
COOJA/MSPSim: Interoperability Testing for Wireless
Sensor Networks

Joakim Eriksson, Fredrik Österlind, Niclas Finne, Nicolas Tsiftes, Adam Dunkels, Thiemo Voigt
Swedish Institute of Computer Science

{joakime,fros,nfi,nvt,adam,thiemo}@sics.se

Robert Sauter, Pedro José Marrón
University of Bonn and Fraunhofer IAIS

{sauter,pjmarron}@cs.uni-bonn.de

ABSTRACT
Wireless sensor networks are moving towards emerging stan-
dards such as IP, ZigBee and WirelessHART which makes
interoperability testing important. Interoperability testing
is performed today through black-box testing with vendors
physically meeting to test their equipment. Black-box test-
ing can test interoperability but gives no detailed informa-
tion of the internals in the nodes during the testing. Black-
box testing is required because existing simulators cannot si-
multaneously simulate sensor nodes with different firmware.
For standards such as IP and WirelessHART, a white-box
interoperability testing approach is desired, since it gives
details on both performance and clues about why tests suc-
ceeded or failed. To allow white-box testing, we propose a
simulation-based approach to interoperability testing, where
the firmware from different vendors is run in the same sim-
ulator.

We extend our MSPSim emulator and COOJA wireless
sensor network simulator to support interoperable simula-
tion of sensor nodes with firmware from different vendors.
To demonstrate both cross-vendor interoperability and the
benefits of white-box interoperability testing, we run the
state-of-the-art Contiki and TinyOS operating systems in a
single simulation. Because of the white-box testing, we can
do performance measurement and power profiling over both
operating systems.

Categoriesand SubjectDescriptors
I.6.4 [Computing Methodologies]: Simulation and Mod-
eling Model Validation and Analysis; D.2.5 [Software]: Soft-
ware Engineering Testing and Debugging
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1. INTRODUCTION
Wireless sensor networks are distributed systems consist-

ing of small, often battery-powered sensing devices that com-
municate using low-power wireless radios. Wireless sensor
networks enable numerous applications ranging from wa-
ter [25] and bridge monitoring [19] to predictive maintenance
in industry [16].

A vast body of research on sensor networks has yielded
numerous different communication architectures and proto-
cols. The rapid acceptance of sensor networks for industrial
applications has, however, driven focus towards standard-
ization and interoperability. Due to the proven industrial
potential of wireless sensor networks, a number of stan-
dards have emerged during recent years. These include
WirelessHART [15], ZigBee [26], and IPv6-based sensor net-
works [9].

The standardization of sensor networks makes interoper-
ability a new requirement when implementing communica-
tion stacks and applications. Interoperability is difficult to
verify, however, since sensor network simulators and proto-
typing tools lack the possibility to simulate heterogeneous
sensor networks. For example, the widely used TOSSIM
simulator [18] only simulates nodes running the TinyOS op-
erating system [14]. These tools are thus unable to test the
requirements that have arisen with the vision of an Internet
of Things [8]. Instead, vendors today are required to physi-
cally meet to perform black-box testing of their equipment.

To meet the need for white-box testing of interoperabil-
ity, we extend the Contiki simulator COOJA [21] and MSP-
Sim, an instruction level emulator that is integrated into
COOJA. Our simulator extensions enable simulations of het-
erogeneous sensor networks that consist of different operat-
ing systems and sensor devices. We also extend MSPSim
with a power profiling mechanism similar to the software-
based power profiler of the Contiki operating system [6].
Our experiments demonstrate that our combined simulator
is not only a feasible tool for interoperability testing; it is
also able to power profile nodes running different operating
systems.

We evaluate our simulator with two state-of-the-art sensor
node operating systems: Contiki and TinyOS. The Contiki
operating system was the first operating system to support
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Figure 1: COOJA simulating a hierarchical, het-
erogeneous sensor network of TinyOS and Contiki
nodes

IP for sensor networks [3] and is currently the only system
that fulfills all the IPv6 Ready compliance requirements [9].
The TinyOS operating system is popular in academia and
has been used to implement standard protocols [13].

The contribution of this paper is the design and evalua-
tion of a heterogeneous simulator environment for interop-
erability testing, with which we demonstrate how white-box
testing enables accurate and non-intrusive power profiling of
different operating systems.

The rest of this paper is structured as follows. We describe
the two simulators that we combine and the operating sys-
tems that we simulate in our experiments in Section 2. We
outline the technical aspects of our implementation in Sec-
tion 3. In Section 4, we evaluate the accuracy and ability of
COOJA/MSPSim in heterogeneous sensor network simula-
tions. Thereafter we discuss related work in Section 5, and
conclude the paper in Section 6.

2. BACKGROUND
Our white-box interoperability testing system builds on

the COOJA [21] and MSPSim simulators [10]. COOJA is a
cross-level sensor network simulator. MSPSim can be used
through COOJA to emulate sensor devices based on the pop-
ular MSP430 processor. We describe each of these two sim-
ulators as well as the TinyOS and Contiki operating systems
that we use as examples for interoperability testing.

2.1 The MSPSimSimulator
MSPSim [10] is a Java-based instruction level emulator of

the MSP430 microprocessor series. In contrast with CPU-
level emulators, it emulates complete sensor networking plat-
forms such as the Tmote Sky [22] and ESB/2 [23]. MSPSim
targets both realistic simulation with accurate timing for use
as a research tool, and good debugging support for use as a
development tool.

MSPSim combines cycle accurate interpretation of CPU
instructions with a discrete-event based simulation of all

while ( running ) {
/∗ execu te even t s ∗/
executeCycleEvents ( c y c l e s ) ;
executeTimeEvents ( currentTime ) ;

/∗ f e t c h i n s t r u c t i o n to execu te ∗/
op = memory [ pc++] | (memory [ pc++] << 8)
i n s t r u c t i o n = decode In s t ruc t i on ( op ) ;
switch ( i n s t r u c t i o n ) {

case MOV:
dst = readSrc ( op ) ;
c y c l e s += MOV CYCLES;
break ;

case ADD:
. . .

}
}

Figure 2: The core emulation loop of MSPSim in
pseudo-code. After handling queued events, the
program counter (PC) is increased and the next in-
struction is decoded and executed.

other components, both internal and external. MSPSim uses
an event-based execution kernel that enables accurate tim-
ing while keeping the host processor utilization as low as
possible. We show an outline of the main execution loop
in Figure 2. Before interpreting instructions, MSPSim exe-
cutes all pending events in both event queues. Each queue
handles events that are scheduled with a different perspec-
tive of time, with the first being based on CPU clock cycles,
whereas the other is based on a high resolution clock. Most
of the internal components of the MSP430, such as the US-
ART and the analog-to-digital converter use the event queue
for clock cycles, while external components such as radio
transceivers use the event queue for the the high resolution
clock.

The emulator provides a programming interface for inte-
gration with simulation frameworks such as COOJA. In ad-
dition, the emulator can be extended with new mote types
through a mote interface and I/O interfaces that correspond
to the MSP430 I/O ports and serial communication ports.

MSPSim provides both debugging capabilities such as break
points, watches, logging, and single stepping as well as statis-
tics about the operating modes of the emulated components,
statistics such as how much time the CPU has consumed in
the different low-power modes. Figure 3 shows the MSPSim
interface for viewing component duty cycles. All features
and information can be accessed either via a command line
interface, or via the integration programming interfaces.

2.2 The COOJA Simulator
COOJA [21] is a flexible Java-based simulator initially de-

signed for simulating networks of sensors running the Con-
tiki operating system. COOJA simulates networks of sensor
nodes where each node can be of a different type; differ-
ing not only in on-board software, but also in the simulated
hardware. COOJA is flexible in that many parts of the sim-
ulator can be easily replaced or extended with additional
functionality.

A simulated node in COOJA has three basic properties:
its data memory, the node type, and its hardware periph-
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Figure 3: MSPSim emulating a Tmote Sky node
running a program that periodically turns on the
radio and sends data packets.

Execute native nodes

Execute emulated nodes

Execute Java nodes

Figure 4: The main loop in COOJA executes nodes
at different levels.

erals. The node type may be shared between several nodes
and determines properties common to all these nodes. For
example, nodes of the same type run the same program code
on the same simulated hardware peripherals. Nodes of the
same type are initialized with the same data memory, ex-
cept for the node id. During execution, however, the data
memories of the nodes will eventually differ after reacting to
external stimuli.

COOJA can execute Contiki programs in two different
ways. Either by running the program code as compiled na-
tive code directly on the host CPU, or by running compiled
program code in MSPSim. COOJA is also able to simulate
nodes developed in Java at the application level. All dif-
ferent approaches have advantages as well as disadvantages.
Java-based nodes enable much faster simulations but do not
run deployable code. Hence, they are useful for the develop-
ment of e.g. distributed algorithms. Emulating nodes allows
control and retrieval of more fine-grained execution details
compared to Java-based nodes or nodes running native code.
Finally, native code simulations are more efficient than node
emulations and still simulate deployable code. Combining
the different levels in the same simulation can give both an
efficient simulation as well as fine-grained execution details
on selected nodes.

2.3 Contiki
Contiki [4] is a sensor network operating system. Con-

tiki supports three communication stacks: Rime [5], a light-
weight layered communication stack that provides basic com-
munication primitives on top of which more complex proto-
cols are built, uIP [3] is a fully RFC compliant TCP/IPv4
stack for memory constrained systems, and uIPv6 [9], the
world’s smallest fully RFC compliant TCP/IPv6 stack.

Contiki has an on-line power profiling mechanism [7] which
estimates the energy consumption by measuring the dura-
tion each component is in various modes such as low-power
mode, transmitting.

2.4 TinyOS
TinyOS is a sensor network operating system popular in

academia originally targeting hardware with just 512 Bytes
of RAM [14]. The main difference to other sensor network
operating systems is the use of the specifically developed
programming language nesC [12] that builds component ab-
stractions on top of standard C. This programming language
has to be used by application developers, since the applica-
tion together with system components are used to generate
a single binary image to be programmed to the sensor nodes.
TinyOS is event-based, which is supported by special con-
structs in nesC, and requires also the application developer
to follow this programming model.

The basic communication abstraction of TinyOS is a sim-
ple best-effort one-hop message transmission service. In ad-
dition to the frame format of the data link layer used by
the radio chip, e.g., IEEE 802.15.4, TinyOS just adds one
byte – the Active Message Type – to differentiate among up
to 256 different software components as the intended desti-
nation on the receiver. Building on this abstraction, other
protocols can be built. As an alternative to this, a partial
IPv6 stack [13] has been added in recent TinyOS releases.

No mechanism for on-line estimation of power consump-
tion is available. Instead, algorithms that require this infor-
mation, e.g., for lifetime estimation and adaption of func-
tionality, require an extensive prior evaluation by simulation
to obtain estimates for inclusion in the deployment [17].

3. IMPLEMENT ATION
By integrating MSPSim more closely into COOJA and

adding some OS-specific support, we get a simulation tool
that can simulate sensor networks consisting of both Contiki
and TinyOS nodes.

3.1 Simulating TinyOS nodes
The main difference between simulating Contiki nodes and

TinyOS nodes is that they use different node ID variables.
Contiki uses node id for its node ID while TinyOS uses the
constant TOS NODE ID and the mutable Active Message
address TOS AM ADDRESS. Initially, we added support
in COOJA for setting just the node id, but initial experi-
ments indicated that it is also practical to be able to set the
Active Message address through COOJA.

In MSPSim, we made the emulation of the MSP430 and
the CC2420 radio chip more accurate and complete. The
initial emulation was limited to the subset of features used in
only one of the operating systems. One important addition
is the SFD capture interrupt that might be used for time
stamping, etc.
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Figure 5: COOJA/MSPSim correctly measures the
power consumption of both TinyOS and Contiki
nodes

3.2 Power Profiling of all nodes
To power profile non-Contiki firmwares in COOJA we also

extended MSPSim with more detailed statistics for external
components such as the CC2420 radio chip. The mecha-
nism is similar to the built-in power profiling mechanism in
Contiki. The information can be accessed per node from
COOJA when power profiling is needed.

4. EVALUATION
In this section we present results from experiments with

the COOJA/MSPSim simulator.

4.1 Measuring Power Consumption
To evaluate whether the radio duty cycle measurement in

MSPSim works as expected for both Contiki and TinyOS
nodes, we have written TinyOS and Contiki applications
that turn off the radio for 10%, 25%, 50%, 75% and 100%
of the time. We show that the simulator is able to measure
the radio duty cycle with the corresponding values.

Our results depicted in Figure 5 show that the differ-
ences between the expected and the measured values are
very small for both operating systems, namely at maximum
around 1%.

4.2 MeasuringPower Consumptionwith MSP-
Sim

To evaluate the accuracy of MSPSim’s built-in power con-
sumption measurements we compare with the energy con-
sumption estimation provided by Contiki’s power profiling.

The test application sends data packets at a regular inter-
val and toggles the radio transceiver on and off with a given
duty cycle.

We measure the energy consumption in MSPSim by print-
ing the duty cycle of CPU active and the CC2420 radio listen
and transmit modes as shown below:

>duty 1 "MSP430 Core.active" CC2420

10.39 74.99 23.48 1.53

10.39 74.99 23.48 1.53

10.39 74.99 23.48 1.53

...

The columns in the output are percentages of CPU activity
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Figure 6: Energy estimation with MSPSim and Con-
tiki for two duty cycle cases, 25% and 12.5%.

and the modes of the CC2420 radio: power down, listen, and
transmit. We calculate the energy consumption by multiply-
ing the time spent in each mode with the respective power
consumption in milliwatts.

The results in Figure 6 show that the energy estimations
are very close to each other in both duty cycle cases. The
maximum difference is around two percent on listen and
CPU, but we observe a somewhat larger difference when
estimating the power consumption of transmissions. The
reason for this difference is that the built-in measurements in
MSPSim have immediate knowledge when the radio switches
to transmission mode, while the Contiki counterpart must
read status registers and therefore gets delayed information
about when transmission starts.

4.3 A Heterogeneous,Hierarchical SensorNet-
work

To demonstrate interoperability between Contiki and Tiny-
OS in COOJA/MSPSim, we simulate a heterogeneous, hier-
archical sensor network shown in Figure 1. The hierarchical
sensornet consists of both TinyOS and Contiki nodes. The
three TinyOS nodes placed in the right part of the top right
plug-in in Figure 1 act as data sources that periodically send
a data message with 20 bytes payload (“As”, “Bs”or “Cs”) to
an aggregator node running Contiki. The aggregator node
aggregates the data and sends it via a forwarder node in a
multi-hop fashion to the sink (left-hand node in the plug-in).
Both the forwarder and the sink node run Contiki.

Since the TinyOS frame format differs from the Contiki
frame format, we have modified the Rime stack and the
Chameleon module [5] to allow Contiki to understand pack-
ets from the TinyOS nodes.

In our experiments we send 200 packets from each TinyOS
node. The aggregator node reduces the number of packets
from 600 to 200. If this reduction of the number of pack-
ets leads to energy savings depends to a large extent on the
MAC layer. In order to quantify the power savings, we have
measured the power consumption with and without aggre-
gation over two hops, i.e. from the aggregator node via the
forwarder to the sink node. In these results, the aggregator
either sends one large packets with 60 Bytes payload every
three seconds or three shorter packets with 20 Bytes payload
every second.
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Figure 7: Aggregation reduces TX power consump-
tion.

We use low power probing (LPP) as the underlying MAC
layer [20]. LPP receivers periodically transmit probes. Es-
sentially, probes are short packets that announce that the
node in question is awake and ready to receive a data packet.
After sending a probe, receivers keep their radio on for a
short time to listen for data packets. A sender that has a
packet to be sent turns on its radio waiting for a probe from
a neighbor it wants to send to. On the reception of a probe
from a potential receiver, the node sends a small hardware
ACK that is followed by the actual data packet. We have
used the default LPP configuration available in Contiki that
sends on average four probes per second and that keeps the
radio on for 1

128
seconds after each probe.

Our results are shown in Figure 7 and Figure 8. Figure 7
shows that the reduction of the number of packets also leads
to reduced power consumption for transmitting packets (TX
power consumption) for the forwarder and the aggregator
nodes. The TX power consumption for the sink nodes is not
influenced which indicates that the reduced power consump-
tion is not caused by a change of the number probing packets
but by the reduced number of header bytes that needs to be
transmitted.

As expected, the power consumption for the radio in lis-
ten mode (RX power consumption) is much lower than the
TX power consumption. Using LPP, a node that wants to
transmit a packet needs to turn the radio on and keep it in
listening mode until it receives a probe from the receiver.
Without aggregation, the number of packets a node trans-
mits increases and hence the time a transmitter needs to
keep the radio on. The results in Figure 8 show that the
power consumption more than doubles without aggregation.

4.4 Inter operability Tests
To validate our simulation tool’s capability for interoper-

ability tests we perform an experiment where we develop the
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Figure 8: Aggregation reduces RX power consump-
tion

same networked application in both TinyOS and Contiki.
We implement an application that broadcasts packets to

its neighbors. When it receives packets it counts the numner
of neighbors and shows the neighbor count on the leds. The
application for TinyOS uses the standard Active Message
communication framework and the Contiki application is de-
signed to replicate the TinyOS application. Since TinyOS
uses IEEE 802.15.4 we replace the default Contiki MAC pro-
tocol with the IEEE 802.15.4 MAC and add the TinyOS
active message type as the first byte of the payload.

Figure 9 shows the result of the test. All nodes commu-
nicated and counted neighbors as expected.

This interoperability test validates a very basic applica-
tion protocol on top of 802.15.4 but still shows that it is
possible to perform interoperability tests using COOJA/M-
SPSim.

5. RELATED W ORK
During recent years, a number of wireless sensor network-

ing simulators have been developed. Most of these cannot
be used for interoperability testing. Many simulators are
developed for specific operating systems. An example is the
TOSSIM simulator [18] that only simulates nodes running
the TinyOS operating system [14]. These simulators usually
run the same application code, but it is compiled for the
simulator’s host and not directly deployable without recom-
pilation for the sensor device hardware. Other simulators
such as Castalia [1] and MiXiM [11] do not simulate the op-
erating system and the application code, but simulate at a
higher level and with a focus on network related aspects.

Instruction level simulators such as MSPSim and Avr-
ora [24] are able to simulate nodes running different operat-
ing systems since they operate at the instruction set level.
Avrora emulates Mica2 sensor nodes and can emulate sev-
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Figure 9: Basic interoperability test with three
TinyOS nodes and two Contiki nodes communicat-
ing. Some of the nodes’ led-panels are shown, and
debug printouts are visible in the log window.

eral nodes simultaneously. It supports communication by
emulating the Chipcon CC1000 radio chip. AvroraZ [2] is
an extension of Avrora that provides a detailed emulation
of the Texas Instruments Chipcon CC2420 radio chip in-
cluding an indoor radio model. Avrora and AvroraZ run
multiple nodes using Java threads while our simulation tool
COOJA/MSPSim schedules the nodes explicitly. In contrast
to these efforts, we have shown that COOJA/MSPSim can
simulate nodes with different operating systems in the same
simulation and perform power profiling.

6. CONCLUSIONS
We present a simulation-based approach for white-box in-

teroperability testing in sensor networks. By combining sim-
ulations at the network and the hardware layer, we enable
white-box testing in heterogeneous sensor network environ-
ments. Our approach makes interoperability testing more
practical and transparent by allowing repeatable and fine-
grained control of experiments. We demonstrate our simula-
tion tool through experiments in which applications of two
different operating systems exchange protocol data. Fur-
thermore, we show that the new white-box testing environ-
ment allows accurate and non-intrusive power consumption
measurements at the network scale.

More information about COOJA and MSPSim, including
download links, can be found at:

http://www.sics.se/contiki/
and
http://www.sics.se/project/mspsim/
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