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ABSTRACT
Wireless mesh networks (WMNs) are two-tier wireless multi-
hop networks. The top tier is made of wireless routers, which
provide access to the wireless clients in the bottom tier. One
technology for enabling multi-hop communication in the top
tier is IEEE 802.16, which includes a mesh mode, in addi-
tion to the Point-to-Multipoint mode for cellular networks.
As is often the case with wireless networks, simulation is of-
ten employed as the primary means of investigation. There
are several network simulation tools, both commercial and
free-of-charge, with IEEE 802.16 PMP support. However,
the MAC protocol designed for mesh mode is substantially
different from that for PMP operation, which creates the
need for a specific simulation tool. In this paper we describe
a simulation module, called WiMsh, than enables simula-
tion of IEEE 802.16 wireless mesh networks with the popu-
lar Network Simulator 2. We have made publicly available
WiMsh in October 2007 as open source software.

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation support
systems—environments; G.3 [Mathematics of Comput-
ing]: Probability and Statistics—statistical software; D.2.6
[Software Engineering]: Programming environments—
performance measures

General Terms
Experimentation, Measurement, Performance

Keywords
wireless mesh networks, simulation, network simulator 2,
IEEE 802.16
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During the last few years, wireless mesh networks (WMNs)
have emerged as a flexible and cost-effective alternative to
both wired and wireless infrastructure networks[6]. In a
WMN the wireless mesh routers co-operate to create a back-
bone, which is used by the wireless mesh clients to access
either the Internet or intra-WMN network services. There
are several directions for research at the backbone tier, which
have been so far investigated, including[2]: layer 2 (L2) rout-
ing and forwarding issues, scheduling and quality of service
(QoS) provisioning, congestion control and load balancing,
medium access control (MAC) protocols. Most research
studies, as well as practical solutions, employ IEEE 802.11-
equipped devices as wireless mesh routers. However, this
standard does not specify how to enable the basic WMN
functions, such as multi-hop forwarding and L2 routing. To
fill this gap, the Task Group ‘s’ was established to produce
an amendment to the standard for enabling native support
of the WMN functions in IEEE 802.11[18]. The first release
of the IEEE 802.11s is expected before the end of 2009.

Another standard solution, which is available since 2004,
is IEEE 802.16 standard[1], which includes mesh mode sup-
port. The MAC protocol for WMNs is different from and
non-inter-operable with the point-to-multipoint (PMP) MAC
protocol, which has recently gained popularity due to its ap-
plications to fixed and mobile Broadband Wireless Access
(BWA) cellular networks. Therefore, all the findings ob-
tained for IEEE 802.16 PMP do not apply to IEEE 802.16
mesh. In the former, i.e. the PMP mode, all the deci-
sions about medium access are taken centrally by the Base
Station (BS). On the other hand, in mesh mode, there are
two scheduling schemes: centralized and distributed. With
centralized scheduling, nodes are arranged in a logical tree
topology. The BS is the root of the tree and it schedules
bandwidth on all the links in a centralized manner[8]. This
approach makes it easier to control the network dynamics,
because all decisions are taken by a single node. However,
the signaling overhead, which is needed to provide the BS
with complete knowledge of the network, is rather high, in
terms of both latency and consumed bandwidth. On the
other hand, with distributed scheduling, all nodes take their
decisions locally. The standard specifies a set of mecha-
nisms to ensure that data are transmitted in a collision-free
manner within any neighborhood of nodes. Spatial re-use
can be exploited by nodes that are at least two hops away.
Medium access for control messages is modeled and its per-
formance is analyzed in [7], while a scheduling algorithm
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to assign bandwidth in a fair manner is proposed in [10].
The distributed mode is more flexible and efficient than the
centralized mode, since it follows more closely network vari-
ations, like channel quality and traffic conditions.

The performance studies of WMNs are typically carried
out by means of packet-level simulation. In fact, accurate
analytical model of wireless networks are often too complex,
and realizing a prototypical test-bed is a cost- and time-
consuming solution, which might not be feasible in the early
stages of development. Unfortunately, IEEE 802.16 mesh
is not included in most popular network simulators, like
Opnet1, Qualnet2, ns-23, Omnet++4, only support IEEE
802.11 and IEEE 802.16 PMP. For this reason, in 2006 we
developed a simulation module for IEEE 802.16 mesh with
distributed scheduling, called WiMsh. We have selected
ns-2 as the simulation environment because it is widely ac-
cepted by the networking research community, and it is cur-
rently being re-designed to improve efficiency and simula-
tion accuracy as ns-3[14]. We have used WiMsh to carry
out several simulation campaigns, whose results have been
presented in high-level IEEE- and ACM-sponsored confer-
ences, including [9, 11]. WiMsh has been released under the
GNU Public Licence (GPL) in October 20075, as a patch to
ns-2. No modifications to any module operating at layer 3
or above are required to run simulations. Since its release,
the module has been downloaded 2000+ times by students
and researchers from several countries, and it is currently
used by many of them for their research.

At the time of writing, to the best of our knowledge,
the only network simulator that includes support for IEEE
802.16 mesh is NCTUns[17]. This tool is well-designed and
has been shown to produce accurate results in many scenar-
ios. However, our module has some advantages with respect
to NCTUns, as far as the IEEE 802.16 mesh is concerned.
First, the architecture of the IEEE 802.16 mesh sub-system
has not been described by the authors of NCTUns, which
makes it difficult to operate with it, especially if the user
wants to perform complex operations, like implementing a
new scheduling algorithm. Second, the penetration of NC-
TUns in the scientific community is not comparable to that
of ns-2. One of the reasons why ns-2 is so widely used is
that it runs (virtually) on any operating system, while NC-
TUns requires a specific Linux distribution (Fedora 9) to
run smoothly. Finally, ns-2 includes a vast amount of ap-
plications and transport layer agents, which can be re-used
seamlessly by WiMsh. NCTUns, instead, only provides a
limited set of traffic models. In part, this is expected be-
cause NCTUns has a strong inclination for network emula-
tion, rather than simulation, which however requires special
skills and can only be carried out in limited scenarios.

The rest of this paper is organized as follows. In Section 2
we describe the aspects of the MAC and physical layer of
IEEE 802.16 mesh with distributed scheduling that are im-
plemented in WiMsh, which is described in Section 3. In
Section 4 we explain how to configure simulation scenarios
in an easy and flexible manner, and also discuss the use of
WiMsh for educational purposes. We conclude the paper in

1http://www.opnet.com/
2http://www.scalable-networks.com/
3http://www.isi.edu/nsnam/ns/
4http://www.omnetpp.org/
5http://cng1.iet.unipi.it/wiki/index.php/Ns2mesh80216
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Section 5.

2. IEEE 802.16 MESH WITH DISTRIBUTED
SCHEDULING

An IEEE 802.16 WMN network[1] with distributed coor-
dinated scheduling consists of a Base Station (BS) and many
Subscriber Stations (SSs). Unlike the Point-to-Multipoint
(PMP) mode, the Mesh mode allows SSs to communicate
directly, without relaying their transmissions through the
BS. Medium access is coordinated in a distributed fashion.
The BS, in particular, has to coordinate with its neighbors
as any other station. Its only special functions are: adver-
tising the network configuration and authenticating a new
SS when entering the network. Hereafter, we do not distin-
guish between the BS and SSs, and refer to both of them
as nodes. Furthermore, we define two nodes as neighbors if
they can communicate directly with each other. Two nodes
that are not neighbors, but share a common neighbor, are
said two-hop neighbors.

The MAC protocol is frame-based: all nodes are synchro-
nized and they transmit data and control messages in slots
of fixed duration over non-interfering channels, up to 16. Or-
thogonal Frequency Division Multiplexing (OFDM) is used
for transmission. Each frame consists of a control sub-frame
and a data sub-frame, as illustrated in Fig. 1. The con-
trol sub-frame is made of MSH-CTRL-LEN control slots,
each consisting of seven OFDM symbols. The number of
data slots, which create the data sub-frame, and their dura-
tion depend on the physical network configuration parame-
ters. The values specified in the standard physical profiles
are reported in Table 1. The number of bytes that can be
conveyed in a slot depends on the Modulation and Coding
Scheme (MCS) used. The MCSs specified by the standard
are reported in Table 2. When there is more than one chan-
nel available, data can be transmitted by different nodes at
the same time on different channels with no reciprocal in-
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Bandwidth Frame duration Slots per frame
MHz ms

3 10 98
3.5 4 30
5.5 10 204
7 4 90
10 4 141

Table 1: Number of data slots per frame, with 4
control slots and cyclic prefix equal to 1/16.

Index Modulation Coding rate Bytes/slot

0 QPSK 1/2 24
1 QPSK 3/4 36
2 16-QAM 1/2 48
3 16-QAM 3/4 72
4 64-QAM 2/3 96
5 64-QAM 3/4 108

Table 2: Number of bytes conveyed per slot with
different MCSs. Index is used in WiMsh to identify
the MCS.

terference. However, messages in the control sub-frame are
always transmitted in the same channel, which is known to
all nodes in the network.

The slots in the control sub-frames are used by nodes
to broadcast the mesh distributed scheduling (MSH-DSCH)
messages, which are used for negotiating access to the data
sub-frame. All nodes run a distributed election procedure
specified by the standard to transmit regularly these mes-
sages in a collision-free manner. For a node, the average
interval between two consecutive opportunities to send a
MSH-DSCH message depends on the number of its neighbors
and the value of the system parameter XmtHoldoffExponent
[7].

One control sub-frame is allocated periodically for net-
work configuration and maintenance only. Two messages
can be transmitted in these sub-frames: mesh network en-
try (MSH-NENT), which are used by new nodes willing to
associate with the WMN; and, mesh network configuration
(MSH-NCFG), which disseminate the network parameters
to be employed and provide nodes with a means to setup
uni-directional links between them. As shown in Fig. 1, in
the control sub-frame reserved for this use, the first con-
trol slot is employed for network entry, while the remain-
ing MSH-CTRL-LEN - 1 slots are occupied by MSH-NCFG
messages. The latter, i.e. MSH-NCFG messages, are trans-
mitted in a collision-free manner, like MSH-DSCH messages
but using a separate instance of the distributed election pro-
cedure. In a steady state, by exploiting the network configu-
ration data received in the past, any node acquires the com-
plete topology of its two-hop neighborhood. On the other
hand, MSH-NENT messages are transmitted with no coordi-
nation, hence two or more MSH-NENT messages can collide
together. Should this happen, a collision resolution proce-
dure specified by the standard is used to restore the network
entry process6

The following countermeasures are taken to limit the chance

6The network entry latency can be evaluated with WiMsh.
Due to limited page budget, we do not describe in detail this
simulation scenario, which is of minor interest with respect
to the case when the network is in a steady state.

that the control messages are lost because of channel errors,
e.g. due to short-term fading variations: the messages are
transmitted using the most robust MCS, i.e. QPSK with
coding rate 1/2; a long preamble, i.e. two OFDM symbols,
is prepended to each message; and, the last OFDM symbol
is left unused as a guard time.7

Data transmission is coordinated in a distributed man-
ner by means of the following information elements (IEs)
contained in MSH-DSCH messages. Since MSH-DSCH mes-
sages are broadcast, and a single channel is used for the con-
trol sub-frame, all the nodes in a neighborhood receive them.
Thus, the IEs in the same MSH-DSCH can be directed to
different recipients. There are four IE types: request, grant,
confirmation, and availability. The request IE is used by a
node, called requester, to ask a neighbor, called granter, to
allocate some bandwidth, in terms of slots, to it. When the
granter transmits a MSH-DSCH, it can send a grant IE to
the requester, which contains a range of slots over a range
of frames in a given channel. This three-way handshake is
complete when the requester sends a confirmation IE to ac-
knowledge that it will actually send data in the granted slots.
Finally, availability IEs can be used optionally by nodes to
indicate certain sets of slots that cannot be used to trans-
mit or receive data, e.g. because of a partially overlapping
grant of a neighbor in the same channel. The algorithm for
scheduling bandwidth, i.e. filling the MSH-DSCH messages
with IEs, is left unspecified by the standard.

When a node confirms a grant, it will eventually trans-
mit MAC Protocol Data Units (PDUs) in the range of the
slots granted, using the channel specified by the granter. A
single MAC Service Data Unit (SDU), e.g. an IPv4 data-
gram, can be fragmented into many MAC PDUs, and mul-
tiple MAC SDUs can be packed together to form a single
MAC PDU. Both mechanisms can be used to reduce MAC
overhead or improve transmission efficiency. Furthermore,
the IEEE 802.16 mesh MAC introduces the opportunity for
a node to set the following two fields of the MAC PDU
header: 2-bit drop precedence field, which can be used to
enable different dropping policy at congested nodes; 3-bit
priority field, which can be used by nodes for service differ-
entiation.

3. SIMULATOR DESCRIPTION
In this section we describe the WiMsh simulator8. A

blueprint of the whole IEEE 802.16 mesh sub-system is il-
lustrated in Fig. 2. Every module represented in the figure
is fully implemented via a C++ class. Interactions between
modules are classified into two types: solid lines represent
packet exchanges, while a dashed line between two elements
means that they communicate via their respective Appli-
cation Programming Interfaces (APIs), i.e. C++ member
functions. The relevant parameters of each module can be
easily configured by the user, as described in detail in Sec-
tion 4.

The main module of WiMsh is the MAC layer, which is
connected to the Link Layer (LL) ns-2 module. The LL
has been modified only slightly, since it already acts as a

7MSH-NENT messages use the last three OFDM symbols as
guard time.
8As a naming convention in the source code, all the names
of data types have been prepended with “WiMsh”, to avoid
ambiguity with existing ns-2 object types. However, this
particle is omitted in the paper for the sake of readability.
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Figure 2: The WiMsh architecture.

two-way connector between the node’s agents and the MAC
object. No changes have been applied to other ns-2 modules,
such as transport layer agents and applications, which are,
thus, fully inter-operable with WiMsh. The MAC module is
divided into several sub-modules. Every module is defined
as a separate C++ class, which makes it easier to extend
its functionalists by exploiting C++ inheritance and poly-
morphism. While the MAC protocol is modeled in detail,
so as to evaluate accurately the impact of its mechanisms
and algorithms on the performance, a simplified model of
the physical layer is currently included in WiMsh. In fact,
in the classical application scenarios of WMNs, the nodes
are fixed. Sometimes, their position is carefully planned by
the network operator, using procedures similar to those for
locating base stations and repeaters in cellular networks.
Therefore, we expect the response of the wireless channel
to be much more stable and predictable than those of, e.g.,
mobile or vehicular ad-hoc networks. However, the physical
layer and channel modules have been designed so as to allow
more sophisticated propagation models to be integrated.

Due to limited page budget, the implementation details
will be left out of our discussion. We refer the interested
reader to the comprehensive documentation automatically
generated via Doxygen9 from the inline comments in the

9http://www.doxygen.org/

C++ header files, which can be found in the WiMsh website
in both HTML and PDF.

3.1 Packets
In ns-2 there exists one single transfer unit type, for all

layers, called Packet. When a packet is passed from one
layer to another, encapsulation is modeled by filling the
fields in the relevant header. In other words, any packet
includes room for all the headers of all the protocols sup-
ported by ns-2. Therefore, no memory copy/extraction for
encapsulation/de-encapsulation actually happen in practice,
which leads to efficient simulations, in terms of run time.
However, this design choice is often cause of confusion, and
also leads to error-prone coding. For instance, if the de-
veloper “forgets” to fill some fields of the relevant header,
their values are uninitialized, but assumed to be set cor-
rectly by the underlying layers. Such an error is impossible
to detect using static debugging tools, because the compiler
cannot distinguish a field wrongly uninitialized from another
that is simply not used in the protocols encapsulated so far.
Therefore, we decided to follow a different path, described
in the following.

As soon as an ns-2 packet is passed from the LL to the
WiMsh MAC, it is encapsulated into a dedicated structured,
called Sdu, which models the MAC SDU, and also contains
some internal variables for collecting packet-level statistics.
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Further classification is performed when the Sdu is encap-
sulated into a Pdu object, which models the MAC Proto-
col Data Unit (PDU) and contains the MAC header (Mac-
Header). Among the other fields, the MAC header contains
the IEEE 802.16 mesh sub-header, which includes the pri-
ority and drop precedence of the packet. These fields are
set according to the MAC Management Information Base
(MIB) object (MacMib), which is shared among all the nodes
in the network. In reality, the MAC MIB is configured by
the network operator and installed on nodes using the Sim-
ple Network Management Protocol (SNMP). The MacMib
can be configured by the user so that all the packets with a
given ns-2 traffic flow identifier are assigned a given priority
and drop precedence.

In addition to the data packets, there are three MAC con-
trol messages implemented: MSH-DSCH, MSH-NCFG, and
MSH-NENT, described in Section 2. Both data and control
messages are encapsulated into a physical layer transmission
unit, called Burst, which is passed to the physical layer for
over-the-air delivery to the peer MAC object(s). A Burst
can contain only a single control message, while multiple
MAC PDUs can be added, in accordance with the standard.

3.2 MAC
In this section we describe the MAC sub-modules.

3.2.1 Coordinator
The Coordinator is the module that executes the distributed

election procedure. For this reason, two instances of this
module exist: one for distributed scheduling and another
for network configuration. These instances are passed from
the physical layer the respective messages handled. When
a MSH-DSCH or MSH-NCFG message is created, encap-
sulated into a Burst, and passed to the physical layer, the
control slot for sending the subsequent one is decided. With
MSH-DSCH only, the Coordinator queries the bandwidth
manager BwManager object to obtain the request, grant,
confirmation, and availability IEs to insert into the outgo-
ing MSH-DSCH.

3.2.2 BwManager
The BwManager is the core component of the MAC pro-

tocol, since it runs the algorithm for bandwidth schedul-
ing. The bandwidth manager included in WiMsh is FEBA,
which has been shown to provide fairness and service dif-
ferentiation in varied network and traffic configurations[10].
FEBA has several configuration parameters that can be used
to tune its behavior, e.g., to relax (or disable) fairness provi-
sioning. In FEBA a traffic flow is uniquely identified by the
triple 〈s, d, p〉, where s is the source node, d is the destina-
tion node, and p is the priority. Unlike its PMP counterpart,
the IEEE 802.16 mesh MAC is connection-less, i.e. it does
not specify a procedure to establish a traffic flow between
two nodes. Therefore, we created a dedicated module, called
WeightManager, to keep track of all the traffic flows travers-
ing a node. Traffic flows are implicitly torn down when no
more packets with matching triple are received for a timeout
period. This module also keeps updated the numeric weight
of traffic flows, based on a configurable priority value. For
instance, if three flows are traversing a node, and their pri-
ority values are 1, 1, and 2, then the first two flows will have
weight 1/(1+1+2) = 1/4 and the last one 2/(1+1+2) = 1/2.

To enforce collision-free scheduling, the BwManager must

avoid granting or confirming slots that have been already
reserved or indicated as unavailable by other nodes. To
this aim, it keeps an up-to-date timetable of the grants as-
signed in the subsequent slots, based on the MSH-DSCH
that it is passed by the Phy. In WiMsh we defined a data
structure called neigh tx unavl, hereafter NTU for brevity:
NTU ∈ {0, 1}N×C×F×S , where N is the number of the
node’s neighbors, C is the number of channels, F is the
maximum scheduling horizon, and S is the number of data
slots per frame. The element NTU(n, c, f, s) thus contains
1 only if the n-th neighbor cannot be granted or confirmed
slots, in channel c, in the s-th slot of frame f (modulo F ).
NTU is implemented as a multi-dimensional vector of bit-
sets to enable fast random access. This data structure is
accessed: at the beginning of every frame to eliminate the
data of the past frame, which are not needed anymore; ev-
ery time a MSH-DSCH message is received from a neighbor;
during bandwidth scheduling to determine which slots can
be granted, confirmed, or indicated as unavailable. Many
utility functions are provided in the source code to perform
such operations efficiently.

3.2.3 Scheduler
When a grant has been confirmed by the requester node,

the slots in the range can be actually used for data trans-
mission, expect the first OFDM symbol that is needed to
transmit a short preamble. The module that selects the
MAC PDUs to transmit is the Scheduler. Two schedulers
are shipped with WiMsh: a simple first-in-first-out (FIFO)
scheduler, which keeps the MAC PDUs into per-next-hop
buffers and schedules them in the order of arrival; a Deficit
Round Robin (DRR) [15] scheduler that stores data into
per-traffic flow buffers. With DRR any traffic flow receives
an amount of service that is proportional to its weight, as in-
dicated by the WeightManager. With both FIFO and DRR,
if the last Pdu served does not fit into the remaining space
in the grant, it is fragmented: part of it is transmitted in
the outgoing Burst, while the remaining bytes are kept into
a FragmentationBuffer. The left over bytes will be trans-
mitted to the neighbor in the subsequent grant. Fragmen-
tation incurs the overhead of duplicating the MAC header,
with the addition of a 1-byte fragmentation sub-header, for
all fragments, but allows a more efficient usage of the ne-
gotiated slots, especially with large IP packets. The MAC
PDUs received from the physical layer are passed through
a ReassemblyBuffer, which returns a MAC SDU only when
all its fragments have been correctly received. Due to chan-
nel errors, it is possible that only some of the fragments are
received, in which case the SDU is lost.

3.3 Physical Layer
As already mentioned, in typical applications, the back-

bone of a WMN consists of fixed wireless routers. Therefore,
links are established or torn down on a larger time scale than
that of bandwidth scheduling and packet transmission. In
WiMsh, we call network topology the logical view of the
neighborhood relations between nodes. The network topol-
ogy is configured by the user and it is stored as a directed
graph into the Topology object, shared by all nodes, where
the vertices represent nodes, and the edges links. The Topol-
ogy is queried by the MAC and physical layer modules to
determine which nodes belong to the first- and second-hop
neighborhoods of any node, when needed. Another function
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Figure 3: Protocol model example.

carried out by the Topology object is selecting the next-hop
of packets, based on a path selection criterion defined in a
class called Forwarding. Currently, paths are determined
based on the shortest distance, in number of hops, between
the source and destination node, where ties are broken ran-
domly.

All the Burst objects created at the MAC, are passed to
the physical layer (Phy) object, which models the nodes’ ra-
dio transceiver. Data are then passed to one of the Channel
objects, depending on which one was selected for transmis-
sion by the MAC. For each Burst received the Channel adds
a propagation latency and then passes the Burst to the re-
cipient Phy object. Control messages are broadcast, so they
are passed to every node in the transmitting node’s neigh-
borhood. With both data and control messages, the Burst is
not duplicated in memory for efficiency reasons, and it is de-
stroyed by the Channel itself after dispatch. Therefore, the
Phy module cannot modify the Burst content. The physical
layer configuration is kept into the PhyMib object, which is
shared among all nodes.

With regard to the wireless channel model, in the cur-
rent version of the simulator we assume that simultaneous
transmissions in the same slots are allowed only if the trans-
mitting nodes lie at least two hops away from the receiver,
which is known as “protocol model” assumption [13]. Specif-
ically, a node is not considered to be able to decode trans-
missions from a neighbor node if either (i) the receiving node
is transmitting on the same slot, or (ii) another neighbor of
the receiving node is transmitting on the same slot. An ex-
ample is illustrated in Fig. 3, where the transmission from
node A to node C is assumed to be successful only if nodes
B, C, and D remain silent, while transmissions from nodes E
and F are allowed. In practice, there are several aspects of
the wireless channel that cannot be captured by this model,
such as transient phenomena (e.g. fast fading) and the cu-
mulative effects due to the total number of simultaneous
transmissions in the network. Nonetheless, we argue that
the current assumptions of WiMsh are reasonable enough
to carry out simulation studies that focus on the properties
of the MAC layer and above. This statement is supported by
the discussion in [5], where the authors prove that interfer-
ence coming from second-hop neighbors can be considered to
be negligible, at least in the environments with fixed nodes
using a Time Division Multiple Access (TDMA) MAC pro-
tocol.

Optionally, a simple stochastic model can be used to en-
able imperfect data transmission. Specifically, a MAC PDU
is marked as erroneous based on the value drawn from a
uniform random variable. Different error rates can be set
by the user for data and control, respectively. Furthermore,
only for control messages, a channel error model inspired by
[16] can be used. The model is based on a two-state discrete

Markov chain, where the two states, namely good and bad,
indicate whether the control message is successful received or
not, respectively. With this model, transmissions are suc-
cessful (unsuccessful) for a number of consecutive control
slots drawn from a geometric distribution with average γ
(β), hence the error rate is e = β/(γ + β). State transitions
of different links are not correlated to each other.

More accurate channel error models, e.g. taking into ac-
count the Signal-to-Interference-plus-Noise Ratio (SINR) ex-
perienced by the receiver, can be implemented by extending
the Phy and Channel classes, while alternative path selection
or forwarding functions can be implemented in more spe-
cialized versions of the Forwarding class. We note that the
propagation models included in the ns-2 simulator, which
are mostly intended for modeling networks of IEEE 802.11
devices, cannot be used without modifications with WiMsh,
because they are designed to work with ns-2 packets, not
Bursts. As already introduced in Section 3.1, this data struc-
ture is of paramount importance for modeling correctly the
IEEE 802.16 MAC features of packing/fragmentation, which
are not available for legacy ns-2 packets.

4. SIMULATOR CONFIGURATION
When performing network simulations, there are two main

tasks that require a significant amount of effort: configuring
the simulation scenario, and collecting/analyzing the output
data.

The simulation scenario configuration problem, in turn,
has two main causes. First, ns-2 requires the scenario to
be written in the Tool Command Language (Tcl), which is
an open source programming language born in 1990. Tcl is
mostly used to produce dynamic HTML pages and in com-
bination with the Tk toolkit to design graphical user inter-
faces. Knowledge of Tcl is not widespread today, because it
has been supplanted by new programming languages specifi-
cally designed for such uses, like Java or Python. Therefore,
it is very likely that the average ns-2 user is required to
acquire at least some basic knowledge of Tcl before being
even able to understand or modify the simple examples that
can be found in tutorials and mailing lists. Second, ns-2
has been developed within and for the research community.
Therefore, almost no effort has been committed on hiding
the ns-2 internals or simplifying the scenario definition. The
result is that one needs to learn the implementation details
of the ns-2 core modules (queues, classifiers, timers, agents,
. . . ) to produce a working scenario. This task is further
complicated by the fact that: (i) the documentation is sparse
and often obsolete; and, (ii) there are few or no consistency
checks on the scenario definition, hence it is very difficult to
spot errors without solid experience.

The second issue is that ns-2 offers very limited support
to data collection and analysis. The most common way to
analyze the output data is parsing the packet file traces,
which are text files where each line reports the passing of
one packet through some module. While some tools exist to
carry out this process in an automatic manner, e.g. Trace-
graph10, this operation is not impractical for large simula-
tion campaigns, due to the computational space and time
overhead. To solve this problem in ns-2, one can use the
ns2measure module [12], which collects performance mea-
sures during the simulation and saves them into binary files.

10http://www.tracegraph.com/
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Parameter Definition

run replication identifier, use different values
to obtain independent replications

duration simulation duration, in seconds, including
warm-up

warm warm-up duration, in seconds
out name of the output file containing mea-

sures
debug name of the input file containing the func-

tions to trace, leave blank to disable
startdebug time when to start tracing functions

Table 3: Environment configuration.

These files can be post-processed using a set of publicly avail-
able tools 11 to produce both human-readable reports and
ready-to-plot ASCII files. The module also computes the t-
Student confidence intervals of the measures obtained from
independent replications, which are useful for estimating the
statistical confidence of the results. In WiMsh we used ex-
tensively the capabilities of ns2measure, which is included in
the WiMsh’s patch to ns-2. Several performance measures
have been defined at application, MAC and physical layers,
with different granularity: per packet, per traffic flow, per
node, and network wide. The full list of the metrics, along
with their brief description, is included in the WiMsh’s web-
site 12.

With regard to the scenario definition problem, we solved
it by defining a specialized configuration file for IEEE 802.16
WMNs. This configuration file is parsed through a set of Tcl
functions, which create the network and the traffic flows.
This way, the user can run a wide variety of scenarios with
zero knowledge of both Tcl and the ns-2 internals, by writ-
ing her own configuration file, as described in the following.
The experienced user is still given the opportunity to change
arbitrarily the scenario configuration, by modifying the Tcl
source code13 for parsing the configuration file.

The configuration file consists of lines of two types:
set opt(par) value

or
set opt(arr) { v1 v2 ... vN }

Statements of the first form are for defining scalar param-
eters (opt in the example), while those of the second form
are for arrays (arr in the example). An alternative way of
specifying the value of a parameter, either scalar or array,
is to use command-line options. If the configuration file is
called test.tcl and the ns-2 executable is in the default path,
then the parameters above can also be specified by running:

ns test.tcl -par value -arr “v1 v2 ... vN”
The comprehensive list of the simulation parameters can

be found in Table 3, while Table 4 contains the MAC layer
parameters14. When a parameter is left unspecified, a de-
fault value is taken, which is often the correct choice. In the
following we describe in detail how to set up the network
topology and traffic configuration.

11http://cng1.iet.unipi.it/wiki/index.php/Ns2measure
12http://cng1.iet.unipi.it/wiki/
index.php/Ns2mesh80216 Metrics description

13The Tcl files can be found in the wimax/tcl/ directory, and
are: header.msh, traffic.msh, and metrics.msh

14Many parameters at the MAC layer are FEBA-specific.
The interested reader can find a detailed description of
FEBA in [9, 10]

Parameter Definition

prio-weight array of weights, one entry for each pri-
ority level

availabilities advertise availability IEs in MSH-
DSCH messages, when on

regrant enable “re-granting”, when on

request-
fairness

be fair while requesting, when on

grant-fairness be fair while granting, when on

regrant-
fairness

be fair while “re-granting”, when on

bwm-round-
duration

bandwidth manager round duration
FRR, in bytes

weight-timeout timeout to consider a flow inactive, in
seconds

max-deficit maximum deficit allowed per traffic
flow, in bytes, 0 means infinite

max-backlog backlog to consider a traffic flow un-
satisfied, in bytes, 0 means infinite

weight-flow enable traffic flow weighting, when on

grant-rnd-
channel

select randomly the channel when
granting slots, when on

dd-timeout timeout to determine deadlock situa-
tions, in MSH-DSCH opportunities

min-grant minimum size of a grant, in slots
hest-past smoothing factor α to estimate the

MSH-DSCH interval
hest-curr 1 − α

scheduler one of DRR (fair-rr), FIFO (fifo)
buffer buffer size, in bytes
sch-round-
duration

target DRR round duration FDRR, in
bytes

buffer-sharing one of per-flow and per-node, only
available with DRR

Table 4: MAC configuration.

The network topology can be selected among the set of
pre-configured topologies illustrated in Fig. 4. These topolo-
gies are commonly employed in the performance evaluation
of WMNs. Most of them are defined only in terms of a single
parameter, called n, which has different meaning depending
on the topology type. For instance, in a chain topology n is
the number of nodes in the network, whereas in a grid it is
the number of nodes per edge. Two topologies only, i.e. mul-
tiring and star, need another parameter, called branches, to
be characterized. The meaning of n of branches for the
different topologies can be inferred straightforwardly from
Fig. 4. The full list of the physical layer parameters is re-
ported in Table 5.

In addition to the topology, the MCSs employed for trans-
mission in all the uni-directional links have to be selected.
In the configuration file, the MCSs are identified via their
index in Table 2. For each link, a new entry has to be added
to three arrays, i.e. prfsrc, prfdst, and prfndx, to specify the
source node, the destination node, and the MCS index, re-
spectively. A default value is specified in prfall for all links
that are not enumerated. For instance, the network in Fig. 5
can be specified by adding the following lines to the config-
uration file:

set opt(prfall) 0
set opt(prfsrc) { 0 1 2 }
set opt(prfdst) { 1 0 1 }
set opt(prfndx) { 2 1 4 }

We conclude with traffic flow set-up, which is similar to
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Figure 4: Pre-configured WiMsh topologies:(a) chain, n = 5; (b) ring, n = 9; (c) multiring, n = 9, branches = 4;
(d) clique, n = 9; (e) grid, n = 4; (f) triangular, n = 3; (g) bintree, n = 4; (h) star, n = 3, branches = 5.

default = QPSK−1/2

16−QAM−1/2

QPSK−3/4

64−QAM−2/3

0 1 2 3

Figure 5: Example chain topology with four nodes.

the configuration of the links’ MCSs. A traffic flow is char-
acterized by seven values: the sender node, the destination
node, the traffic type, the application start time, the ap-
plication stop time, the number of aggregated sources per

traffic flow, and the priority level. For each traffic flow,
one entry has to be added to all seven arrays, called trf-
src, trfdst, trftype, trfstart, trfstop, trfnsrc, trfprio, respec-
tively. A default value exists for all parameters, except the
source and destination nodes. Five types of applications are
pre-configured: Voice over IP (voip)15, Constant Bit-Rate
(cbr), Video on Demand (vod), super-imposition of four in-
dependent Poisson processes [4] (bwa), and uninterrupted
source (ftp). All the applications use User Datagram Proto-
col (UDP) agents, except FTP that uses Transport Control
Protocol (TCP). For instance, with the following lines:

set opt(trfsrc) { 0 3 2 }
set opt(trfdst) { 3 0 3 }
set opt(trftype) { voip voip cbr }

15VoIP traffic is managed by the ns2voip mod-
ule, also available as a stand-alone ns-2 add-on at
http://cng1.iet.unipi.it/wiki/index.php/Ns2voip.
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Parameter Definition

topology see Fig. 4
n see Fig. 4
branches see Fig. 4

channel number of channels
propagation physical propagation latency, in µs

bandwidth channel bandwidth, in MHz (see Ta-
ble 1)

cyclic-prefix one of 1/4, 1/8, 1/16, 1/32
sym-duration OFDM symbol duration, in µs, ig-

nored if bandwidth is specified
sym-perframe number of OFDM symbols per frame,

ignored if bandwidth is specified

control number of control slots per frame, be-
tween 2 and 16

cfg-interval interval between consecutive control
frames used for network configuration,
in frames

holdoff-dsch-
def

default XmtHoldoffExponent used for
MSH-DSCH messages

holdoff-dsch array of XmtHoldoffExponent values,
one per node, used for MSH-DSCH
messages

holdoff-ncfg-
def

default XmtHoldoffExponent used for
MSH-NCFG messages

holdoff-ncfg array of XmtHoldoffExponent values,
one per node, used for MSH-NCFG
messages

max-advertised maximum number of neighbors ad-
vertised in MSH-DSCH messages, -1
means infinite

chan-data-per uniform MAC PDU error probability
(data)

chan-ctrl-per uniform MAC PDU error probability
(control)

msh-dsch-avg-
bad

number of consecutive corrupted MSH-
DSCH messages, on the average

msh-dsch-avg-
good

number of consecutive uncorrupted
MSH-DSCH messages, on the average

Table 5: Physical layer configuration.

set opt(trfprio) { 1 1 0 }
set opt(trfstart-def) 2.0
set opt(trfstop-def) 10.0
set opt(trfnsrc-def) 1

a bi-directional VoIP conversation is established between
node 0 and node 3, with higher priority than the uni-directional
CBR traffic flow from node 2 to node 3. All the traffic flows
start at time 2 s and stop at time 10 s, and carry data from a
single application. The traffic configuration parameters are
summarized in Table 6.

4.1 Educational Use
Network simulators often play an important role as edu-

cational tools in under-graduate courses. In fact, with the
help of a network simulator, the student can experiment in
a controlled software environment the network applications
and protocols studied. Carrying out the same trials with
real equipment is much more time-consuming, for both stu-
dents and teachers. Also, the set-up cost of a simulation
laboratory is virtually zero, provided that a free-of-charge
simulation tool is employed, because any general-purpose
computer room can be used for this purpose.

However, we argue that some features of the simulation
tool are required to actually stimulate the student’s creative

Parameter Definition

voip-model Voice Activity Detection (VAD)
model, one of one-to-one, one-to-
many, many-to-one, many-to-many

voip-codec VoIP codec, e.g. GSM.AMR, see [3]
voip-aggr number of speech samples per VoIP

frame

bwa-rate rate of bwa traffic specified by [4], in
b/s

bwa-pkt packet size of bwa traffic specified by
[4], in bytes

cbr-rate rate of CBR traffic, in b/s
cbr-pkt packet size of CBR traffic, in bytes
cbr-rnd set to 0 to have perfect CBR genera-

tion

vod-trace ns-2 trace file of an encoded VoD
stream

ftp-wnd maximum TCP window for FTP traffic
ftp-pkt TCP segment size for FTP traffic

Table 6: Traffic configuration.

and learning side. First, the tool must be easy to use without
special training. Unfortunately, many open source simula-
tors are not user-friendly. For instance, spending serious
time learning a new scripting language, like Tcl for ns-2,
might be reasonable if you are a graduate student or a re-
search associate, planning to use the tool in the next years
for your research. However, this is an obstacle if the ob-
jective is to to run a small set of toy experiments, e.g. as
part of a project for an undergraduate course. Second, the
simulator should allow the user to run narrow-scope simula-
tions. Given the limited time (and, sometimes, inclination),
students might not be keen on reading the whole documen-
tation of the simulator for tuning accurately all the network
and system parameters required for an experiment. It is
likely that they would end up using the wrong, possibly in-
consistent, set of inputs, possibly hiding the most interesting
phenomena. Sometimes, they do not even have the techni-
cal background required to configure everything correctly.
Finally, the simulation results should be ready for analysis.
If the simulator itself does not have tools for visualizing the
output data, e.g. by means of tables or plots, the students
might find it difficult to walk through the raw data produced
by the simulations, which might easily overwhelm them.

We have used ns-2 as an educational tool in the course of
Advanced Networking Architectures and Wireless Systems,
at the Faculty of Engineering of the University of Pisa, since
2003. Based on our experience, we claim that WiMsh com-
plies with all the requirements discussed above. In fact, its
configuration file totally hides the complexity of writing the
scenario configuration in Tcl, and provides a straightforward
way of experimenting with pre-configured sets of traffic types
and network topologies. At the same time, data can be vi-
sualized as 2-d plots using the ns2measure module. Finally,
as both ns-2 and WiMsh are distributed under GPL, and
they run under most operating systems, WiMsh can be used
without limitations both at school and at home.

5. CONCLUSIONS
In this paper we have described the WiMsh module, which

can be used to simulate multi-channel WMNs using IEEE
802.16 mesh with distributed scheduling in ns-2. The simu-
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lator has been made publicly available under GPL in Octo-
ber 2007, and has been downloaded 2000+ times since then.
The core functions at the MAC layer are the following. First,
the Coordinator implements the distributed election proce-
dure, which is used to access in a collision-free manner the
slots in the control sub-frame. Second, the BwManager is
used to negotiate access to the slots in the data sub-frame in
a distributed manner. This is done via the FEBA algorithm,
which provides traffic flows with weighted fair access to the
network resources. Finally, packet scheduling is done by the
Scheduler, which implements FIFO and DRR algorithms.

A specific design goal of WiMsh is to provide the user
with a simple, yet powerful, interface for configuring the
simulation scenario. This is achieved by means of a con-
figuration file that does not require the user to understand
the ns-2 internals or to learn the Tcl scripting language,
as expected to run simulations in “plain” ns-2. Therefore,
the novice users can experiment with WiMsh without the
need of special training or broad simulation and network-
ing background, thus focusing on the specific aspects of the
IEEE 802.16 mesh simulations they are running. This makes
WiMsh suitable for use as an educational tool in networking
courses.
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APPENDIX

A. CHANGES TO NS-2
The WiMsh module is provided as a patch to either ns-

2.31 or ns-2.33. The patch includes also other modules,
which have been developed by the Computer Networking
Group of the University of Pisa16. The installation instruc-
tions can be found on WiMsh’s website17. After applying
the patch, ns-2 is modified as follows.

A new directoy is created, called wimax in the root ns-
2.3x directory. The C++ files are included in the directories
wimax/mesh and wimax/common, while the Tcl library files
are in wimax/tcl. The latter also contains an example, called
mesh.tcl, which can be executed to verify that the simulator
has been patched correctly. This example file is well com-
mented and can be used as the starting point for configuring
the planned simulations. Note that, since the Makefile.in file
is modified, so as to include the new C++ object files in the
compilation and linking phases, it is necessary to re-run the
configure script, already provided in the original ns-2 dis-
tribution. If object files have been already compiled before
patching, they must be removed before compilation to en-
sure consistency, which can be done with the command make
clean.

In addition to Makefile.in, the only files of the original
ns-2 distribution that have ben modified are those for con-
necting the Link Layer to the IEEE 802.16 MAC objects, as
illustrated in Fig. 2, that is: mac/ll.h, mac/ll.cc, tcl/lib/ns-
lib.tcl, and tcl/lib/ns-mobilenode.tcl.

16http://cng1.iet.unipi.it/wiki/index.php/Software
17http://cng1.iet.unipi.it/wiki/index.php/Ns2mesh80216
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