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ABSTRACT

We present NECO, a high-performance simulation framework ded-
icated to the evaluation of network coding based protocols. Its main
features include (1) definition of graphs representing the topology
(which can be generated randomly or pre-defined by means of a
standard representation), (2) modular specification of network cod-
ing protocols, (3) visualization of the network operation and (4) ex-
traction of key statistics. The simulator is entirely written in Python
and can be easily extended to account for extra functionalities.

Categories and Subject Descriptors

C.2.1 [Computer-Comunication Networks]: Network Architec-
ture and Design—Network Communications; C.2.2 [Computer-

Comunication Networks]: Network Protocols—Applications; I.6.0
[Simulation and Modeling]: General

General Terms

Network Coding, Simulation, Networks

Keywords

network coding, simulation, topology, random graph

1. INTRODUCTION
Research in network coding (that is, algebraic mixing of packets

in networks) has been so far heavily based on toy models that are
amenable to mathematical treatment. However, with the advent of
practical protocols and sophisticated network coding applications,
the need to characterize their behavior in large networks motivates
the development of adequate simulation tools.

The key insights of [12], which proved that the max-flow min-
cut capacity of a general multicast network can only be achieved by
allowing intermediate nodes to mix different data flows, has caused
a surge in network coding research (e.g. [16, 20]) uncovering its
potential to provide higher throughput and robustness, particularly
where highly volatile networks such as mobile ad-hoc networks,
sensor networks and peer-to-peer networks are concerned.
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Figure 1: Canonical network coding example: node 1 multicast

bits a and b to nodes 6 and 7. If node 4 did not perform a

simple encoding operation on the incoming bits, the maximum

network capacity of 2 could not be achieved.

The basic idea behind network coding is illustrated in Figure 1.
Suppose that node 1 aims at sending bits a and b simultaneously
(i.e. multicast) to sinks 6 and 7. It is not difficult to see that the
link between nodes 4 and 5 results in a bottleneck in the sense that
either bit a is forwarded (in which case node 6 does not receive bit
b), or bit b is sent (in which case node 7 will receive incomplete
information). It follows that although the capacity of the network
is 2 bits per transmission (because the min-cut to each destination
equals 2), this capacity cannot be achieved unless node 4 jointly en-
codes a and b, for example, through an XOR operation that allows
perfect recovery at the sinks.

Random Linear Network Coding (RLNC) [16] is a distributed
methodology for performing network coding, in which each node
in the network independently and randomly selects a set of coeffi-
cients and uses them to form linear combinations of the data sym-
bols it receives. These linear combinations are then sent over the
outgoing links of each node. Each symbol or packet is sent along
with the global encoding vector [18], which enables the receivers
to decode the original data using Gaussian elimination, provided
that the received matrix has full rank. It turns out that RLNC is
sufficient to reach the multicast capacity of a network [19, 18, 16].
In addition, robustness gains have been reported in packetized net-
works with lossy links in [20]. Recent successful applications of
RLNC include peer-to-peer networks for content distribution [14,
13] and wireless networks [17, 22].

Network coding simulation presents the following significant main
challenges in comparison to traditional routing protocols:

• Since network coding is particularly beneficial in unreliable
and large networks, the simulator must be capable of repro-
ducing the dynamics of complex networks, that is, networks
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with a very large number of nodes, in an efficient way;

• Because protocol stacks for network coding are yet to be de-
fined, the simulator should be as generic as possible, such
that many features of classical network simulators become
excessive and should be avoided.

Although implementations in NS [11], Opnet [6] and other gen-
eral network simulators offer the advantage of well-known frame-
works and a wide array of available libraries, there are significant
disadvantages in using them for network coding. In particular, un-
til now, a standard network coding library for these platforms has
not emerged – development tends to be scattered among different
research groups and no common code basis has been set. These
generic frameworks can also be deemed as feature heavy for an
area of research which is in its beginning and for which the protocol
stack has to be revisited or even rebuilt from scratch. Frameworks
with too many features compromise performance and simulation
time, hence simulating the aforementioned complex networks re-
mains a significant challenge. Other related work in the simulation
and emulation of network coding includes SlimSim [9], which is
a bare-bones simulator for wireless network coding. Although it
has the advantage of having a small code-base and incorporating
basic event-driven wireless simulation capabilities, it has the dis-
advantages of being a single-person effort, with very basic features
targeted for specific research needs.

Our main contribution is NECO (Network Coding Simulator),
a first step towards a common core for a high-performance open-
source simulator for the network coding scientific community. It is
entirely written in Python and allows for the evaluation of network
coding based protocols. It is easily extensible and allows for high-
performance simulation in complex networks.

The remainder of the paper is organized as follows. Section 2

provides an overview of the main features of NECO, including
use cases. An overview of the simulation engines, including the
main abstractions and internal representation of structures, is given
in Section 3. Development choices such as the language and li-
braries used, as well as the licence of the simulator, are provided
in Section 4. Section 5 provides an in-depth overview of the struc-
ture of the simulator, as well as implementation details, followed by
possibilities of extension in Section 6. Section 7 provides an usage
example, followed by conclusions and further work in Section 8.

2. FEATURES AND USAGE
As mentioned above, NECO is aimed at the evaluation of net-

work coding based protocols. The capabilities of NECO can be
sub-divided in two groups: (a) pre-implemented features and (b)
extensions, such as external plugins. A typical usage of the simula-
tor, both in graphical and text modes, can consist of the generation
of a graph and selecting sink(s) and source(s), followed by the de-
termination of the routing and network coding protocol, and the
visualization of the network operation in real-time. The latter uses
either the graphical user interface or the text output at the terminal.
Simulation data can be extracted by interpreting the statistics file
that is generated in a seamless fashion.

2.1 User features, interfaces and output
NECO’s main pre-implemented features include:

1. Generation of random graphs and optional import of graphs
in the standard graphviz [2] format;

2. Basic flooding and network coding protocols, among which
several versions of the RLNC protocol;

3. Basic routing protocols, flooding and directed diffusion pro-
tocols;

4. Seamless saving of key statistics, which are stored in a python

cPickle file in the form of the flexible data structure python

hash;

5. Several different user interfaces (discussed below).

As mentioned above, NECO includes three ways of running sim-
ulations: (1) a graphical user interface (GUI), (2) a command-line
option and an (3) XML file for simple setup of simulation param-
eters. The GUI can be used for easy debugging, visualization of
graphs and verification of protocol steps, as shown in Figure 2.

Figure 2: The GUI of NECO is divided in three main compo-

nents. At the left is the control component, in which the simula-

tion parameters can be controlled beforehand, and the simula-

tion output is updated when the simulation is running. The net-

work visualization part is located in the middle; protocols can

be easily followed since the links in usage and the ones in which

information has been transmitted are highlighted using differ-

ent colours. An histogram is located at the left, which shows

the influence of the topology in network coding protocols.

The command line option shows the same output as the one
shown in the shell shown in Figure 2.

The setup of simulation parameters can also be performed through
an XML description. This is available both through the GUI and the
command line option. It is also possible to save the current simu-
lation parameters to a new XML file. This file can be created by
following a simple grammar which is exemplified in Figure 3.

Figure 3: XML grammar for loading and saving simulation

parameters with NECO.

2.2 Development of extensions
NECO also accounts for the possibility of extensions, which al-

low a developer to add functionalities (such as new protocols, rout-
ing protocols, types of nodes, etc) to the simulator without having
to modify the core of the simulator. The interested user can simply
create the classes corresponding to the extensions and add relevant
information to an XML file which describes the functionalities of
the simulator. The GUI is also automatically updated. For in-depth
information, see Section 6.

2.3 Statistics
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NECO contains methods for saving important statistics, which
can be found in the Statistics class. The Statistics class contains
two main methods: writeConstant and writeTimeDependent. The
first one can be used to save constant information, such as constant
graph parameters or simulation seeds. The second one can be used
to save variables that change over time such as, for example, the
number of packets that each node received at each simulation step.

3. SIMULATION ENGINES
In what follows, we present an overview of the internal represen-

tation of the main data structures of the simulator, as well as of the
abstractions made.

3.1 Underlying graph
The network is represented by a graph, which can be a real topol-

ogy described in Graphviz format [2] or a random graph generated
on the spot using NetworkX algorithms. Random graphs are widely
accepted [21] as representative models of typical topologies in sev-
eral types of networks.

3.2 Network and protocol abstractions
Since our main focus is on the simulation of protocols for com-

plex networks, we abstract from the network stack and implement
a simplified version produced specifically for network coding pro-
tocols, which is shown in Figure 4. The incoming and outgo-
ing links are represented by two buffers – the inBuffer and the
outBuffer, respectively. Network coding protocol implementations
simply check the inBuffer for received packets, the packets undergo
processing in the main NC components, that is, coding and path se-
lection, and proceed to the outBuffer.

Figure 4: A simplified stack for network coding protocol test-

ing.

In order to save processing time in simulating network coding
protocols, we exploit the fact that all quantities of interest can be
either directly measured or computed from the encoding matri-
ces present at each node, and focus entirely on the encoding vec-
tors [18, 16] of each packet, that is, the payload of the packets is
not included in the simulation.

4. DEVELOPMENT CHOICES
In this section, we present an overview of the development choi-

ces regarding language and chosen libraries.

4.1 Language
We chose the Python programming language [7] for several rea-

sons. The first argument is tied to the high legibility of the lan-
guage, which leads to reduced development time and high produc-

tivity, as well as improving program maintenance and extensibil-
ity. The second main reason is the platform universality: Python is
available for the main operating systems without requiring changes
in code. Python is also used extensively for scientific applica-
tions, and offers two useful mathematics and engineering libraries
– SAGE [8] and Pylab [3]. Finally, NS-3 is expected to implement
Python bindings, which can be a plus when developing more com-
plex protocols.

In particular, we use an implementation of Python - Python stack-
less [10], an enhanced version of the Python programming lan-
guage, which combines the benefits of thread-based programming
without the performance and complexity issues of conventional th-
reads. The objectives are more realistic concurrency and mitigating
the effects of using a scripting language to provide higher speed in
the simulation. The version of Python stackless is 2.5.2.

4.2 Libraries
All the libraries used in the development of the simulator are

open source and available under the GPL licence (GNU General
Public Licence). In particular, creation, manipulation and study of
random graphs, all use the NetworkX library version 0.35.1 [5].
The SAGE library version 3.0.5 [8] is used for its finite fields im-
plementation and algorithms, as well as other mathematics algo-
rithms. The PyQt library version 4.3.3, with Sip version 4.3.3 and
OpenGL libraries version 3.7, are used for the implementation of
the graphical user interface.

4.3 Licence and possibilities for extension
The NECO simulator is subdivided into core modules, which

are the modules that provide it with the minimal feature set (ba-
sic protocols such as RLNC, flooding, graph generation, scheduler
and user interfaces), and extension modules, which extend its basic
functionality, for example, to account for more elaborate protocols.
This division is illustrated in Figure 5. It is possible to implement
extension modules without interfering with core modules. We re-
lease the core modules of NECO under the GNU General Public
Licence [1]. The licence of the extension modules is left to the
choice of the institutions that implement them.

Figure 5: Main modules of NECO. The core includes the bare-

bones of communication and protocols, graph generation, user

interfaces and scheduler. The extensions (shown in blue with

dashed border) can include other modules or extensions of the

core modules, as well as possible bindings to external simula-

tors or libraries.

5. SIMULATOR IMPLEMENTATION
The NECO code is divided into two main modules: core and

ui, which are explained in depth in the following subsections. The
complete documentation for the NECO source code is available at
the NECO wiki, at [4].
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5.1 Core
The core module includes the control of all the simulation steps

and of other modules, as well as the basic components for build-
ing and using networks and protocols. Its main classes are: classes
related to the simulation core, concurrency and scheduling (that
is, NecoCore, Scheduler, SimulatorThread, NodeThread), graph re-
lated classes such as Graph, Node, Link and protocol related classes
such as Protocol and Routing.

The generation of the graph is of the responsibility of the ob-
ject PrepareGenerationGraph which runs on a separate thread, and
then calls methods from the class GraphGenerator to generate the
graph using Networkx [5].

NecoCore is responsible for the communication with the graph-
ical user interface and for starting the simulation, which is done
by calling the methods in the Simulator class. This class includes
methods that communicate to the scheduler and update the statis-
tics. Hence, it is also responsible for starting the simulation thread,
which is specified in the SimulationThread class and runs on a sep-
arate system thread from the simulation.

The SimulationThread is also responsible for randomly assign-
ing the source and destination nodes, and for starting the stackless
microthreads. For each node of the graph, an object called Node-

Thread is created, which represents a node in the simulation. This
includes methods to instantiate the buffers as well as the protocol
that the nodes in the network are running.

A Protocol object is created for each node of the simulation. The
Protocol main method runs as a cycle with the following steps: (1)
check whether there are packets for processing in the input buffer,
(2) execute the intermediate node behavior, (3) execute the sink
node behavior, (4) check whether there are packets in the output
buffer to be sent to other nodes. The Protocol object then commu-
nicates with the Routing class to determine the next hop of each
transmitted packet.

It is worthwhile to emphasize that, as previously mentioned, the
neco core uses Python stackless, not just for its speed, but mainly
for its use of concurrency. Due to the in-existence of a limited
stack, this approach allows for the benefits of thread-based pro-
gramming without the complexity associated with conventional th-
reads. Stackless provides the use of microthreads, which allow
python to change context very quickly and still individually ma-
nipulate the thread that runs at a given time. This granularity of
control is essential for the simulator, since system threads’ priori-
ties are controlled by the operating system.

5.2 User Interface
The graphical user interface is divided into four classes. The

first one, uiApplication, includes the methods that are responsible
for the creation and management of the graphical user interface by
creating the objects, placing them and controlling the gui events.

Two “dummy” classes, SharedSimInfo and UpdateUIInfo, are
aimed at improved readability and extensibility of the code. The
SharedSimInfo class is responsible for the variables that are shared
for all the nodes, like the instance of the random class, the gen-
eration size (that is, the number of packets that are mixed using
RLNC), the number of nodes on the simulation, the instance of the
SAGE class for performing computation on a finite field, the basis
of the finite field, the matrix whose elements belong to the chosen
finite field and the logarithm of the size of field. The UpdateUIInfo

class is responsible for the methods to update the user interface in-
formation, both in the graphical setting and in the command line
interface.

6. EXTENSION PLUGINS
We now briefly describe the implementation of extension mod-

ules for NECO. NECO can load extension modules through a de-
scription present in an XML file, initialization.xml. This XML file
follows the grammar which is exemplified and briefly explained
in Figure 6. Besides extending the core of NECO, by indicating
the source file and the class name of each new plugin, the same
XML file is used to seamlessly update the GUI.

Figure 6: XML grammar for loading and saving simulation pa-

rameters with NECO. The newattribute element is used to cre-

ate parameters for extensions, such as protocol extensions, rout-

ing extensions, node extensions and others. The protocol, rout-

ing, packet, link and node elements contain attribute elements,

which must have been defined previously, with the mandatory

parameters for each. If there is more than one type of proto-

col, routing protocol, packet type, link type or node type, there

should be a corresponding element for each type.

The user should then create the corresponding classes with the
implementation of the new module, by extending existing classes
or creating one from scratch. A brief example is shown for creating
a new protocol. The methodology for creating other modules is
similar.

Figure 7: Implementation of a new network protocol.

To implement a new protocol, the user should create a new class
for the protocol and override five methods, __init__, sourceBe-

haviour, intNodeBehaviour, sinkBehaviour, sendOutBuffer and see-

InBuffer. This is shown in Figure 7. Regarding the remaining el-
ements, all routing protocols extend the Routing class, and over-
ride the method selectNextHops. Likewise, all new links extend the
Link class, and override the sendBehaviour method to specify the
new link behavior. All packets extend the Packet class.

7. USE CASE
We now present one simple use case, which demonstrates the

capabilities of the simulator. To show the role that topology plays in
RLNC, we run the RLNC algorithm for two different graph models
and plot throughput metrics.

We represent the network as a graph G = (V, E), where V is
the set of nodes and E is the set of edges. We choose to simulate
two representative random graph models. The first one, the Érdös-
Rényi ER(n, p), is formed by creating a link between each of the
n nodes in the graph, independently with probability p. The Ran-
dom Geometric Graph RGG(n, r) can be constructed by placing
n nodes uniformly at random onto the surface of a unit square, and
connecting all nodes within Euclidean distance r of each other.

We then run the RLNC protocol described in Algorithm 1. We
evaluate important throughput-related metrics for network coding,
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which are relevant for evaluating protocols that require a fast dis-
semination of information over a certain period of time, such as,
for example, low-delay and immediate decoding protocols. These
are the number of symbols that a node is able to decode, the rank
and the number of packets that a node receives until a certain time.

The general methodology used for performing the simulations is
summarized in Algorithm 2. To average the results and diminish
the choice of a favorable (or unfavorable) pick of scenarios, the
method of independent replications from [15] is used. We generate
5 instances of each simulation set, with different seeds, and then,
for each random graph, we run 4 instances with different sources
and sinks. For each of these sub-instances, we then run the RLNC
algorithm with 2 different seeds. This choice still yields a total of
40 simulation runs for each parameter of each graph. We choose to
use the min-cut (Mc) of the graph as the generation size for RLNC,
since packet losses would introduce unnecessary confusion in the
parameters that we choose to evaluate. We also choose to have
only one sink: since the metrics we evaluate are influenced by the
distance between the source and the sinks, the only sink to influence
the results would be the one at maximum distance from the source.
The field size chosen for the RLNC protocol is 28, which is used
by most protocols.

In order to avoid situations in which the source is not connected
to the sink, we choose the parameters for each type of graph so as
to obtain a connected graph. We choose the same number of nodes
for each graph, 100: while this number is enough to observe the
essential properties of each random graph, the key parameter is the
density of links in the graph, which is determined, for example, by
the ratio p/n in the case of the ER graph, and by the ratio r/n in
the case of the RGG graph. We choose p = {0.2, 0.4, 0.6, 0.8}
for the ER graph and then, in order to be able to perform a di-
rect comparison, we choose the radius for the RGG graph such
that the expected number of neighbors of each node is the same in
both types of graphs. That is, in the case of the ER(n, p) graph,
E(|(v, i)|, ∀i)ER(n,p) = np and in the case of the RGG(n, r)

graph, E(|(v, i)|, ∀i)RGG(n,r) = πr2n. This yields a choice of
r = {0.25, 0.36, 0.44, 0.50}, for the RGG graph, without consid-
ering torus effects. The simulation results for the described setting
are illustrated in Figure 8. It is clearly visible that in the RGG
graph, there are peaks at which the network is flooded with pack-
ets over a short period of time, and, consequently, the average rank
and number of packets decoded increases. This is due to the fact
that connectivity in RGGs is determined by the distances between
nodes, which leads to a higher likelihood of cliques and bursty dis-
semination. On the other hand, in the ER graph, because links
are equiprobable, the distribution of packets and ranks is closer to
uniform.

8. CONCLUSIONS AND FURTHER WORK
We presented an open-source network coding simulator, to the

best of our knowledge the first of its kind, which features a high per-
formance and easily extensible core. We also showed a simple use
case that exemplifies how our simulator can provide insights into
the benefits of network coding protocols. As part of our short-term
future work, we expect to implement node behavior and perform a
complete reformulation of the simulator scheduler. Our long-term
plans include the addition of more graph models, such as evolving
networks for evaluation of distributed storage, peer to peer models
and mobility models.
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