenarios span-
ning a variety of different purposes in network simulation.
If each scenario is described in the standard language, one
could use XSLT transformation documents [23] to translate
the scenario into configuration files to drive particular sim-
ulators. In [22], we see a proof of concept in the translation
of an XML language to ns-2 configuration scripts.

In what regards tools for the collection of metrics during
the simulation and their statistical analysis and visualiza-

tion, the ns-2 distribution doesn’t offer very sophisticated
solutions. The simulator produces logs with packet traces as
ASCII text. The logs contain samples of metrics for all the
packets that traverse ns-2 elements like agents, queues, and
channels. A large volume of such data is generated even by
small simulation runs and requires non-negligible amounts
of storage.

Most often, users rely on ad hoc solutions to parse and to
process the log data. Home baked solutions might be of help,
once they have been fully developed and debugged, but it’s
a time consuming process. While the use of graphical tools
helps, they add to the overhead of learning to use yet an-
other piece of software. Upon recognizing this deficiency, the
community has started to develop tools to automate parsing,
processing, and visualization. iNSpect [24] addresses the vi-
sualization of data generated by the simulation of wireless
networks in ns-2 .

It is also important to note that not all metrics of interest
in a simulation experiment might appear on packet traces
because they are not related to transmission events. For in-
stance, the designer of a new ad hoc routing protocol might
find it useful to periodically collect metrics like the number
of timer expirations or the size of routing tables. It would
be helpful to have mechanisms to allow for the collection
and the analysis of this type of data; we present one such
solution in Section 4.1. It would be important, as well, to
produce output data that contains annotations that facil-
itate the post-processing and the dissemination of results.
CostGlue [25] is good step in this direction.

3.2 Case study: ns-3
Although the Network Simulator 3 (ns-3 ) [26] might be

viewed as a descendant of ns-2 , it does not inherit from
ns-2 ’s code base. It was constructed from scratch follow-
ing a new design that takes into account lessons learned in
the development of its predecessor, one that allows for the
smooth integration of modules and expansions. ns-3 pro-
vides new features and capabilities that enhance the quality
and the relevance of simulated results to the study of real
world scenarios. In addition to providing the developers
with a cleaner programming framework, the modular design
of ns-3 helps the users validating the effectiveness and accu-
racy of simulations. The code base is growing fast and there
have been several releases to support additional development
and public testing.

The build script for ns-3 uses Waf, an open source build
system with functionality related to Gnu Autotools and writ-
ten in Python, a modern, well-known, and powerful script-
ing language. Waf is central to ns-3 in that it is used to
not only build the simulator, but also run simulations. Waf
ensures that all libraries are properly linked in, and sets up
the runtime environment for the simulator. This ensures
that simulations will be executed as the user intended for
them to be, thereby reducing the possibility of human er-
ror, e.g. in managing the compilation dependencies causing
partially updated executables, hence inconsistent simulation
runs.

Similarly to ns-2 , the interface that ns-3 offers to the
user follows an interpretation of the split-level programming
model. There is a clear separation between the simulator
code base and the scripts the user creates to stage simulation
experiments. The simulator can be built to support Python
bindings, which allows one the option to use either C++ or
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Python in the creation of experiment descriptions.
Using the scripts that describe the simulation model, the

Waf build system can determine the set of classes that must
be linked with the simulator code to support the needs of the
experiment. An interesting feature that results from ns-3 ’s
implementation based on Waf and Python is the interactive
shell that can be used for running preliminary tests with
the simulator [27]. This feature will be useful in verifing as-
sumptions about configuration scripts before the launching
of production runs of the simulator.

The core architecture of ns-3 has been changed with many
design goals in mind. The first one, arguably one of the
most important, is to make it more user friendly to devel-
opers. Another one is to capitalize on the recent advances
in multi-core processors. A third one is to allow for emula-
tion and virtualization of physical devices. This allows the
experimenter to reuse kernel and application code in the sim-
ulator, thereby reducing the possibility of errors in defining
models to simulate real applications or kernel modules [26].

While simulations results often provide much insight, one
must be able to compare them to the behavior of real sys-
tems. For this reason, ns-3 has been designed to allow
simulations to be integrated with running networks. Vir-
tual machines can be run on top of ns-3 ’s simulated devices
or channels. Alternatively, ns-3 emulated devices can push
packets around a true physical network to measure real time
performance. This allows the experimenter to simulate real
applications.

In any network simulation there are two major points of
configuration. First, one must define how the nodes in the
network are interconnected, that is, specify a network topol-
ogy. Second, one must also define the values of parameters
in the configuration of each network device. The topology of
the network is defined the simulation script, but the values
assigned to the nodes are controlled by the ns-3 attribute
system. This system allows for output of simulated values,
both user specified and default, thereby making simulations
easily repeatable. The user can also define many of these
values from the command line with Waf to experiment with
things without changing source. Providing the user with a
pre-configured safe and known set of values for the system
parameters, upon which she has full control via C++/Python
and command line, reduce the likelihood of misconfiguring
the simulator and makes it easier to reproduce simulation
studies. We then consider this feature as one of the main
strengths of ns-3 regarding the credibility and repeatability
of results.

An interesting experimental feature of ns-3 may turn out
to enhance considerably the usability of this simulator: Con-
figStore can use a GTK-based front end that gives the user
a GUI for viewing and changing attributes of the network
nodes before a simulation experiment is executed. Although,
at this point in time, the GUI does not allow the user to vi-
sually define the topology of the network, it is conceivable
that it may include this functionality in the future.

As far as parsing and understanding the simulation out-
put are concerned, ns-3 provides a logging module that can
report on the execution of the simulation according to con-
figurable levels of detail. Logging can be enabled or disabled
on a per component basis. Such output is valuable for de-
bugging purposes and also for understanding the results.
For debugging purposes, ASCII traces similar to those of
ns-2 can be generated to fully document the execution of

the simulation. Furthermore, ns-3 can output packet cap-
ture traces in libpcap format, which can be analyzed with
familiar software packages such as Wireshark and tcpdump.
This feature gives the user access to a standard interface
that can be effective in the analysis of trace files.

Finally, it is interesting to note that the use of Python
in ns-3 can have a positive impact in the creation of au-
tomation tools ns-3 . Python is widely used in web ap-
plications, whether through the Common Gateway Inter-
face (CGI) or through web development frameworks such as
Django <djangoproject.com> or TurboGears <turbogears.
org>. This characteristic will enable one to create for ns-
3 an interface for simulation configuration, execution, and
analysis that provides less-experienced users with a safer en-
vironment for the development of credible studies similar to
that described in [15].

We expect that in due time, support tools and libraries
that have recently been developed for ns-2 will exist also to
support the users of ns-3 .

3.3 Case study: SSF Simulators
The Scalable Simulation Framework (SSF) is an object-

oriented standard for the construction of high performance
simulators [28]. The standard is powerful but concise, offer-
ing five base classes for the definition of events, processes,
entities, and communication channels. Different simulator
kernels have been constructed using the SSF application
programming interface (API): DaSSF [11], iSSF [29], MaSSF
[30], and PRIME [12]. Primarily, these kernels take care of
the mechanics of discrete-event simulation with an emphasis
on high performance. When the simulation is executed over
multiple processors, the kernels also handle the distribution
and the synchronization of components of the simulation
model.

Network simulators based on the SSF standard consist of
collections of components written in a high-level language,
such as C++ or Java. These components are developed
from the classes offered by the kernel and create models
of protocols, network nodes, and other entities in the sim-
ulated environment. Two examples of such simulators are
SSFNet [11] and the Simulator for Wireless Ad Hoc Net-
works (SWAN) [31].

A common characteristic of SSF-based simulators is that
experimenters build simulation models using the Domain
Modeling Language (DML) [32]. This language allows one
to instantiate and to configure each of the models that were
previously constructed using a high-level language. The use
of DML reflects the same philosophy of split-level program-
ming used in ns-2 . However, SSF-based simulators have
managed to achieve a clearer distinction between the im-
plementation of simulation models and their configuration.
Protocol models are completely contained in compiled code,
while their parameters are assigned levels in DML configura-
tion. The substantial difference here arises from the fact that
DML is not a programming or scripting language. Two im-
portant practical consequences arise from this design. First,
it protects the integrity of the simulator’s code base by not
allowing an unsophisticated user to compromise its correct-
ness by carelessness or lack of skill. Second, the design en-
ables one to construct automation tools that help the user
to create configuration files under constraints that ensure an
added level of credibility to the simulation experiments.

The DML syntax is at the same time simple and power-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5684 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5684 



ful. DML contains mechanisms for the hierarchical struc-
turing of model descriptions and for the reuse of fragments
of description code. DML documents can have their syntax
validated automatically by schemas written in DML itself,
much in the same way that XML Schemas can be used to
validate the syntax of XML objects. SSFNet [11] makes use
of this feature to associate units with numbers that appear
in a DML model configuration. When a data rate parameter
must be assigned a value, a DML schema may require that
the value is followed by its unit of measure, as in 5.5Mbps, for
instance. The schema checker will verify whether the units
used are appropriate (syntax) and the simulator will parse
the value into the appropriate numeric value (semantics) to
be used in the experiment. Mechanisms such as these are of
paramount importance to the creation of reliable simulation
experiments, as they protect the user from inadvertently in-
troducing errors in the configuration of models. Syntax vali-
dation schemas, however, do not address an important issue
related to component-based simulators. As observed in [15],
any simulator that allows users to build a model by pick-
ing and choosing from a library of previously constructed
components is open to the possibility of mismatches.

As the component library of component-based simula-
tors grows, it becomes important to provide a mechanism
that can verify the compatibility and the interdependence
of the components selected in the construction of a simu-
lation model. An example given in [15] illustrates the case
of incompatibility between components: one might create
a model of wireless node by accidentally mismatching PHY
and MAC layers from two different variants of the IEEE
802.11 standard. We offer a second example to illustrate
the interdependence of models. We learn from [33] that
when the random waypoint model is used to describe wire-
less node mobility, it is beneficial to sample the initial posi-
tion of nodes space from a triangular random variate. This
pairing tends to reduce the simulation time until the dis-
tribution of nodes in space converges to a state compatible
with the distribution that emerges from the random way-
point model. Based on this knowledge, one might require
that whenever the random waypoint model is selected for
mobility the initial node deployment follows a triangular dis-
tribution.

Problems of compatibility and interdependence of compo-
nents of a model can be detected with the use of an addi-
tional tool for consistency checking. The task goes beyond
what can be accomplished by schemas and schema check-
ers. Assuming that every model created for the component
library would have an associated description file, one could
build a consistency checker that works similarly to software
installation and update systems for Linux, like Debian’s Ad-
vanced Packaging Tool (apt-get). These tools have been
effective to manage packages in operating systems installa-
tions and guarantee that the dependencies and requirements
of tools are always satisfied. In the simulation domain, such
a tool would produce significant advances in ascertaining the
correctness of models.

At the same time that we recognize the strengths of DML,
our experience with its use in SWAN has exposed a signifi-
cant problem of usability. Even though the DML grammar is
simple, it leads less experienced users, particularly, under-
graduate students, to create configuration files that don’t
violate syntax but which cause parsing errors at run time.
Since the kernel of the simulator provides terse messages for

this kind of error, the user had difficulties debugging model
definition files. This observation indicated the need for the
creation of a different mechanism for the creation of DML
files, which we discuss further in Section 4.2.

4. SIMULATION SUPPORT
Having gone through an objective analysis in the strengths

and the deficiencies of existing network simulators in Sec-
tion 3, this section focuses on three tools that support the
simulation workflow. What the cases we discuss here have
in common is the general goal of creating means to ease the
burden on the user. Each in their own way, the cases we
discuss lead to simulation results that are more credible and
to experiments that are repeatable by third-parties.

4.1 ns-2 Extensions
The ns2measure module [34], released as a patch for ns-2 ,

addresses two problems described in Section 3.1: the col-
lection of samples of metrics and the statistical analysis of
packet traces. The solution to the data collection problem
provides a general mechanism for specifying which events
are to be logged. This allows one to record data about any
type of event rather than just data related to packet trans-
mission events. The recording of data avoids frequent I/O
so as not to slow down the simulation. The format used in
the data log entries simplifies the extraction of information
for posterior analysis and the generation of graphs. The
package also includes tools that free the user from having to
create their scripts for staging simulations experiments and
analyzing output data.

The data collection subsystem is based on the implemen-
tation of a C++ class called Stat, which processes and orga-
nizes samples from an arbitrary number of different metrics.
When the user instruments the ns-2 C++ code with calls
to a Stat::put() method, samples of a metric are passed
to a Stat object. The samples are processed into a different
histogram for each metric and only the final outcome is writ-
ten to file, which avoids the frequent I/O that would ensue
from the construction of raw packet traces. The Stat class
provides support for three types of data: metrics averaged
over time (e.g. throughput or loss rate), metrics reflecting
stochastic values over continuous-time (e.g. number of pack-
ets in a queue), and metrics reflecting stochastic values over
discrete-time (e.g. end-to-end delay for a flow of packets).

The software framework for automating statistical analy-
sis allows a user to execute a number of independent replica-
tions of the same simulation scenario and to compute means
and confidence intervals on the chosen metrics. This frame-
work relieves the ns-2 user from having to write code in
the Tcl scenarios for selecting independent substreams of
random numbers and for computing confidence intervals.
The framework also allows one to have simulation objec-
tives guide the actual running of replications. For example,
it is possible to specify that a new independent replication
of a given scenario should be generated and executed until
the confidence interval of the required measure is below 10
percent of the sample mean. This way, a user does not need
to “guess” the right number of replications that satisfies the
stated goal.

The framework consists of two programs: the analyzer
and the loader. The analyzer takes as an input a configu-
ration file, in which the user defines a minimum/maximum
number of runs, and a set of relevant measures, together
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with their required confidence intervals. At the end of each
replication, the analyzer computes confidence intervals, as
specified in its configuration, using the samples collected
and stored into a file by the Stat object. If the confidence
intervals are small enough for all the relevant measures or
the maximum number of runs is reached, analyzer saves the
output measures and terminates. Otherwise, it instructs
the loader program to run a new replication. In doing this,
loader automatically initializes the ns-2 Random Number
Generators (RNGs) so that the new replica is independent
from already completed replications.

Both the patch and the utilities are distributed under the
GNU Public Licence (GPL). Users who are less proficient
with ns-2 reap important benefits from ns2measure: they
are allowed to concentrate on the goals of simulation study
rather than struggle to use the simulator and to deal with
data collection and analysis.

Finally, we note that ns-2 lacks resources to create a per-
manent storage for the results of simulation experiments and
to facilitate their dissemination. Such a feature is especially
important to enable collaborating researchers to share sim-
ulation results and to overcome the restrictions of space re-
lated to their publication. Functionality to support these
goals can be found in CostGlue [25] and in SWAN Tools [15],
which we discuss next in Section4.2. Much of the functional-
ity that is required to meet these goals is centered on the use
of a database management system. Currently, ns2measure
is being extended to save simulation results in a database
that can be accessed from a web interface.

4.2 SWAN Tools
SWAN Tools [15] is a web-based framework for the au-

tomation of the entire simulation workflow with SWAN [31].
The framework was developed as a Ruby on Rails applica-
tion and it addresses issues that can put in jeopardy that
credibility of simulation studies. The benefits that SWAN
Tools provides for the more experienced user come from
guidance in the configuration of models, in the management
of multiple and potentially large simulation experiments, in
the application of sound statistical methodology for output
analysis, and in the organization and presentation of results.
We note that these functionalities also have a strong impact
in the usability of SWAN by less experienced users, under-
graduate students, in particular.

The simulation workflow is represented in the architecture
of SWAN Tools as five different components. The Experi-
ment Configuration component sets the stage for the simula-
tion study by requiring the user to define data that pertains
to all its simulation runs. From a single integer seed, it gen-
erates the multiple seed values that are required to initialize
the PRNGs in the simulation model. It requires the user to
match the experiment with the code base of the simulator
in order to guarantee the reproducibility of the experiment.
When the appropriate version of the simulator is not known
to the framework, this component requires the user to up-
load it as a compressed archive.

The Model Specification component guides the user through
the definition of all parameters that can be configured in the
model built for the simulation study. It presents the user
with an information-rich interface that helps the less ex-
perienced user understand what the parameters role in the
model are. From the parameter values entered by the user,
the component generates syntactically correct DML specifi-

cation files. The current implementation of this component
works with a pre-defined composition of the wireless nodes’
protocol stack; future extensions should allow the user to
pick and choose from a library of protocol models.

The Simulations component generates all the design points
for an experiment and dispatches individual runs of each
simulation to different processors, when executing on a clus-
ter or network of computers. This component parallelizes
the execution of the simulation study according to the MRIP
approach. As simulation output data is generated, it is re-
turned to the system, which archives them in the database.
The Results component provides access to this database via
web browsers. The Plotter component allows one to use
another web browser interface to request the construction
of graphs, which include confidence intervals for each data
point, by default. The graphs are generated by the system’s
backend in a format specified by the user.

Although SWAN Tools is restricted to work with one spe-
cific underlying simulator, it automates much of the sim-
ulation workflow and enhances the credibility of networks
simulation studies. In its current state, the tool does not
address two extremely important issues, which are covered
by functionality of the tool that we discuss next.

4.3 Akaroa 2
The survey presented in [1] gives evidence that two very

important issues have been neglected in published studies
of network simulation. Both are intimately related to the
statistical rigor of the simulation study and determine the
degree to which its results are credible, as discussed in [35].

The first issue is the length of the simulation run, that is,
the end time of the simulated clock. This value determines
how many samples of the metrics of interest will be collected
in the simulation, and thus it is directly related to the con-
fidence intervals of these metrics. Once a user specifies a
confidence level, the number of samples collected determines
whether the estimated mean is contained in the confidence
interval and also determines the width of the confidence in-
terval. The second issue is whether or not the metrics are
sampled after the warm up period of the simulation models
so as to avoid initialization biases.

The Akaroa 2 simulation package [36] uses automation to
address both these issues. The user specifies the confidence
level for the metrics estimated and the system determines
how long simulation runs need to execute in order to meet
that goal. It also collects samples of metrics using data
deletion to ignore those obtained before steady-state was
reached. Once enough samples have been accumulated to
guarantee the coverage of their confidence intervals, Akaroa
2 stops the simulation runs. To enable faster progress,
Akaroa 2 makes use the MRIP approach to distribute sim-
ulation runs to various processors and communicates with
each simulation to collect and organize their output data.
Akaroa 2 can be adapted to work with any simulator that
accepts C++ linkage and the required interface code already
exists for ns-2 and OMNeT++

Without automation, the experimenter has to resort to
trial runs to evaluate when the model enters steady-state.
Also, it’s up to the user to determine if the length of the
simulation is sufficient to meet the stated level of confidence.
In spite of these strengths, Akaroa 2 does not automate
other steps in the simulation workflow.
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5. LESSONS LEARNED
Our experience in the development of support tools for

network simulation and the analysis of the literature re-
ported in this paper have yielded important conclusions. In
this section, we give a summary of key points which can ad-
vance the usability and the credibility of network simulators.

From the observations we made in this paper, we conclude
that various tools have to a certain degree provided solutions
to specific problems in the simulation workflow. Although,
we didn’t find the entire set of solutions in one same tool,
it seems clear that they exist as components that could be
aggregated into a simulation system that produces credible
results for beginners and experienced users alike.

We identified that opportunities for automating the pro-
cess appear from the start to the end of the simulation work-
flow. Building the simulation model from sub-components
is an activity that can be aided by a model consistency
checker that embodies the knowledge developed in scenario
development research. This consistency checker would rely
on data stating the compatibility constraints of each model
sub-component. We learned of efforts in the development of
standard languages for model description that can be trans-
lated into configuration files for different network simulators.
The use of such languages would allow for published exper-
iments to be reproduced by third-parties.

Once a model has been built, validated, and verified, it
needs to be configured with an exhaustive list of parame-
ters values that reflect the goals of the experiment. It is
important to hide the overwhelming number of configurable
parameters behind an abstraction for the sake of the novice
user, who should see only the parameters that are of in-
terest for a chosen type of study. At the same time, it is
important to make it possible for experts to have full access
to model configuration options. Even these constituents,
however, will benefit from a clear, clean, and safe interface.
Model parameters would be better placed outside the simu-
lator, in a configuration file that can contain annotations on
the nature and the range of each parameter. Hard-coding
parameters in the simulator compromises both usability (by
requiring recompilation) and credibility (by making results
depend on simulator version). The split-level programming
model, when carried out to its full extent, can offer assur-
ances that in the configuration of a model, the user does not
introduce errors in the simulator.

It’s important for the tool to provide guidance to the user
with experiment design. The simulation system can ask the
user for the parameter values to experiment with and use
a well-established design method to generate the specifica-
tions for all the simulation runs that will be required to com-
plete the study. The tool can automatically provide seeds
to the PRNGs in each replication of a stochastic simulation
run and distribute them across different processors using the
MRIP approach. Alternatively, there exist resources today
to automate also the partitioning of large models for paral-
lel execution. We have shown also that current simulation
support tools can have a strong impact on the quality of the
results produced by determining on their own the length
of transients in steady-state simulation and the length of
distributed simulation runs. These tools guarantee the sta-
tistical quality of estimates produced through simulation.

In what regards simulation output data, we have seen
developments on the use of database management systems
to enhance the organization and the permanence of results.

When the results of a simulation run are processed and in-
serted into a database, one can link them to the associated
simulator configuration files. This provides guarantees that
the experiment can always be reproduced and that its re-
sults will be available for comparison. We have seen the
importance of providing the user with tools for collecting
and processing simulation output and also for annotating
data with information that helps its posterior analysis. The
automation of these activities not only relieves the user from
having to create their own processing code, but also guar-
antees the statistical correctness of the processed results.

The combination of all these features into a single sys-
tem to support network simulation would be invaluable and
could have a big impact on the quality of the science pro-
duced.

With a layered design, an automated simulation system
could provide more guidance for users who would benefit
from it and, at the same time, offer different interfaces for
users who have a high level of expertise. In either case, we
believe that by placing knowledge of simulation best prac-
tices into the system, one would enable the simulation tool
to produce a significant impact on the quality and the cred-
ibility of published simulation studies. In closing, we note
that the resulting tools would be just as useful for classroom
use as they would be for research.
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