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ABSTRACT

Instruction set simulators are commonly used in embedded
system development processes for early functional validation
of code and exploration of new instruction set design. Such a
simulator can be either hand-written or generated automat-
ically, based on a Hardware Architecture Description Lan-
guage. Automatically generated simulators are more main-
tainable and are faster to develop, but they also generally
suffer from low performances in simulation speed and a lack
of expressivity in the description. This paper introduces
HARMLESS, a new language to automatically generate in-
struction set simulators. It differs from other languages in
many ways: it resolves most expressivity issues and natu-
rally offers a flexible description by explicitly splitting the
syntax (mnemonic), format (binary code) and behavior de-
scriptions. Thus, it allows an incremental description, start-
ing for example by the disassembler (requiring format and
syntax descriptions). When the first two descriptions are
validated, the behavior description is added to obtain the
simulator. Some results are also presented on the simula-
tor build process, especially on the decoder generation. An
instruction cache is also introduced to speed up simulation
in the same order of magnitude as hand-written simulators.
Some experimental results are eventually presented.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures
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1. INTRODUCTION
The interest of the simulation techniques for the design of

software, in particular for embedded systems, is not to be
demonstrated anymore. Simulation techniques don’t oppose
to other V&V techniques (Verification & Validation), par-
ticularly formal V&V techniques; they are complementary
of these techniques often based on large grain models. An-
other interest of simulation is the possibility to design and
validate software when the hardware is not yet available.
In this way, both software and hardware may be designed
simultaneously and time-to-market is reduced.

Of course the simulator is the central element of this tech-
nique and its specifications depend on the simulation objec-
tives. In our application field - real-time embedded systems-
we need to simulate the execution of the binary code on
a fine grain model of the processor. Two simulation ap-
proaches are attractive. The Instruction Set Simulator (ISS)
only takes into account the instruction behaviour, indepen-
dently of the time needed to execute the instruction, whereas
a Cycle-Accurate Simulator (CAS) takes into account tim-
ing of the real system (it models the internal architecture).
Both simulation schemes are interesting. A CAS is slow
but essential for real-time system simulation while ISS has
better performances. Some ISS can also be associated to a
structural simulator to offer both ISS and CAS advantages.
The development of an ad hoc simulator is a difficult task,
especially the simulator validation for complex modern pro-
cessors. Moreover, most of this work is not reusable for a
new target architecture. So, in order to simplify this task,
a hardware Architecture Description Language (ADL) may
be used.

The work presented in this paper is a part of a larger
project aiming at the realization of a simulator offering ISS
and CAS possibilities, and used for the design of real-time
embedded systems. Some information about the CAS part
are quickly given in this paper and the interested reader
can refer to [5] for more details. This paper focuses on
the automatic generation of an ISS. It introduces HARM-
LESS(Hardware ARchitecture Modeling Languague for Em-
bedded Software Simulation), a new hardware Architecture
Description Language (ADL). HARMLESS differentiates it-
self from other ADLs by using three independent views for
binary format, syntax and behavior. This approach is more
flexible and eases the description. Some internal aspects of
the decoder generation and the execution approach are also
shown.

The paper is organized as follows: Section 2 is dedicated to
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related work on other ISS generators. Section 3 introduces
key features of HARMLESS description language. Section 4
highlights the benefits of the approach used in HARMLESS.
In section 5, some internal aspects of this new ADL and some
early results are given. Section 6 concludes the paper.

2. RELATED WORK
Generally, an ADL must be able to specify a wide variety

of architectures. An architecture description must be easy to
modify and easy to understand by a designer. A lot of works
have been done on ADLs that can be classified into three
categories[6]: the first one that captures the Instruction Set
(i.e., nML [2], ISDL [3]); the second one that captures the
structure of the processor (i.e., MIMOLA [1]); and the third
one that mixes the two first categories (IS and structure)
((i.e., LISA[7], EXPRESSION [4]). To obtain an ISS, an
ADL must allow the description of the binary format, the
behavior and the syntax of the instructions. In addition, in
the case of a CAS, it is necessary to add the description of
the micro-architecture.

In [2], nML, an example of IS ADL, is presented. It is
based on the standard description that can be found in
the usual designer’s manuals to specify the target architec-
ture; this makes the language attractive. The architecture
description contains structural/behavioral information. In
nML, the Instruction Set (IS) of the target processor is de-
scribed as an attributed grammar. This approach allows
a hierarchical description of instructions. However, it de-
scribes the format (named image in nML), the behavior
(named action in nML) and the syntax of instructions in
the same view, as shown in this example:

op ADD(dest:REGISTER, src1:REGISTER, src2:ADDR)

syntax=format("add \%s,\%s,\%s,dest.syntax,

src1.syntax,src2.syntax)

image=format("00000000000\%s\%s\%s",dest.image,

src1.image,src2.image)

action= {dest = src1 + src2;}

The above code segment has action, image and syntax de-
scription for the ’add’ operation. REGISTER and ADDR
are addressing modes described elsewhere. The format op-
erator, used for bit strings only, returns a string that can be
interpreted as a number.

Therefore, the description of an architecture is not so easy
to modify.

ISDL [3] is more flexible and its semantics are stronger
than those of nML. It allows the description of a wide variety
of architectures with emphasis on VLIW architectures. Like
in nML, The IS contains behavioral and structural informa-
tion. Moreover, it allows the description of the hardware of
the micro-architecture, that is mixed with the behavior of
the instructions.

The main goal of MIMOLA [1] is hardware-software co-
design, this implies a much more complete modeling of the
structure of the processor, and gives the advantage that the
same description is used for both processor synthesis, and
code generation. The IS is extracted from the structure, this
task can be difficult for complex instructions. Generally,
MIMOLA is considered as a very low-level language and is
laborious to write and modify. In addition, simulation is
slow in MIMOLA environment.

In [7], S. Pees and al. presented LISA as a machine de-
scription language that gives a formal description of pro-

grammable architectures, their interfaces and peripherals.
In many aspects, LISA includes ideas wich are analogue to
nML, and the binary format, behavior and syntax of instruc-
tions are placed in the same view.

In the same way, EXPRESSION [4], a mixed ADL, gath-
ers the binary format and the behavior of instructions in the
same place.

None of the systems mentioned above provide a separate
view for each IS description (format, behavior and syntax).
On the contrary, to describe the instruction set of the pro-
cessor, our language HARMLESS is based on 3 separate
views: the format view, the syntax view and the behavior
view. A set of trees composes each of these views that do
not have the same structure. The separation of these views
enables the user to choose the best structure for every view.
This approach allows to ease the description of an archi-
tecture in an incremental way. So, the description becomes
more flexible, and easy to modify to re-target on another
micro-architecture for example. The architectural scope is
not limited, it allows the description of a wide variety of
architectures (see section 4). In addition, it supports multi-
word instructions (variable length instructions), as well as
unsigned and signed data type with any number of bits.
HARMLESS syntax is close to C language, so very easy to
learn.

3. OVERVIEW OF THE LANGUAGE
HARMLESS uses 3 views to describe the instruction set

of the processor. The first view deals with the format of the
instructions, the second view allows to describe the syntax
and the third view gives the behavior of the instructions.
Each view is a set of trees where a node describes a piece
of format, behavior or syntax (i.e. the kind of the node). A
node description conforms to the following syntax.

<kind> <name> [#<tag>] <kind_options> {

<description>

}

where <kind> can be format, syntax or behavior. As in a
grammar specification language, HARMLESS allows to de-
scribe, for each view, whether a non-terminal node is built
by aggregating sub-nodes or by selecting one node, or an ag-
gregate of nodes, among several. By default, a non terminal
node aggregates the sub-nodes. The select construct allows
to choose one sub-node among several (or an aggregate of
sub-nodes among several).

Using this model, in each view, an instruction is repre-
sented by a branch in a tree. Instructions sharing a common
part in a view share nodes in the roots of the tree, while spe-
cific parts are located in leaves. A node may have a <tag>

field. A set of tags along a branch of a tree is the unique
identifier of an instruction and is called the signature of the
instruction. Tags may also appear in the <description>

part of a node and indicate a leaf in the tree.
HARMLESS is a strongly typed language. Since, it is

targeted to instruction set description, it offers signed and
unsigned data type with any number of bits. The language
has some unusual features. For instance, the sum of two n

bits words produces a n + 1 bits result. This way, the im-
plementation of the carry or overflow computation is easier.
Operators to extract and concatenate bit fields are provided:

u16 val1 := \x5500
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u16 val2 := \x0055

u17 result := val1+val2 -- result on 17 bits

u1 carry := result{16} -- only MSB

u16 valResult := result{15..0}

3.1 The format view
The format view describes the binary format of the in-

structions.
A node in the format view gives, in the <kind_options>

field, which part of the instruction word is scanned (this
is called a slice in HARMLESS). For example, the follow-
ing declaration taken from the Freescale HCS12 description
scans 2 bytes. In the <description> part, a constant (off-
set) is extracted from these 2 bytes and is the concatenation
of bit 4 of the first byte and the second byte.

format DIT_offset slice {7..0}+{7..0}

offset := signed slice{4}{7..0}

end format

A select construct specifies a slice too. In the following
example, the select chooses one of the nodes according to
the value of the 3 lower bits.

format MOVW_ABA_DAA_inst

select slice {2..0}

case 6 is #ABA

case 7 is #DAA

others is MOVW_inst

end select

end format

Here ABA and DAA are leaves in the tree. MOVW_inst refers
to other nodes that specify the format of the addressing
mode that MOVW instruction may use.

format MOVW_inst #MOVW

select slice {3..0}

case 3 is imm16_am ext_am

case 0 is xb_am imm16_am

...

end select

end format

The first addressing mode is shown where the source is
a 16 bit immediate (imm16_am) and the destination an ex-
tended address (ext_am). In imm16_am, the imm16_value

field is extracted:

format imm16_am slice +{7..0}{7..0} #IMM16

imm16_value := signed slice{7..0}{7..0}

end format

A field may be signed or unsigned and has an implicit
type that depends on the number of bits it uses. In the
example above, imm16_value is a signed 16 bits integer (a
s16) but any number of bits may be used. Bit masks (a
binary number prefixed by \m) can be used to indicate which
part of the slice is meaningless in the differentiation of the
instructions. For instance, in:

...

case \m111--00- is Indexed_9bits_offset

...

bits 0 (the offset sign), 3 and 4 (the register used) of the
slice are used to decode the addressing mode (as denoted by
the ‘-’ in the mask). Some basic operations like left or right
shifting and field concatenation may be performed when a
field is extracted.

HARMLESS format description supports variable length
instructions. In the example above, instructions ABA and DAA

use 2 bytes. MOVW with a 16 bits immediate uses 2 more bytes
as indicated by the ‘+’ in slice +{7..0}{7..0}. When an
instruction is lengthened by adding a slice, the new length
is valid for all the children nodes but not for the sibling or
parent nodes which use the previous instruction length. In
some occasion, the same sub-format is used in more than
one place. To differentiate same sub-formats, a suffix tag
has to be added to the node name. For instance, in the
HCS12 description, the indexed addressing mode may be
used in both the source and the destination operands. This
is indicated using the following description:

format idx_idx

xb_am@SRC

xb_am@DST

end format

where @SRC and @DST are the suffix tags.

3.2 The syntax view
The syntax view describes the textual format of the in-

structions. This view binds a textual syntax to each in-
struction signature. As in the format view, syntax nodes
are associated to tags that are part of the signature. For
instance, the syntax for the HCS12 instruction ABA (this in-
struction signature has only one tag) is:

syntax ABA #ABA

"ABA"

end syntax

The MOVW instruction syntax is more complex and uses
other syntax nodes that are reused elsewhere:

syntax MOVW #MOVW

"MOVW" mov16_args

end syntax

syntax mov16_args

select

case imm16 ext

case imm16 idx

...

end select

end syntax

syntax imm16 #IMM16

field s16 imm16_value

" #\d",imm16_value

end syntax

This description means that a MOVW instruction syntax is
the concatenation of the string "MOVW", a space, a #, the
16 bits immediate and so on. The keyword field allows
to reference a field that is extracted from the instruction in
the format view. The field must be typed (s16 here) and is
checked against the format view.
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The <description> in a syntax node may use standard
complex control structure like if. . . then. . . else. This is needed
to give more flexibility in the syntax. For instance, when a
field has a special value, the instruction may be viewed as
a special one too. This is often the case in RISC instruc-
tion set, like the PowerPC one, where the addi rD,0,value

instruction translates to the li rD,value simplified syntax.

3.3 The behavior view
This last view is the most complex one. The behavior view

binds a behavior to each instruction signature and provides
a way to describe the components which are accessed by in-
structions. A component is a building block of the processor
architecture like register file, memory or ALU. The descrip-
tion of components is made in an object oriented way and
contains data as well as methods. For instance the following
description shows a part of the alu component and one of
its operations for the HCS12 model:

component alu {

register u8 CCR {

C := slice{0} -- carry flag

V := slice{1} -- overflow flag

Z := slice{2} -- zero flag

N := slice{3} -- neg flag

I := slice{4} -- maskable interrupt

H := slice{5} -- half carry status bit

X := slice{6} -- non-maskable interrupt

S := slice{7} -- STOP instruction

}

u8 neg_8(u8 op) {

u8 res;

res := 0 - op;

CCR.N := res{7};

CCR.Z := res = 0;

CCR.V := op = \x80;

CCR.C := op != 0;

return res;

}

...

}

As for the other 2 views, the remaining of the behavior
view is a set of nodes which describe a piece of behavior. A
behavior node contains a declaration section with local vari-
able declarations, other behavior node references and one
or more do blocks to specify the algorithm of the instruc-
tion. The following description presents the NEG instruction
example among other:

behavior mono_operation8(u8 op, out u8 res)

select

case #COM do res := alu.com_8(op); end do

case #ASL do res := alu.sl_8(op); end do

case #ASR do res := alu.asr_8(op); end do

case #DEC do res := alu.add_8(op,0-1); end do

case #INC do res := alu.add_8(op,1); end do

case #NEG do res := alu.neg_8(op); end do

case #ROL do res := alu.rol_8(op); end do

case #ROR do res := alu.ror_8(op); end do

case #LSR do res := alu.lsr_8(op); end do

end select

end behavior

behavior monadic8_reg_inst #INH_AM

u8 reg;

u8 res;

get_reg8(reg)

mono_operation8(reg,res)

put_reg8(res)

end behavior

Here, the monadic8_reg_inst behavior declares 2 local
variables to store the 8 bits register content (source) and
the result of the operation. Then it gets the content of the 8
bits register from the get_reg8 behavior, performs the op-
erations with the mono_operation8 behavior and stores the
result using the put_reg8 behavior. In the mono_operation8
behavior, one of the operations is selected. Parameters may
be passed from one behavior to another by reference (using
the out keyword) or by value.

The HCS12 description, used to illustrate this section, is
quite long. It takes 2500 lines of which 28% for format view,
10% for syntax view and 62% for behavior view (20% for
components and 42% for the tree nodes).

3.4 Memory description
HARMLESS supports the description of a complex mem-

ory mapping. The description is currently limited to the
functional part and does not include any structural infor-
mation (memory hierarchy, memory latency and alignment).
The structural part is used to extract the time required for
a memory access and will be included in future works to
generate a Cycle-Accurate Simulator.

The memory description is embedded into a component
(see section 3.3). Standard parameters are given to a mem-
ory chunk, such as the bus width, address range or the type
of access (RAM, ROM or register):

component mem {

program memory internalRam {

width := 16 -- get 16 bits / access max

address := \x0..\xFFFF

type := RAM

}

The memory can be read or written (not for ROM mem-
ory) in other components or in the instruction behavior
parts using implicit methods: u16 mem.read16(u32 addr),
void mem.write16(u32 addr, u16 data) in this example
(16 bits). For convenience, a read8 and write8 methods
are also generated.

The program keyword is used to determine memory that
can accept a program code at startup. Obviously, there
should not be 2 memory zones with the same address using
the program keyword.

3.4.1 Alias

An alias represents a reference to a memory location, that
could be accessed in a more convenient way. It is useful
for registers that could be accessed using their names, and
other memory chunks. HARMLESS allows to map a mem-
ory chunk relatively to an expression. For instance, let’s
consider the Infineon C166 internal RAM :General Purpose
Registers are mapped in the internal RAM, based on the
value of the Context Pointer (CP). This may be described
as follows:
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component mem

memory ram {

address := 0...\xFFFF

type := RAM

width := 16

-- register alias. Size is 16 bits

register CP maps to \xFE10

-- GPR are mapped in memory relatively to CP

GPR {

type := register

address := 0..15

} maps to CP

}

}

Using this example, some new methods relative to the
mapping are generated: u16 mem.ram.GPR(u16 addr) will
read the value of CP, add the address value in parameter and
perform a read access in the memory. Registers can be used
like a classic register defined everywhere in the description
(i.e. CP := newVal).

3.4.2 Adding user defined methods

Embedding the memory description into a component al-
lows to add user methods to facilitate the memory access
(paged, segmented memory). Here is a partial description
of the HCS12 memory mapping, using register PPAGE for
the program page (flash)1:

component Mem {

memory registers {

width := 16

address := \x0..\x7FF -- 2 kb of registers

type := register

register u8 PPAGE maps to \x30

}

program memory windowedFlash {

width := 16

address := \x78_FFFF..\x7F_FFFF -- 512 kb

type := ROM

}

u8 memRead8(u16 addr) {

-- description from MC9S12XDP512, p.31

u8 val := 0

if addr < \x0800 then

val := Mem.registers.read8(addr)

elseif addr > \x8000 & addr < \xC000 then

u24 ra := 1 cat PPAGE{7..0} cat addr{13..0}

val := Mem.windowedFlash.read8(ra)

end if

return val

}

}

3.5 Micro-architecture view
The micro-architecture view allows to describe the micro-

architecture that implements the instruction set. The goal
is to map the instruction set behavior view on the micro-
architecture view using the components. In this way, a cycle

1The cat operator is used for concatenation.

accurate simulator can be generated. This simulator can
be used to verify timing characteristics of embedded real-
time systems. The execution model of this simulator is a
finite state automaton generated from the description of the
pipeline in HARMLESS. More details may be found in [5]

A state of the automaton represents the pipeline state at
a particular time. At each clock cycle, the pipeline goes
from one state to another according to hazards. They are
classified into three categories:

• Structural hazards are the result of a lack of hardware
resource;

• Data hazards are the result of a data dependency be-
tween instructions;

• Control hazards that occur when a branch is taken in
the program.

To illustrate how a pipeline can be described in HARM-
LESS, let’s consider an example with a 2-stage pipeline, with
only 1 instruction (Nop), 1 component (the Memory) and
one temporal constraint (the memory access in the fetch
stage). Using the HARMLESS ADL, this pipeline can be
described as follows:

architecture Generic {

device mem : Memory {

shared port fetch : getValue;

}

}

pipeline pFE maps to Generic {

stage F {

mem : fetch;

}

stage E {

}

}

In the description above, two objects are declared:

• The architecture named Generic that describes the
micro-architecture;

• The pipeline named pFE.

The architecture section forms the interface between a
set of hardware components and the definition of the pipeline.
It allows to express hardware constraints having consequences
on the temporal sequence of the simulator. The architecture
contains one device (mem) to control the concurrency to ac-
cess the Memory component.

In this description: at a given time, the method getValue,
that gets the instruction code from the memory, can be ac-
cessed one time using the fetch port. We suppose this access
can be made concurrently by other bus masters. So the port
is shared.

The pipeline pFE is mapped to the Generic architecture.
The 2 stages of the pipeline are listed. In stage F, an in-
struction can use the fetch port.

This description leads to generate a 4-state automaton
(detailed in [5]). The experimentation shows good perfor-
mance: the cycle accurate simulator is less than 4 times
slower than the ISS. Moreover, the design of the cycle accu-
rate simulator allows to disconnect dynamically the micro-
architecture simulation to run at the speed of the ISS until
interesting program sections are reached.
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4. USEFULNESS OF A 3 VIEWS DESCRIP-

TION
The main difference between HARMLESS and the other

HADL is the way the description is handled. In the formers,
the description is monolithic with the binary format (named
image), the syntax and the behavior (named action in nML)
sharing the same description tree. In the latter, each view
has its own tree. This way the designer may choose the best
tree structure for each view.

To illustrate the advantage of the HARMLESS descrip-
tion, let us present two examples taken from the HCS12
description. Figure 1 shows the sub-tree of the format view
of the CALL instruction family. Boxed shapes are the tags,
vertical bars are the aggregates and round shapes are the
alternates. As explained in section 3, a branch in this tree
corresponds to an instruction of the CALL family and is de-
fined by the set of tags in this branch. Binary masks used
to decode the instructions and to build the view are shown
above the boxed shapes.

#CALL

#CALL_IMM

#CALL_XB

#IMM16

#IMM8

#IDX_5B_OFF

#IDX_9B_OFF

#IDX_16B_OFF

#IND_IDX_16B

#IMM8

#IDX_ACC_D_OFF

0100101-

-------0

-------1

+ --0-----

+ 111--00-

+ 111--010

+ 111--011

+ 111--111

Figure 1: Format sub-tree of the CALL instruction

family

Figure 2 shows the behavior view of the CALL with im-
mediate address instruction and CALL indirect instruction
family. This time the view has been built with the behavior
in mind and the trees reflect the semantic differences.

#CALL #CALL_XB

#IMM8

#IDX_5B_OFF

#IDX_9B_OFF

#IDX_16B_OFF

#IMM8

#IDX_ACC_D_OFF

#IND_IDX_16B

#CALL #CALL_IMM

#IMM16

#IMM8

A

B

Figure 2: Behavior sub-trees of the CALL with im-

mediate address instruction and CALL indexed or

indirect family

As expected, there is not a direct correspondence between

the format tree and the behavior tree. In the behavior tree
shown in figure 2, the branch labeled ‘A’ corresponds to
CALL with the indexed addressing modes (the target ad-
dress is computed by summing the content of a register
with a constant) while the branch labeled ‘B’ corresponds to
CALL with the indirect indexed addressing mode (the tar-
get address is read from memory at an address computed by
summing register D and a constant or given as an immediate
value in the instruction).

Another advantage of this description is the ability to gen-
eralize the behavior description. For instance, most proces-
sors do not have an orthogonal instruction set (all instruc-
tions do not operate on all the registers) and it is tedious to
describe every register access variant in the behavior of each
instruction. So one can describe the behavior by assuming
all registers are accessible. When the description is com-
piled, HARMLESS removes all the behaviors that do not
have a corresponding format. This is shown in the example
below.

Figure 3 shows the format tree of the TFR (transfer) in-
struction. This instruction moves data from a source to a
destination registers. Register TMP2 may only be a desti-
nation while register TMP3 may only be a source.

#TFR

@src

@dst

#A #B #C #TMP3 #D

#X

#Y

#S

#A

#B

#C

#TMP2#D#X#Y#S

Figure 3: Format tree of the TFR instruction

Figure 4 shows the behavior tree of the 16 bits TFR in-
struction (both source and destination are 16 bits registres,
TFR to/from 8 bits registers exist too).

#TFR

@src

@dst

#TMP2 #TMP3 #D #X

#Y

#S

#TMP2

#TMP3

#D#X#Y#S

Figure 4: Behavior tree of the TFR instruction

The behavior describes instructions that do not exist (all
the TFR with TMP2 as source and all with TMP3 as desti-
nation) but since the format for such instructions does not
exist, the simulator generated by HARMLESS does not in-
clude these instructions.
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These features allow to simplify the description. As a
result, the nML HCS12 description takes 7400 lines while
the HARMLESS takes 2700 lines.

5. SIMULATOR GENERATION
This section gives some details about how the simulator

is automatically generated from the description. First, it
introduces the model used for instructions. Then, the de-
coder generation is explained. Moreover, an improvment is
presented using an internal cache, in order to speed up the
simulation process. Finally, some results on the generation
process are given on three processor descriptions.

5.1 Instruction Modeling
The simulator is generated in the C++ language, and each

instruction is modeled using a C++ class. An instruction,
in the HARMLESS description, corresponds to a path in
the corresponding tree. The C++ class that represents an
instruction offers 3 main methods:

5.1.1 The constructor

It is associated to the decode operation. Its goal is to iden-
tify the various fields of the instruction binary code (register
index, immediate, address), and store values in the new ob-
ject instance. For example, consider an addition instruction
on a RISC architecture: ADD R1, R2, R3. The construc-
tor extracts, from the binary code of the instruction, the
index of the destination register (1), and the indices of the
2 source registers (2) and (3). It’s important to notice that
the simulator context is never affected by this operation.
This function is directly linked to the format description in
HARMLESS.

5.1.2 The execution function

It is in charge of simulating the instruction. Using the
previous example based on the addition instruction, this
function will read the value of the 2 source registers (the
register index is known), perform the addition and update
the flag register, and finally write back the result in the
destination register. This function is directly linked to the
behavior description in HARMLESS. Even, if the behav-
ior description is split in multiple parts to take advantages
of common behaviors, this function concatenates each part
of the instruction behavior description, thus removing time
consuming function calls in the generated simulator. If no
behavior description is given for an instruction, a default one
is used that warns the user when executed. This is helpful
when used in an incremental description approach.

5.1.3 The mnemonic function

It is used for disassembling. This function does not modify
the simulator context. The function is associated to the
syntax description in HARMLESS. Anyway, if no syntax
description is given for an instruction, a default one is used,
returning the internal name of the instruction.

5.1.4 Classical interpretive execution approach

The execution of an instruction is initially based on an
interpretive approach, executing each instruction one after
the other. The execution process is given in figure 5. First,
the decoder phase has to decode the binary code pointed by
the instruction pointer (explained in depth in section 5.2).
Then, the instruction object is created (requiring a memory
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Figure 5: Basic execution of an instruction

allocation), the execution of the instruction is performed and
the instruction object is deleted (requiring a memory deal-
location). This phase has to be processed for each instruc-
tion in the program, and memory allocation/deallocation
are particularly penalizing in computation time. A more
efficient approach is explained in section 5.3.

5.2 Decoder generation
Based on the format description part, the decoder is a

key part of the simulator generation. Since an instruction is
represented as a branch in a tree, the first operation made
is to flatten the tree and to extract, for each instruction,
all the format parts used in the description. To each for-
mat, a couple mask/value allows to identify bits that should
be positioned (0 or 1) and bits that are not representative.
Let’s consider, for instance, the first example in section 3.1.
For all the instructions, that contain the TBL_inst node, the
mask/value will be 0xF/0xD. This is a condition that means:
only the four lowest significant bits are taken into account
(mask is 0xF), and the value gives the state of these 4 bits.
The final code of the instruction is represented by the con-
junction of all the conditions (mask/value) related to each
format part.

In order to facilitate treatments, the internal represen-
tation of conditions (mask/value) is encoded using Binary
Decision Diagrams (BDD). This allows to verify very simply
the orthogonality of the instruction set. If two instructions
may have the same binary code, then the conjunction of
their BDD is not an empty BDD. It’s sufficient to make the
conjunction of the BDD to all combinations of two instruc-
tions.

With the internal use of BDD, we obtain simple condi-
tions, independently of the underlying description. The con-
dition is applied on the instruction binary code pointed by
the program counter. Here is an example with 2 conditions
that can match for an instruction, but most instructions are
decoded using only one condition:

if(((code & mask1) == value1) ||

(code & mask2) == value2)) {

//instruction found

}

The decoder could be directly generated using a list of
conditions like this one, for each different instruction. The
size of the masks and values is independent of the instruc-
tion code size and is defined to minimize the treatment on
the host machine (32 bits). On the HCS12 for instance, in-
struction size is set between 1 and 8 bytes. If the instruction
size is lower than 5 bytes, only 1 simple comparison is made.
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Then, a decoder can be generated in only one big func-
tion that embeds all comparisons. If the comparison related
to the instruction that have to be decoded is at the end
of this big function, many tests will be required to decode
the instruction. In order to minimize the number of com-
parisons, we made the assumption that in most instruction
sets, a part of the binary code used for the decoder (no
register index, nor immediate..) is defined in the bits of the
binary code. Then, based on the first byte of the instruction
code, 28 = 256 functions are generated to decode the rest of
the instruction. This assumption leads to minimize signifi-
cantly the number of comparisons required in the examples
studied (Atmel AVR, Freescale HCS12, XGate, PowerPC,
and Microchip PIC). The number of bits used to generate
sub-decoder function has been set to 8 by default but can
be modified. For instance, with the Microchip PIC10 (in-
struction size is 12 bits), the value can be increased to 12,
to obtain 212 = 4096 sub-decoder functions with only one
comparison.

5.3 Adding an instruction cache
The execution process of the classical interpretive execu-

tion approach, presented in figure 5, has two major struc-
tural drawbacks:

• when simulating an instruction inside a loop, the in-
struction will be decoded many times. It does not take
into account the temporal locality;

• memory allocation/deallocation requires most of the
computation time, when creating and deleting the C++
instruction object;

To enhance the previous approach, we add an instruction
cache during the decoding phase. This approach is a sim-
pler version of the Instruction Set Compiled Simulation in
[8]. The instruction cache is internal, it has only low side
effects (program memory should not be modified during sim-
ulation) and keeps all the advantages related to interpretive
simulation approaches.

The simulation cache principle is described in figure 6.
The first time the instruction is decoded, the instruction
cache returns a miss and an instruction C++ object is al-
located as in the previous approach. The new instruction
is stored in the cache and is not deleted (but considering
the replacement policy, an instruction object may be deal-
located). The next time the instruction should be executed,
the instruction object is in the cache and many time con-
suming phases may be removed: the decoding phase, the
object allocation and the object constructor.
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Figure 6: Execution of an instruction using the in-

ternal instruction cache.

The internal cache used is a direct-mapped one. This is
the fastest to run in software. We compared it with a 2-way
set-associative cache with an LRU replacement policy, but
the computation overhead of the latter did not compensate
the better hit ratio on the sample programs used.

5.4 Results
This section shows some results on the generation process

of different processors: The HCS12, which is a CISC with a
variable size instruction set, from 1 to 8 bytes; The Freescale
XGate co-processor for the HCS12. It is a 16 bits RISC co-
processor (instruction length is 16 bits); The Atmel AVR,
which is a 8 bits RISC processor (instruction length is 16
bits), even if few instructions use 32 bits.

These results are available on table 1. We simulate one
simple example on each processor, based on calculating a
Fibonacci sequence. This gives an overview of simulator
performances.

HCS12 XGate AVR

description length (lines) 2580 1150 1140
instructions generated
(nb)

5517 88 87

Time to generate the
simulator source from
HARMLESS description
(s)

20.7s 0.31s 0.27s

simulator source size
(C++ lines)

˜ 304 000 ˜ 8 200 ˜ 8 700

Time to compile the sim-
ulator (s)

215.85s 7.30s 7.72s

Time to execute 100 mil-
lions of instructions of
the basic example (s)

4.06s 4.55s 4.92s

Table 1: This table presents some results on the

generation of a simulator. Timings are made on an

Intel Core 2 Duo @ 2.4 GHz.

We can see that RISC based architectures have few in-
structions, whereas the CISC one get more than 5500. This
is not only due to the important number of addressing modes,
but also due to the HCS12 architecture. There are only few
registers on the HCS12, and for instance, the instruction
that rotates left is expanded in two instructions ROLA and
ROLB, depending on the register considered (A or B). In the
description, we can either describe one instruction ROLx
with one field parameter, or describe two different instruc-
tions. We chose the later to take advantages of the internal
instruction cache: increasing the decoder complexity and
simplifying the behavior description.

As the HCS12 model has many instructions, it leads to
increase the time to generate the simulator, and the time
to compile the generated C++ files. We can notice that if
we remove the instruction set orthogonality check (that is
relevant only when describing the format part), the time to
generate simulator sources falls to 11.7s. An ISS simulator
is built in less than 4 minutes from the description to the
simulator binary application.
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6. CONCLUSION AND ONGOING WORK
This paper has described HARMLESS ADL. One of the

goals of HARMLESS is to ease the description of a hardware
architecture by providing separate views for binary format,
assembly language instruction syntax and instruction behav-
ior. This approach proved that it was attractive. Splitting
the description in views allows writing it in an incremental
way and lowering the amount of work that is required to get
a working description. A 3-view description is more flexible
and can describe efficiently various instruction set architec-
tures. As mentioned above, the nML HCS12 description
takes 7400 lines while the HARMLESS takes 2700 lines.

Currently, a working HARMLESS compiler exists and
generates an instruction set simulator from the IS descrip-
tion. The performance of the simulator is good and compare
favorably to existing ISS. A prototype of HARMLESS com-
piler may be downloaded from:
http://p2a.rts-software.org.
A fourth view (introduced in 3.5) is currently under devel-

opment. It allows to describe the micro-architecture. The
execution model of this simulator is a finite state automaton.
Future work will focus on the minimisation of the automa-
ton, the use of multiple automata to model and simulate
superscalar processors. How to model dynamic superscalar
processors, including speculative execution is also planned.
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