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ABSTRACT

Nonlinear programming problems (NLP) solvers require some
level of flexibility. This flexibility must be supported on the
method choice, on the parameters specification and on the
problem modelling.

Few of the tools currently available can address this level
of flexibility. This paper presents an open-source, complete
and easy tool, named NLPToolbox, to achieve this purpose.

Given its open-source characteritics, it offers the oppor-
tunity to study nonlinear programming in an iterative way:
by showing how the methods works and allowing all kinds
of specifications: methods and parameters.

Altough being a work continually in progress, it is already
usable. It is currently used in teaching nonlinear program-
ming and solving some kinds of NLP problems, like cluster-
ing and Support Vector Machine classification. Its future lies
on the optimization of the tool itself, improving the precision
of the numeric algorithms and integrating new methods.

Categories and Subject Descriptors

G.1.6  NUMERICAL ANALYSIS]: Optimization— Con-
strained optimization, Convex programming, Global optimiza-

tion, Gradient methods, Nonlinear programming, Unconstrained

optimization

General Terms

Optimization, Open-Source, Unconstrained Optimization:
Quasi-Newton Methods, Conjugate Gradient, Constrained
Optimization: Penalty Methods

1. INTRODUCTION

Many scientific challenges depend on solving nonlinear
programming problems (NLP). Despite many tools (open-
source, free or commercial) being available, usually they are
designed as a "black-box”, making it very hard to make pa-
rameter tunnings, test new approaches, create and validate
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new derived methods.

It is even harder to "connect” the solution of a NLP to
another solution or data structure from another scientific
problem. This lack of ”"connection”, just like the problems
listed above, could be solved using Software Engineering.
The most common approaches to solve them are throught
the creation of frameworks and components[9].

After searching for similar tools, libraries or components
for NLP, a few were found. The ones found suffer from the
problems listed, are incomplete, not open source or not well
structured to be readily usable by third parties.

So, the NLPToolbox (Nonlinear Programming Toolbox)
attempts to address all these concerns, being at the same
time a tool for solving NLP and a component that can be
embedded in others softwares. It can solve all kinds of NLP,
constrained or not, using Newton, Quasi-Newton and Con-
jugate Gradient Methods. This tool is open-source (GPL),
so anyone has full access to the source code. The GPL (GNU
General Public Licence) warrants that any future changes
must still be open-source.

It intends to be the most flexible one, so that it can be used
as a component to other softwares (commercial or not) or sci-
entific experiments, with well-defined interfaces. Moreover,
it has also a graphic interface (GUI) so that NLP problems
can be solved in a confortable way.

Beyond being a component and a tool, it intends to help
the learning of nonlinear optimization. By the open-source,
readable source code, the most common optimization meth-
ods can be learned by seeing how they are implemented,
used and can still be changed. It is possible to show the
iteration sequence step by step.

It is available, together with all source code, documenta-

tion and tests, at http://www.cos.ufrj.br/"lages/nlptoolbox/.

2. ARCHITECTURE

The tool itself is a component for solving NLP. Its archi-
tecture aims at the following objetives:

e Platform Independence - The NLPToolbox must
be platform independent, allowing its use in any oper-
ating system or processor (Intel, Sparc, etc.);

e Component-Based - The NLPToolbox must be component-

based, so that it can be easily used by other programs
or components;

e Complete - The NLPToolbox must be complete, im-
plementing most common nonlinear optimization meth-
ods: Newton, Quasi-Newton and Conjugate Gradient;



3.

Fast Problem Implementation - Usually, after prob-
lem design, too much time is lost in implementatiion
of the solution into the tools, libraries, calculations
(the Hessian, for instance), parameters tunning, test-
ing, etc. In many instances, it takes more time than
running the large-scale problem itself. One of the ob-
jetives of the NLPToolbox is to focus on the problem
modelling, instead of implementation issues;

Numeric Precision Flexibility - Most of optimiza-
tion problems suffer from lack of numeric precision.
There are many ways to deal with this problem, usu-
ally, dependant on its characteristics. The NLPTool-
box must address this issue somehow;

Graphic User Interface (GUI) - The NLPToolbox
must have a GUI for solving problems easily. Current
tools and libraries do need that code must be created
to compute functions, gradients and Hessians, which
can lead to many errors;

Parallelism - Most of current tools and libraries are
not parallel. As problems become bigger and parallel
computers are becoming more common (for instance
dual or quad-core computers), they should be solved
concurrently.

FEATURES

The NLPToolbox implemented the architecture listed above,

throught the following implementation:

Platform Independence - The NLPToolbox was cre-
ated using the Java language, that supports the ma-
jority of currents operating systems and processors,
without the need of a separate program for each plat-
form;

Component-Based - The tool itself is a component,
with well-defined interfaces.

Complete - The following line-search methods are im-
plemented:

— Armijo [19];

— Newton-Raphson [19];

— Wolfe [19];

— Secant [19].

The following unconstrained nonlinear otimization meth-

ods:
— Newton [19];
— Conjugate Gradient: Hestenes-Stiefel [15];
— Conjugate Gradient: Polak-Ribiere [20][21];
— Conjugate Gradient: Daniel [6];
— Conjugate Gradient: Fletcher-Reeves [12];
— Conjugate Gradient: Conjugate Descendent [11];

— Conjugate Gradient: Liu-Storey [22];

— Conjugate Gradient: Dai-Yuan [5];

— Conjugate Gradient: Hager-Zhang [14];

— Quasi-Newton: BFGS [10][13][24];

— Quasi-Newton: DFP [8];
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— Quasi-Newton: Broyden [7].

The following constrained nonlinear otimization meth-
ods:

— Penalty Method: inverse function penalty [19];
— Penalty Method: logarithmic function penalty [19].

e Fast Problem Implementation - The problem spec-

ification can be entered in natural form on the GUIL
The NLPToolbox automatically calculates the exact
values of the objective function, the gradient and the
Hessian, by using automatic differentiation procedures.
This feature minimizes commons errors, as seen on fig-
ure 1.

Function | Methad | Line Search | Restrickion
flx) = (%172 + x2"2

Gradient: [[2.0]x1,[2.0]x2,]
([2.0],[0.0],[0.0],(2.00.]

Hessian:

Figure 1: Method for inputting the function.

e Numeric Precision Flexibility - Instead of using

just floating-point operations, the NLPToolbox sup-
ports five different numeric types, as seen on figure 2:

— Complex - Complex Numbers;

— Float64 - Standard floating-point. But, some
routines were created to minimize numeric pre-
cision errors;

— FloatingPoint - Precision-garanteed floating-point.

— Rational - Rational numbers

— Real - An different approach of precision-garanteed
floating-point.

Function | Methad | Line Search || Restric

Mumeric Type: | Complex w

Figure 2: Configuring the numeric precision.

e Graphical User Interface (GUI) - The GUI offers

the possibility of entering all the problem specification
and configuring most of the parameters used in the
methods, as seen on figure 3



Function | Methad | Line Search || Restrictions | Ir

N

Mazx. Ikerations: |10

Precision: 0.00001

Alpha: 0.9

Figure 3: Selecting the minimization method and
parameters.

e Parallelism - the NLPToolbox is naturally paralleliz-
able. All matrix and vector operations are automati-
cally parallelized for large problem instances. The de-
fault is, for instance, to parallelize a multiplication of
a dense matrix with more than 32 columns.’

4. PERFORMANCE

There is a belief that Java programs are slower than ones
programmed in C or Fortran. The reason for this belief is
that a Java program is interpreted and not executed na-
tively, which is a wrong assumption. Modern JVMs (Java
Virtual Machines) translate the program, at execution time,
into the native architecture, and then, runs it. Many others
language optimization techniques have been (and it is still
being) incorporated into Java. The resulting performance
gains make most Java programs runs as fast as equivalent
counterparts written in C, Fortran or other natively com-
piled languages. In some instances, the Java program runs
faster that its native counterpart. For a study comparing
Java performance for numeric processing, see [4].

5. EXAMPLE

The NLPToolbox can be used in a very easy way, in-
putting the objective function and the parameters in the
GUI. An alternative approach in shown below, supported
by the NLPToolbox component. This procedure can be em-
bedded into other software.

This example will show how to minimize the "banana func-
tion” (Rosenbrock|[17]):

fl@r,2) = (1= 21)® + 100(z2 — 1)

A class must be created to hold this function:

ExpressionFunction ef =
new ExpressionFunction(
"(1-x1) "2+100% (x2-x1) "2") ;
ef .setNumberfactory(new RationalNumberFactory());

!Some of the linear algebra routines were provided by the
JScience[2] library (version 4.3). The expression parser was
based on JEPLite[1], heavily adapted to the NLPToolbox.
Both of the library sources codes are bundled with the source
tree of the tool.
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A NumberFactory is needed to choose the proper numeric
precision. To use another function, just change the appro-
priate string in the code above. The component will identify
automatically new variables z1, xa, ..., ©n . Neither the gra-
dient of the function nor its Hessian has to be entered.

Using the initial point [32, 1]%:

Rational ixl = Rational.valueOf(-3, 2)
Rational ix2 = Rational.valueOf(1, 1);

Vector<Rational> iv =
DenseVector.valueOf (ix1,ix2);

Now, create the minimization method class, with the
initial point listed above, 10 iterations at most, using the

quadratic norm, using an alpha of % parameter for the

1

Newton method) and with a precision of 1555:

Newton<Rational> n = new Newton<Rational>();
n.setInitialPoint (iv);
n.setMaxiterations(10);

n.setNorm(new QuadraticNorm<Rational>());
n.setParameters(Rational.value0f (9,10));
n.setPrecision(Rational.valueOf (1, 1000));

To run the minimization:

System.out.println(

"min: " + n.minimize(ef).toString());
System.out.println(

"iterations: " + n.getIterationscount());
System.out.println(

"error: " + n.getErr());

Here is the full code set for the example:

import br.ufrj.cos.nlptoolbox.functions.
ExpressionFunction;

import br.ufrj.cos.nlptoolbox.methods.Newton;

import br.ufrj.cos.nlptoolbox.numberfactories.
RationalNumberFactory;

import org.jscience.mathematics.number.Rational;

import org.jscience.mathematics.vector.DenseVector;

import org.jscience.mathematics.vector.Vector;

/*x
*
* Q@author Diego
*/

public class MainNewton {

/%%
* Q@param args the command line arguments
*/

public static void main(String[] args) {

ExpressionFunction ef =
new ExpressionFunction(
"(1-x1) "2+100%* (x2-x1)"2") ;

The n must be identified: infinite functions or undefined
variable length problems are not supported

3The Vector class type can represent a vector or point in
space. It is a collection of numbers.



ef . setNumberfactory(new RationalNumberFactory()); e LAPACK Integration - NLPToolbox can be eas-

Rational ix1 = Rational.valueOf(-2, 1);
Rational ix2 = Rational.valueOf(1, 1);

Vector<Rational> iv =
DenseVector.valueOf (ix1,ix2);

Newton<Rational> n = new Newton<Rational>();

n.setInitialPoint (iv);
.setMaxinterations(10);

.setNorm(new QuadraticNorm<Rational>());
.setParameters(Rational.value0f (9,10));
.setPrecision(Rational.valueOf (1, 1000));

BB BB

System.out.println(

"minimizag&o: " + n.minimize(ef).toString());

System.out.println(

"iteragdes: " + n.getIterationscount());
System.out.println(

"erro: " + n.getErr());

}
6. VERIFICATION AND VALIDATION

In order to check whether it implements correctly the al-
gorithms proposed, automated tests were created. These
tests were implemented using JUnit[3], and focused on the
three main aspects of the tool:

e Line Search - Some simple functions were used to
check if different line search methods worked perfectly;

e Minimization Algorithm - Tests were made to check
if the algorithms were correctly implemented. Some of
the functions proposed in [17] plus some simple func-
tions were used;

e Numeric precision - Tests were made to check if dif-
ferent numeric precisions leads to the same aproximate
results.

Many minimization methods did converge and some meth-
ods did not get close enough to the global optimum, with the
default initial point and parameters. The numeric precision
did also some influence on the convergence to the results,
depending on the method. A summary of these results, us-
ing some of the functions from its automated tests, can be
seen on the appendix, on tables 1, 2 and 3.

7. CONCLUSION

NLPToolbox is an evolving optimization tool, based on a
modular design that allows for easy implementation of new
features. Currently, it has the following limitations:

e Large-Scale problems support - It is necessary to
implemente some features in order to solve really large
problems. Some of these can be found on [18], [16] and
23];

e Floating-Point Processing - It is possible to im-
prove the floating-point precision routines using ones
usually available in numerical libraries, such as Harwell
library;

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5649
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5649

ily integrated with the LAPACK library for numeric
processing. However, some of these routines are not
parallel;

e Constrained Optimization - The constrained op-
timization methods available are still limited. Other
methods are being implemented;

e Other unconstrained minimization methods -
Other methods of unconstrained optimization will be
implemented;

e Expression parse optimization - The symbolic func-
tion parser can be optimized for native evaluation.
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APPENDIX
A. NLPTOOLBOX RUNNING TIMES

In the following tables are listed the running times for
some of the automated tests functions. All the tests were
performed in a Intel Pentium IV 2.16 Ghz, with 2 Gb of
RAM, running Windows XP and Java 1.6.0_11b03. In the
Newton method, an « step is set to 0.9, by default. Notice
that, in the tests, the function parser is used, having some
effect on the overall performance.

The Freudenstein and Roth[17] function is defined by:

f(@,y) = (—13+2+((5—y)y—2)y) +(—29+a+((y+1)y—14)y)>

The "Big Rosenbrock” function is the Rosenbrock[17] func-
tion with 20 variables:

19

Fl@) =11 — @) +100(zi1 — 7))

i=1

The maximum number of line search iterations was 20,
the maximum number of iterations was 10000 and the initial
points were:

o af +a3 - (~2,1);

e Rosenbrock - (—2,1);

e Freudenstein and Roth - (0.5, —2);
e Big Rosenbrock - (—2,1,...,1).

“More than 5 minutes.
5NaN.
SMinimum with the required precision not found.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5649
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5649

Iterations  Seconds
:Ef + :cé
Complex 5 0.047
Float64 5 0
FloatingPoint 5 0
Rational 5 0.046
Real 5 0.016
Rosenbrock
Complex 5 0.047
Float64 5 0
FloatingPoint 5 0
Rational *4 *4
Real 5 0.016
Freudenstein and Roth
Complex 6 0.047
Float64 6 0
FloatingPoint 6 0.015
Rational *4 x4
Real 6 0.016
Big Rosenbrock
Complex 5 0.125
Float64 5 0.031
FloatingPoint *4 x4
Rational 109.343
Real *5 *5

Table 1: Sample results using the Newton method.

Iterations Seconds
o:? + x%
Complex 6 0.016
Float64 6 0
FloatingPoint 6 0.016
Rational *5 *5
Real *5 *5
Rosenbrock
Complex® 11 0.031
Float64 182 0.079
FloatingPoint® 3526 13.062
Rational *4 *4
Real *5 *3
Freudenstein and Roth
Complex 349 0.234
Float64 134 0.157
FloatingPoint® 91 0.781
Rational w4 4
Real *5 *5
Big Rosenbrock
Complex 2356 94.750
Float64 5023 199.172
FloatingPoint *4 *4
Rational *4 x4
Real *5 *3

Table 2: Sample results using the Fletcher-Reeves
method.



Iterations  Seconds
at + 3
Complex 5 0.016
Float64 5 0
FloatingPoint 5 0
Rational 5 0.046
Real 1 0.016
Rosenbrock
Complex 55 0.094
Float64 82 0.109
FloatingPoint 20 0.109
Rational x4 *4
Real *5 *5
Freudenstein and Roth
Complex 12 0.032
Float64 10 0
FloatingPoint 13 0.031
Rational x4 x4
Real *5 *5
Big Rosenbrock
Complex 542 26.312
Float64 558 26.516
FloatingPoint *4 x4
Rational x4 *4
Real *5 *5

Table 3: Sample results using the BFGS method.
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