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ABSTRACT 

The realisation of signal processing algorithms in fixed-point 

offers performance advantages over floating-point realisations. 

However, the task is widely acknowledged to be tedious, error 

prone, and time consuming. In this paper, we propose a 

systematic approach to automate fixed-point system design. The 

technique generates fixed-point parameters that satisfy a precision 

constraint imposed on the primary output of the algorithm to be 

realised. The development of a simulation framework based on 

this analysis allows fixed-point designs to be generated in a 

shorter time frame. The effectiveness of the approach and 

framework is demonstrated through the implementation of an 

Erbium-Doped Fibre Amplifier (EDFA) control algorithm in 

fixed-point. 
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1. INTRODUCTION 
The task of manually converting signal processing algorithms to 

fixed-point system is challenging with limited tool support [1-6]. 

However, despite the effort involved, fixed-point implementation 

offers substantial advantages such as an improvement in 

execution speed, lesser memory usage, and reduced hardware 

cost. For this reason, research has emerged aimed at reducing the 

time and effort spent on this process through design automation.   

 

Some research has been targeted at specific applications [7-10], 

while others have been targeted at particular hardware 

architectures [11]. Commercial software, such as MATLAB, 

provides a toolbox that can help designers with the development 

of fixed-point design [12]. While commercial tools assist in the 

translation of floating to fixed-point design, more often than not 

they still rely on the developers to manually provide the design 

parameters. Frequently, they do not easily support optimal word 

sizes for individual variables. 

 

Much research has been targeted at systems that are developed in 

C [3, 4], as C is considered by many as the universal coding 

language. This has led to the development of language extensions 

that characterise fixed-point numbers and operations in C [4].  

Traditionally, fixed-point implementations are directed for DSP 

applications, where a uniform word length is chosen to satisfy 

system requirements. However, it has been realised that unlike 

DSP, implementation on dedicated hardware is not restricted to a 

pre-defined word length. Thus, the focus of research in this area 

has turned to accommodating multiple bitwidth word selection 

[12, 13]. Various approaches have been used in floating to fixed-

point automation schemes including simulation-based exhaustive 

search [8, 14]. However, these approaches are not practical as 

they are computationally intensive to perform. 

 

In this paper, the proposed approach for fixed-point design 

automation is targeted for hardwired FPGA implementation of 

systems that can be represented with a data flow graph (DFG). 

Hardwired FPGA implementation offers designers with the 

freedom to optimise the system to achieve the design goals of 

specific applications. The approach proposed in this thesis for 

floating to fixed point design automation consists of several 

components: 

x Data Flow Graph (DFG) representation of algorithms 

x Range analysis 

x Precision analysis 

x Automated word size selection for variables  

 

The analysis of algorithms via their representation as a graph is a 

common approach which has been used in [5, 6].  Range 

estimation involves determining the dynamic range of the 

variables in the system. Two popular techniques found in the 

literature are the worst case estimation [15, 16] and the statistical 

approach [17]. This work presented in this paper utilises the 

worst-case estimation technique since simulation results are often 

not reliable for accurately predicting the behaviour of the actual 

system. Precision analysis is concerned with the selection of word 

lengths for variables in the system. Various techniques found in 

the literature for precision analysis include automatic 

differentiation [18] and non-linear optimisation [5]. The issue of 

error propagation is considered in [5], however the approach used 

to determine the word length of variables is different to that 

adopted in this paper. 

 

A Java realisation is developed according to the proposed 

approach for fixed-point design automation. The application of 

this simulation utility is demonstrated with a practical design task, 

i.e. the realisation of Erbium-Doped Fibre Amplifier (EDFA) 

control algorithm in fixed-point. 
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The paper is organised as follows. In Section 2, the formal 

notation and mathematical formulation for fixed-point 

representation of numbers are introduced. In Section 3, the 

proposed approach to convert of an algorithm, given in floating-

point or infinite precision, to fixed-point through automation is 

presented. In Section 4, an example of practical implementation 

of the Java tool is presented. In Section 5, concluding remarks are 

provided. 

2. Fixed-Point Representation and Analysis 
2.1 Fixed-Point Notation 
A fixed-point number contains key parameters that are crucial for 

its representation. In this paper, the fixed-point representation of a 

real number X , denoted as X , consists of several components:  

x The sign bit 
X

S  

In set notation, the sign is given by ^ `' 0 ', '1 '
X

S � . A sign bit 

value of ‘0’ is used to indicate a positive number, while ‘1’ is 

used to indicate a negative number. 

x The fraction bits 
1

X  … 
X

N
X  

Each fraction bit 
i

X  is given by ^ `' 0 ', '1 '
i

X �  where 

i
�

�`  and 1
X

i Nd d . The fractional part is also frequently 

known as the mantissa, and its function is to store the 

precision bits of the number. This representation assumes an 

implicit decimal point to the left of the mantissa’s most 

significant bit. Each bit carries a weighted value of 2
i�
, 

where i  signifies the position of the bit and 1i   denotes the 

most significant bit. The decimal expansion of the fractional 

value is calculated as a sum of products 
1 2 3

1 2 3
.2 .2 .2 ... .2 X

X

N

N
X X X X �� � �� � � � . The magnitude 

of the fractional part is always less than 1. 

x The scaling factor 
X

E  

The scale factor 
X

E is an integer {..., 1, 0,1, 2, ...}
X

E � � that 

is associated with a variable and is used to scale the fractional 

values of the fixed-point representation. The decimal value of 

the fixed-point representation can be obtained by multiplying 

the expansion of the mantissa with a factor of 2 X
E

. This field 

is implied and is not physically included in the representation. 

System developers are expected to internally keep track of the 

change in scaling factors when designing the system. 

x The word length 
X

N  

The word length
X

N , where ^ `0,1, 2, ...
X

N � , signifies the 

number of bits used for representation. The value of 
X

N does 

not include any sign information. 

 

x 2 XE
 

 
Figure 1. Fixed-point representation of X  

 

Diagrammatically, the fixed-point approximation of real 

number X as a signed magnitude is illustrated in Figure 1. A 

decimal point is assumed between 
X

S and
1

X . 

2.2 Fixed-Point Mathematical Formulation 
Mathematically, the signed magnitude representation of a real 

number X is given by: 

 
1

2 2 2
X

X X

N

E Ek

X X k

k

X M S X
�

 

  
§ ·
¨ ¸
© ¹
¦  (1) 

In (1), X represents the fixed-point approximation of the real 

number X , 
X

S  signifies the value of the sign bit, 

and
1

2
X

N

k

k

k

X
�

 

§ ·
¨ ¸
© ¹
¦  is the decimal value of the fractions bits. This 

notation assumes that the value of the sign bit 
X

S  is 1 for positive 

numbers and -1 for negative numbers. The value of 
X

M can be 

obtained by multiplying the sign bit and the decimal value of the 

fraction bits. The word length is limited by truncating the least 

significant bits of the mantissa.  

 

The signed magnitude representation has a bounded error as 

shown below:  

1

2 2 X

X

Ek

X k

k N

X X X S X
f

�

 �

'  �  
§ ·
¨ ¸
© ¹
¦  

The maximum actual error is given by (2) 

2 2X X
N EX X �� �   (2) 

since 

1

2 2 X

X

Nk

k

k N

X
f

��

 �

�¦ . 

 

2.3 Error Bound Analysis 
The principle operations of the Java tool is based on an 

investigation of error bounds for primitive arithmetic operations, 

including addition, subtraction, and multiplication. The aim of 

this analysis is to determine the minimum word length for 

operands given the precision required at the output, denoted as rc. 

 

The error bound analysis is derived from the following statements 

for approximating X as a fixed-point variable X : 

x The maximum value of X , denoted by
max

X , is 2 X
E

. 

x From (2), the maximum actual error in the representation 

of X , denoted by
max

X' , is 2 2X X
N E�

. 

 

2.3.1 Fixed-point multiplication 
In this section, error bound analysis for fixed-point multiplication 

operation is presented. Consider real numbers X , Y , and Z , 

where Z is the product of X and Y . 

( )( )Z XY X X Y Y  � ' � '  

The error in representing Z in fixed point can be derived as 

Z Z XY XY X Y Y X X Y�  �  ' � ' � ' '  

X
S  

1
X  

2
X  …  …   … …  

X
N

X  
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The maximum absolute error in fixed-point multiplication can be 

derived as  

maxmax max
max

max max max max max max

Z Z X Y Y X X Y

X Y Y X X Y

�  ' � ' � ' '

 ' � ' � ' '
 

Since 2 2 2 2X Y X Y
N N N N� � � ��� � , this equation can be simplified 

as 

max max max
max

2 2X Y
E E

Z Z Z Y X'  �  ' � '  

Given a required output precision of 2
k
, where 

Z Z
k N E � � , it 

is possible to determine the word length of multiplicands that will 

satisfy this precision.  

 

To obtain a maximum error at the output of 
max

2
kZ'  and 

assuming equal error contributions, it can be shown that 

 

max max
/ 2 2 Y

EZ X'  '  

( 1)
X X Y Z Z

N E E N E � � � � �  (3)  

Using the same derivation, it can be concluded that
X Y

N N . 

In summary, performing fixed-point multiplication can be 

formulated based on these findings. The fixed-point parameters of 

a multiplication operation *Z X Y can thus be determined in 

steps as outlined below. 

1. The scaling factor of multiplicands can be determined 

according to the following rules.  

2
log 1

X
E floor X � , 

2
log 1

Y
E floor Y �  (4) 

Likewise, if the operand is a variable with a dynamic range 

X  ~[min, max], then 
X

E can be determined with the 

following rule 

� �
2

log max 1
X

E floor X � ,  (5) 

where    � � � �max max( min , max )X X X  

2. The scaling factor of Z can be determined by the following 

rule 

� �
2

log max 1
Z

E floor Z � , (6) 

 where      � � � �max max( min , max )Z Z Z  

 (0.0.7) 

3. The dynamic range of the product Z  can be determined 

according to the formulas given below 

^ `min( ) * min( ), max( ) * min( ),
min( ) min

min( ) * max( ), max( ) * max( )

X Y X Y
Z

X Y X Y
  (8) 

^ `min( ) * min( ), max( ) * min( ),
max( ) max

min( ) * max( ), max( ) * max( )

X Y X Y
Z

X Y X Y
  (9) 

Assuming one of the operands ( X ) is a constant and the 

other (Y ) is a variable, the range of Z can be determined as 

follows 

min( ) * min( )Z X Y  (10) 

max( ) * max( )Z X Y  (11) 

4. The word length of Z can be determined according to the 

precision criteria for the output. Given a required accuracy 

of 2
k

, where 
Z Z

k N E � � , 
Z

N  can be determined by the 

following rule 

Z Z
N E k �  (12) 

5. From (3), the word length of operands X and Y can be 

determined according to the following rule 

( 1)
X Y X Y Z Z

N N E E N E  � � � � �  (13) 

Each register requires an extra bit, added to the word length of 

each operand to allow for the sign bit. 

 

For fixed-point multiplication, no shift is required prior to 

operation as there is no risk of overflow and underflow. However, 

a shift might be required on the result in cases where 

Z X Y
E E E�� has resulted from following the steps above. If 

1
Z X Y

E E E � � , a logical left shift is to be performed on the 

mantissa of the fixed-point number Z . The number of shifts is 

X Y Z
E E E� �  bits. 

2.3.2 Fixed-point addition/subtraction 
Fixed-point parameters for addition/subtraction operations can be 

determined with similar analysis and rules as outlined in this 

section. Consider real numbers X , Y , and Z , where Z is the 

sum of X and Y . It can be shown that the error in representing 

the sum in fixed-point ( Z' ) is the sum of the quantization error 

of the operands. The error in the addition operation can be derived 

as follows: 

Z X Y

X X Y Y Z Z

 �

 � ' � � '  � '
 

Z X Y'  ' � '                         

The maximum error in representing Z , 
max

Z' , can be derived as 

follows 

max max max
max

2 2X X Y Y
N E N E

Z Z Z X Y

Z � � � �

'  �  ' � '

' � �
 

Assuming equal error distribution 2 2X X Y Y
N E N E� � � � , it can be 

shown that 

� �2 2 2X X
N EZ X� �' �  '  

From this analysis, it can be concluded that, in order to obtain a 

precision of 2
k

, where
X X

k N E � � , the operands must be 

represented with a minimum precision of
1

2
k�

. 

 

In summary, the selection of the word length of variables for 

fixed-point addition operations can be formulated based on this 

analysis. The fixed-point parameters of each operand in an 

addition operation Z X Y �  can be determined according to the 

following steps: 
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1. The value of scaling factors
X

E  and 
Y

E  can be determined 

according to (4) and (5). 

2. The scaling factor of Z can be determined according to the 

same rule given in (6). 

3. The dynamic range of the sum Z  can be determined 

according the rules described in (8)-(11) and by replacing the 

multiplication operator (*) with an addition operator (+).  

4. The word length of Z can be determined based on the 

precision criteria for the output. Given a required accuracy 

of 2
k

, where
Z Z

k N E � � , 
Z

N  can be determined by the 

following rule 

1
Z Z

N E k � �  (14) 

Note that Z requires an extra bit to accommodate the 

precision carried by the operands that have a precision of 
1

2
k�

.  

5. The word length of operands X and Y can be determined 

according to the following rules 

� �
X Z Z X

N N E E � �  (15) 

� �
Y Z Z Y

N N E E � �  (16) 

Every register that stores a fixed-point representation contains 

an extra bit to allow for the sign bit. 

6. The number of shifts required by both operands prior to 

addition is given by 
Z X

E E� and
Z Y

E E� . These values 

correspond to the number of logical right shifts to be 

performed on the operands A and B  respectively. 

The analysis presented in this section can be applied to both 

addition and subtraction operations.  

 

2.4 Resolution of Arithmetic Operators 
In fixed-point implementation, the number of bits required for 

each arithmetic operation in the algorithm varies depending on the 

data widths of its inputs as well as the resolution constraint at the 

output. Arithmetic modules typically assume a uniform width for 

its operands. For example, a 12-bit adder assumes its input and 

output variables to have 12 bits of data width. For this reason, 

arithmetic shifts are required to align the operands for 

computation. For a fixed-point operation C A BU , where U  is 

an operator unit, the resolution of the operator is determined 

according to the rule 

� � max( , , )
A B C

bits N N NU   (17) 

where � �bits U signifies the weight of the operator. This provides 

sufficient width to execute the operation without losing the 

required precision. 

 

This attribute is determined only after , ,
A B

N N and
C

N are 

resolved. In order to achieve a uniform width for computation, 

input operands whose word lengths are less than � �bits U are 

adjusted by padding their mantissa with zeros.  

 

3. THE JAVA SIMULATION TOOL 
In this section, a technique that can be used to automatically 

determine the fixed-point parameters of a given algorithm is 

proposed. This method relies on the DFG representation of 

algorithms and a graph traversal algorithm to achieve design 

automation. The proposed technique, in conjunction with the error 

bound analysis presented in section 2.3, allows the development 

of the Java simulation tool capable of generating a design 

satisfying the precision constraint rc. The input to the tool is 

described in a text file, according to pre-defined syntax rules. The 

current implementation is text-based, however a graphical 

interface can be easily adopted using on the same principle of 

operations.   

A pipelining feature integrated in the tool will further assist 

developers to meet the speed constraint of the system. This 

feature, however, will not be discussed in this paper. 

 

3.1 Data Flow Graph Representation 
In this paper, a data flow graph(DFG) representation is utilised to 

automate the translation of algorithms into fixed-point. This 

diagram aids in the visualisation of algorithms by providing a 

complete layout of operators, operands, as well as the 

interconnection between them. A DFG includes the direction of 

the data flow and should not contain cycles. 

 

Figure 2. A sample DFG representation 

 

For clarity in notation and presentation of the graph traversing 

algorithm, the operator and operand nodes are distinguished by 

the following notation: 

x J �  Operand 

x U �Operator 

In Figure 2, { , , , , , , }Operand A B C D E F G  and  

{ 1, 1, 2}Operator A M A . 

 

For J  �  Operand , J  must be a member of one of the 

following subsets: 

x J  � InputVar – input variables 

x J  � Constant – inputs that are constants 

x J  � IntermediateVar – intermediate variables 
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In Figure 2, { , }InputVar B D , Constant { , }A E , 

{ , , }IntermediateVar C F G  

 

An operand node J  is characterised by the following attributes: 

x The dynamic range of J , � �range J  

This attribute represents the dynamic range of the operandJ  

in infinite precision. For J  � InputVar or J  � 

IntermediateVar, this attribute is characterised by 

> @min, max  that represents the lower and upper bound value 

ofJ . For J  � Constant, � �range J is characterised by 

> @value that corresponds to the numerical value of the 

constant. The dynamic range of J  � InputVar and J  � 

Constant is specified as DFG inputs. The dynamic range of an 

intermediate variable can be derived using the conservative 

range propagation technique described in equations (8) - (11) 

for fixed-point multiplication. Similar rules can be used for 

fixed-point addition. 

x The scaling factor of J , E
J

  

The scaling factor directly corresponds to the fixed-point 

parameter E
J
of J , which has been defined in Section 2.1. 

The rules to obtain the scaling factor E
J

of operand J  are 

described in equation (4) - (6).  

x The word length of J , N
J

  

The word length of the operand J  in a DFG is directly 

related to the parameter N
J
, that characterises the word 

length for the fixed-point representation of J . The value of 

N
J
 does not take into account an extra bit that is allocated for 

the sign. The  word length N
J
 of operand J  can be selected 

using the rules described in (12) - (13) for fixed-point 

multiplication operations. Similarly, the rules given in (14) - 

(16) can be used to select the word length of the operand J  

for fixed-point addition operations. 

 

For  U �  Operator, U  must be a member of one of the 

following subsets: 

x U  � AddSub – adder/subtractor operator 

x U  � Multiplier – multiplier operator 

Operator nodes are always connected to two input nodes and one 

output node. In Figure 2, { 1, 2}AddSub A A and 

{ 1}Multiplier M . 

 

An operator node U  is characterised by attribute bits(U ). This 

attribute represents the bit resolution (weight) of the operator. For 

example, in fixed-point computation, a 16-bit adder might be 

required for one operation while a 12-bit one might be sufficient 

for another. This attribute defines the minimum bits required to 

perform the operation U  without losing the precision of the 

result. The formula used to determine this attribute is given in 

(17). 

 

Each operator node U  is associated with input and output 

variables, which are described by the following notation: 

x � �
o

v U - an output node that is connected to U . The DFG 

used in this paper is arranged such that an operator is 

connected exclusively to one output.  

x � �
i

v U
G

- a vector of input nodes related to U . An operator 

U is associated with at least one input node. 

For example, in Figure 2, � �1 { }
o

v A C and � �1 { , }
i

v A A B 
G

. 

For clarity in the sorting procedure, the following notation is used 

to describe the sequence of vertices related to any node v � V  : 

x precedingAdj(v) – a set containing preceding adjacent vertices 

x subsequentAdj(v)– a set containing subsequent adjacent 

vertices 

For example, in Figure 2, precedingAdj(A2) = {C,F} and 

subsequentAdj(F)={A2}.  

 

3.2 DFG Traversal Algorithm 
The DFG traversal algorithm proposed in this section allows 

fixed-point design to be automated. Namely, the critical 

parameters of each variable in the algorithm implementation 

satisfying the output resolution constraint rc are calculated and 

produced.  

 

The proposed technique involves traversing the DFG which 

represents the target algorithm such that all  U � Operator and 

J � Operand are visited. The fixed-point parameters associated 

with each operator and operand, such as E
J

 and N
J

, are then 

determined during this traversal. The process can be explained in 

steps as follows: 

1. Firstly, the nodes of the DFG are sorted according to their 

arithmetic evaluation order. 

2. Once the nodes are sorted, the DFG is traversed in the 

forward direction. During traversal, the attributes of the 

operator output are determined, including range( � �
o

v U ) and 

� �ovE U  for all U � Operator.  

x � �� � � �� �1o i
range v f range vU  

G
 

x � � � �� �
2

( )
oovE f range vU U  

 where 
1
f  and 

2
f  are some given functions. 

3. The word length of the output is determined based on the 

output resolution criteria rc. 

4. The DFG is traversed in the reverse direction and the word 

length of operator inputs 
� �iv

N
U

G for all U � Operator  are 

determined such that the output resolution criteria rc is met. 

 � � � �� �3 oi vv
f NN UU

 JJG  

The resolution of U is determined such that 

 � �4 ( ) ( )
( ) ,

o i
v v

bits f N NU U
U  JJG  

where 
3

f  and 
4

f  are some given functions. 
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In the subsections that follow, each of these steps will be 

discussed in more detail. 

 

3.2.1 Topological Sort 
Evaluating arithmetic expressions as DFGs requires the order of 

precedence to be maintained to avoid having incorrect results. 

The order of evaluation is such that the topmost leaves of the 

DFG are examined first and its root examined last. In Figure 2, 

nodes A  and B  are to be evaluated before node 1A , and 1A  

before C . 

 

In developing the Java tool, a sorting algorithm has been utilised 

to arrange computation nodes according to their evaluation order. 

Sorting has been the subject of extensive research in computer 

science literature due to its significance. Various sorting 

techniques have been developed as a result [19], one of which is 

termed topological sort. Topological sort involves a linear 

ordering of all nodes in a directed acyclic graph (DAG) with 

precedence constraints. It defines the sequence for traversing a 

graph such that a node v � V is visited only after all preceding 

nodes precedingAdj(v) have been visited. 

 

The topological sort algorithm [19] can be summarised as 

follows: 

1. Find a node vk that has no successors, i.e. 

subsequentAdj(vk) = {} or |subsequentAdj(vk)| = 0 

2. Delete this node vk  from the graph and all edges 

connected to this node, i.e. ei �  {(vj,vk), (vm,vk),…}  
3. Insert node vk into a queue/list 

The result of applying this sorting algorithm is a list that defines 

the order in which the graph should be traversed. The use of the 

topological sort algorithm allows the node entries described in the 

input text file to be given in any order.  

 

3.2.2 DFG Downward Traversal 
Computation nodes are visited according to their topological 

order, from the leaf nodes to the root. During graph traversal, 

fixed point parameters are determined based on the rules 

developed in Section 2.3. The following procedures are executed 

when the graph is traversed downward:  

For all J �  InputVar or J �Constant, 

1. Identify range(J ) 

2. Determine the scaling factor EJ  based on range(J ) 

For all U �Operator, 

1. Determine the dynamic range of the operator’s output 

� �� �
o

range v U  based on the range of the operator’s 

input � �� �i
range v U

G
 . 

2. Determine the scaling factor of the operator’s output 

� �ovE U  based on their respective dynamic range 

� �� �
o

range v U . 

3. Detect overflow if U �Adder 

 

When the graph is traversed downward, different procedures are 

carried out depending on whether the node is an operand or an 

operator. The Java tool assigns the scaling factor for every input 

variable and constant based on its given range. For every operator 

encountered during downward traversal, the tool estimates the 

dynamic range and determines the scaling factor associated with 

the operator’s output.  

 

For example, consider the operation C=A+B. Assume operand A 

has a dynamic range of [10,20] and B [-15,5]. A graph G that 

represents this operation will consist of 4 nodes, 

{ , , , 1 | , , , 1 }V A B C Add A B C Operand Add Operator � � . The 

order of traversal is such that input nodes are visited before 

output, i.e. A : B : Add1 : C. The following operations are 

performed at each node: 

1. Visit A, assign 
A

E  = 5 

2. Visit B, assign 
B

E  = 4 

3. Visit Add1, assign range(C)=[-5, 25], assign 
C

E = 5 

4. Visit C, assign 
C

E = 5 

 

3.2.3 Determination of Output Word Length 
Given a resolution constraint rc for the output variable Z , the 

output word length can be determined using (18). 

� �
2

max max( ) , min( )
log 1

( )
c

Z

Z Z
N floor

r Z
 �

§ ·
¨ ¸
© ¹

 (18) 

The number of bits allocated for Z  must allow the maximum 

possible magnitude to be represented. As a signed magnitude 

representation is used, the maximum amplitude can be obtained 

by comparing the positive and negative extremes. 

 

3.2.4 DFG Upward Traversal  
Once the word length is of system output is determined, nodes in 

the DFG are visited starting from the root and in reverse order to 

the initial direction of traversal. As the DFG is traversed, the 

word-length of operands and intermediate variables are assigned 

by taking into account the constraint rc. 

The following procedure is performed as each node is visited: 

For all U � Operator , 

1. Determine 
( )iv

N
U

JJG for all U according to 

x ( )ovN U  and ( )ovE U   

x The type of operator 

2. Determine bits(U ) – bit resolution of the operator. The 

resolution of the operator is determined by choosing the 

maximum word length of all operands connected to it.  

� �( ) ( )
( ) max ,

o i
v v

bits N NU U
U  JJG  

If operator U has a branched input, a uniform word length is 

selected by examining all possible paths and choosing the 

maximum word length among the values presented during upward 

traversal.  
 

3.3 Textual Representation of the Tool 
The information on all nodes of the DFG, including their 

parameters, is incorporated in a text file. Each line in the input file 

describes a node in the DFG. Each field of information in each 

entry is separated by a semicolon. Some keywords are used to 
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differentiate various types of nodes. For the DFG depicted in 

Figure 2, some examples of node entries are given below. 

operand;constant;A;3;A1 
operand;inputVar;B,-1;1,A1 
operator;adder;A1;A;B;C 

 

The first line describes a node A , which is a constant input with 

a value of 3 and is connected to operator 1A . The second line 

describes a variable input B , with a dynamic range of [-1, 1] and 

is connected to operator 1A . The third line describes an adder 

1A , which is connected to two input nodes, A  and B , and an 

output node, C . 

Similarly, the output of the tool is given as a text. For example, 

after simulation run, the fixed-point parameters for operand 

,A B , and 1A are given below (for rc =0.5). 

  Label : A 
  Is a constant 
  SF : 2 
  WL : 5 
  Value : 3 
  Neighbour node(s) : A1   
 
  Label : B 
  Is an input variable 
  SF : 1 
  WL : 4 
  Minimum : -1 
  Maximum : 1 
  Neighbour node(s) : A1   

 

  Label : A1 
  Is an adder 
  Bits : 6 
  Neighbour node(s) : A  B  C 

 

4. AN EXAMPLE OF SYSTEM DESIGN 
In this section, the Java tool is employed to provide a fixed-point 

realisation of a control algorithm.  

4.1 EDFA Control Algorithm 
Erbium Doped Fibre Amplifier, commonly abbreviated as EDFA, 

is one of the more popular optical amplifiers [20, 21]. The EDFA 

has contributed significantly to the success of Wavelength 

Division Multiplexing (WDM) technology [22]. This technology 

allows optical signals of a range of wavelengths, each represented 

in an individual channel, to be transmitted simultaneously within 

one optical fibre without interfering with one another.  

 

The dynamic nature of optical networks allows channels in WDM 

systems to be added or dropped arbitrarily due to network 

reconfigurations or component failures [23, 24]. Disruptions to 

the input signal channels can cause the EDFA gain and the power 

in the surviving channels to fluctuate as a result. As transient 

EDFA gain excursions can adversely degrade the performance of 

the system [23-27], it is necessary to implement dynamic control 

of the pump power in order to mitigate EDFA gain excursions. As 

a consequence, the design of EDFA pump control algorithms has 

been the subject of extensive research over the past decade [23, 

24, 28, 29]. 

 

The EDFA control algorithm considered in this paper has been 

proposed in [23, 30-32]. In this approach, the suppression of 

EDFA gain excursions is achieved by adjusting the signal power 

of the external laser pump, according to measurements of the 

EDFA total input and output signal power.  

 

The EDFA control algorithm, illustrated in Figure 3, is a closed-

loop system which consists of two components, a feed-forward 

and a feed-back component. The feed-forward component 

provides a quick adjustment to the pump power as soon as a 

fluctuation in total input signal power is detected. The feed-back 

component is a proportional integrator (PI) controller which 

provides correction to the feed-forward values. The pump control 

block combines the feed-forward and feed-back components to 

produce a pump output in such a way that keeps the gain constant. 

Two types of pump control, additive and multiplicative, are 

considered. Both are illustrated in Figure 4. 

 

Figure 3.Discrete time EDFA closed loop system 

 

Figure 4. Discrete time pump-control block: a) additive type 
and b) multiplicative type 

 

The mathematical formulation of the discrete time EDFA control 

algorithm can be found in [23, 30-32] and is summarised below. 

 

1. Feed-forward component 

� � � �in

ff ff s ff
U nT K P nT O �  (19) 

where � �
ff

U nT is the feed-forward component, � �in

s
P nT is 

the input signal power, 
ff

K and 
ff

O are the feed-forward 

constant and offset respectively. 
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2. Feed-back component 

� � � � � �
fb p p i i

U nT K E nT K E nT �  (20) 

where � �
fb

U nT is the feedback component, 
p

K and 
i

K are 

proportional and integral constant respectively. � �
p

E nT and 

� �
i

E nT represent the proportional and integral error 

respectively. 

 

3. Error formation 

� � � � � �
0

in out

p s s s
E nT G P nT P nT �  (21) 

� � � �� � � �1
i i p

E nT E n T E nT � �  (22) 

where 
0s

G is the desired gain. The proportional error is 

calculated based on the difference between the desired output 

signal power � �
0

in

s s
G P nT  and the actual measured output 

signal power � �out

s
P nT . The integral error is the summation 

of proportional error over time. 

 

4. Pump control block 

Additive � � � � � �
p ff fb

P nT U nT U nT �  (23) 

Multiplicative � � � � � �� �1
p ff fb

P nT U nT U nT �   (24) 

where � �
p

P nT represents the pump power, which is the 

primary output of EDFA control algorithm. 

 

4.2 Fixed-point Realisation of EDFA Control 
Algorithm 
The realisation of EDFA control algorithm in fixed-point allows 

an improvement in the execution speed over a floating-point 

design. The control system is thus able to respond more rapidly to 

the changes in network configuration. 

 

In this paper, fixed-point realisation of EDFA control algorithm 

involves three different stages of verification: 

x Floating-point simulation 

x Fixed-point simulation 

x Emulation 

In the first stage, a MATLAB Simulink model was developed to 

simulate the behaviour of the EDFA closed-loop system. The 

result of the floating-point simulation is used as a reference model 

for the fixed-point equivalent. In the second stage, the EDFA 

control algorithm is substituted with the fixed-point model, 

according to the design generated by the Java tool. The last stage, 

the EDFA emulation, combines the two components of the EDFA 

amplification system (the amplifier and the control system), 

which are implemented on two different platforms. The EDFA 

control algorithm, which is run on a hardware platform, is 

coordinated with the software simulation of the EDFA to form a 

closed-loop system. In this paper, the algorithm is implemented 

Stratix FPGA in fixed-point using a hardwired approach. Note 

that the same input signal is used in all the three stages of 

development. 

 

In this paper, the control parameters are chosen to achieve a 

desired steady-state gain 
0s

G  of 14 dB and a tolerance of 

s
Gw =±0.1 dB. Using the formulation of EDFA dynamic model 

found in [23,31-33], it can be shown that in order to achieve this 

gain precision, the pump power has to maintain a resolution of 

1.2059 mW. This value is specified as the output precision criteria 

rc when designing the EDFA control algorithm in fixed-point 

using the Java tool. 

 

The representation of the feedback component of the EDFA 

control algorithm as a DFG presents a challenge as the summation 

operator introduces a cycle in its graph representation. This 

challenge is addressed by making an assumption that 

,i nE and
, 1i nE �  are independent variables. The dynamic range of 

the
, 1i nE �  can be estimated through the EDFA simulation 

environment, which allows the values of intermediate variables to 

be read.  

 

The results of floating point simulation are shown in Figure 5 and 

Figure 6. It is shown that EDFA steady state gain of 14 dB is 

achieved with the pump power depicted in Figure 6. A glitch 

observed at t = 5ms and t =10ms is triggered by a fluctuation in 

EDFA input signal power. It can be observed that while transient 

of EDFA gain is suppressed, the pump power is adjusted at t = 

5ms and t =10ms as the result of this variation. 
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Figure 5. EDFA gain as a function of time for floating-point 
multiplicative model 
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Figure 6. Pump power as a function of time for floating-point  
multiplicative model 
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The results of fixed-point simulation of EDFA control algorithm 

is shown in Figure 7 and Figure 8. In Figure 7, it is shown that 

0s
G of 14 dB is maintained and a tolerance of 

s
Gw =±0.1 dB is 

achieved. In Figure 8, it can be observed that the pump power 

signal is quantised as a result of realising the control algorithm in 

fixed-point. 
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Figure 7. EDFA gain as a function of time for fixed-point 
multiplicative model 
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Figure 8. Pump power as a function of time for fixed-point 
multiplicative model 

The results of EDFA emulation are shown in Figure 9 and Figure 

10. It is shown that a good agreement exists between these results 

and those produced using pure software 

simulation.
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Figure 9. EDFA gain as a function of time, as obtained from 
system emulation 
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Figure 10. A plot of pump power as a function of time, as 
obtained from system emulation 

5. CONCLUSION 
In this paper, it has been shown that the process of realising an 

algorithm in fixed-point can be facilitated through the numerical 

analysis of quantisation errors which are propagated in the 

system. This realisation concept has been implemented as a tool 

that automates the computation of this error analysis based on the 

data flow diagram representation of the algorithm.  

 

It was shown that given a generic algorithm consisting of 

primitive arithmetic operations, the developed framework can 

provide a fixed-point design which is capable of satisfying the 

precision constraint of its primary output. Specifically, it has been 

demonstrated that the technique is viable for the practical 

implementation of EDFA control algorithms on a dedicated 

hardware platform. Agreeable outcomes are observed between 

floating-point simulation, fixed-point simulation, and fixed-point 

implementation of the control algorithm on Stratix FPGA. 
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