
A Java Simulation Tool for Fixed-Point System Design
S. Wijaya, A. Cantoni

Western Australian Telecommunications Research Institute
School of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Perth, WA Australia

wijayas@watri.org.au, cantoni@watri.org.au

ABSTRACT

The realisation of signal processing algorithms in fixed-point

offers performance advantages over floating-point realisations.

However, the task is widely acknowledged to be tedious, error

prone, and time consuming. In this paper, we propose a

systematic approach to automate fixed-point system design. The

technique generates fixed-point parameters that satisfy a precision

constraint imposed on the primary output of the algorithm to be

realised. The development of a simulation framework based on

this analysis allows fixed-point designs to be generated in a

shorter time frame. The effectiveness of the approach and

framework is demonstrated through the implementation of an

Erbium-Doped Fibre Amplifier (EDFA) control algorithm in

fixed-point.

Categories and Subject Descriptors

B.7.2 [Integrated Circuits]: Design Aids

General Terms

Design

Keywords

Fixed-point algorithm, digital design, automation tool, Data Flow

Graph (DFG)

1. INTRODUCTION
The task of manually converting signal processing algorithms to

fixed-point system is challenging with limited tool support [1-6].

However, despite the effort involved, fixed-point implementation

offers substantial advantages such as an improvement in

execution speed, lesser memory usage, and reduced hardware

cost. For this reason, research has emerged aimed at reducing the

time and effort spent on this process through design automation.

Some research has been targeted at specific applications [7-10],

while others have been targeted at particular hardware

architectures [11]. Commercial software, such as MATLAB,

provides a toolbox that can help designers with the development

of fixed-point design [12]. While commercial tools assist in the

translation of floating to fixed-point design, more often than not

they still rely on the developers to manually provide the design

parameters. Frequently, they do not easily support optimal word

sizes for individual variables.

Much research has been targeted at systems that are developed in

C [3, 4], as C is considered by many as the universal coding

language. This has led to the development of language extensions

that characterise fixed-point numbers and operations in C [4].

Traditionally, fixed-point implementations are directed for DSP

applications, where a uniform word length is chosen to satisfy

system requirements. However, it has been realised that unlike

DSP, implementation on dedicated hardware is not restricted to a

pre-defined word length. Thus, the focus of research in this area

has turned to accommodating multiple bitwidth word selection

[12, 13]. Various approaches have been used in floating to fixed-

point automation schemes including simulation-based exhaustive

search [8, 14]. However, these approaches are not practical as

they are computationally intensive to perform.

In this paper, the proposed approach for fixed-point design

automation is targeted for hardwired FPGA implementation of

systems that can be represented with a data flow graph (DFG).

Hardwired FPGA implementation offers designers with the

freedom to optimise the system to achieve the design goals of

specific applications. The approach proposed in this thesis for

floating to fixed point design automation consists of several

components:

x Data Flow Graph (DFG) representation of algorithms

x Range analysis

x Precision analysis

x Automated word size selection for variables

The analysis of algorithms via their representation as a graph is a

common approach which has been used in [5, 6]. Range

estimation involves determining the dynamic range of the

variables in the system. Two popular techniques found in the

literature are the worst case estimation [15, 16] and the statistical

approach [17]. This work presented in this paper utilises the

worst-case estimation technique since simulation results are often

not reliable for accurately predicting the behaviour of the actual

system. Precision analysis is concerned with the selection of word

lengths for variables in the system. Various techniques found in

the literature for precision analysis include automatic

differentiation [18] and non-linear optimisation [5]. The issue of

error propagation is considered in [5], however the approach used

to determine the word length of variables is different to that

adopted in this paper.

A Java realisation is developed according to the proposed

approach for fixed-point design automation. The application of

this simulation utility is demonstrated with a practical design task,

i.e. the realisation of Erbium-Doped Fibre Amplifier (EDFA)

control algorithm in fixed-point.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SimuTools’09, March 2–6, 2009, Rome, Italy.

Copyright 2009 ICST, ISBN 978-963-9799-45-5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5606
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5606

The paper is organised as follows. In Section 2, the formal

notation and mathematical formulation for fixed-point

representation of numbers are introduced. In Section 3, the

proposed approach to convert of an algorithm, given in floating-

point or infinite precision, to fixed-point through automation is

presented. In Section 4, an example of practical implementation

of the Java tool is presented. In Section 5, concluding remarks are

provided.

2. Fixed-Point Representation and Analysis
2.1 Fixed-Point Notation
A fixed-point number contains key parameters that are crucial for

its representation. In this paper, the fixed-point representation of a

real number X , denoted as X , consists of several components:

x The sign bit
X

S

In set notation, the sign is given by ^ `' 0 ', '1 '
X

S � . A sign bit

value of ‘0’ is used to indicate a positive number, while ‘1’ is

used to indicate a negative number.

x The fraction bits
1

X …
X

N
X

Each fraction bit
i

X is given by ^ `' 0 ', '1 '
i

X � where

i
�

�` and 1
X

i Nd d . The fractional part is also frequently

known as the mantissa, and its function is to store the

precision bits of the number. This representation assumes an

implicit decimal point to the left of the mantissa’s most

significant bit. Each bit carries a weighted value of 2
i�
,

where i signifies the position of the bit and 1i denotes the

most significant bit. The decimal expansion of the fractional

value is calculated as a sum of products
1 2 3

1 2 3
.2 .2 .22 X

X

N

N
X X X X �� � �� � � � . The magnitude

of the fractional part is always less than 1.

x The scaling factor
X

E

The scale factor
X

E is an integer {..., 1, 0,1, 2, ...}
X

E � � that

is associated with a variable and is used to scale the fractional

values of the fixed-point representation. The decimal value of

the fixed-point representation can be obtained by multiplying

the expansion of the mantissa with a factor of 2 X
E

. This field

is implied and is not physically included in the representation.

System developers are expected to internally keep track of the

change in scaling factors when designing the system.

x The word length
X

N

The word length
X

N , where ^ `0,1, 2, ...
X

N � , signifies the

number of bits used for representation. The value of
X

N does

not include any sign information.

x 2 XE

Figure 1. Fixed-point representation of X

Diagrammatically, the fixed-point approximation of real

number X as a signed magnitude is illustrated in Figure 1. A

decimal point is assumed between
X

S and
1

X .

2.2 Fixed-Point Mathematical Formulation
Mathematically, the signed magnitude representation of a real

number X is given by:

1

2 2 2
X

X X

N

E Ek

X X k

k

X M S X
�

§ ·
¨ ¸
© ¹
¦ (1)

In (1), X represents the fixed-point approximation of the real

number X ,
X

S signifies the value of the sign bit,

and
1

2
X

N

k

k

k

X
�

§ ·
¨ ¸
© ¹
¦ is the decimal value of the fractions bits. This

notation assumes that the value of the sign bit
X

S is 1 for positive

numbers and -1 for negative numbers. The value of
X

M can be

obtained by multiplying the sign bit and the decimal value of the

fraction bits. The word length is limited by truncating the least

significant bits of the mantissa.

The signed magnitude representation has a bounded error as

shown below:

1

2 2 X

X

Ek

X k

k N

X X X S X
f

�

 �

' �
§ ·
¨ ¸
© ¹
¦

The maximum actual error is given by (2)

2 2X X
N EX X �� � (2)

since

1

2 2 X

X

Nk

k

k N

X
f

��

 �

�¦ .

2.3 Error Bound Analysis
The principle operations of the Java tool is based on an

investigation of error bounds for primitive arithmetic operations,

including addition, subtraction, and multiplication. The aim of

this analysis is to determine the minimum word length for

operands given the precision required at the output, denoted as rc.

The error bound analysis is derived from the following statements

for approximating X as a fixed-point variable X :

x The maximum value of X , denoted by
max

X , is 2 X
E

.

x From (2), the maximum actual error in the representation

of X , denoted by
max

X' , is 2 2X X
N E�

.

2.3.1 Fixed-point multiplication
In this section, error bound analysis for fixed-point multiplication

operation is presented. Consider real numbers X , Y , and Z ,

where Z is the product of X and Y .

()()Z XY X X Y Y � ' � '

The error in representing Z in fixed point can be derived as

Z Z XY XY X Y Y X X Y� � ' � ' � ' '

X
S

1
X

2
X … … … …

X
N

X

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5606
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5606

The maximum absolute error in fixed-point multiplication can be

derived as

maxmax max
max

max max max max max max

Z Z X Y Y X X Y

X Y Y X X Y

� ' � ' � ' '

 ' � ' � ' '

Since 2 2 2 2X Y X Y
N N N N� � � ��� � , this equation can be simplified

as

max max max
max

2 2X Y
E E

Z Z Z Y X' � ' � '

Given a required output precision of 2
k
, where

Z Z
k N E � � , it

is possible to determine the word length of multiplicands that will

satisfy this precision.

To obtain a maximum error at the output of
max

2
kZ' and

assuming equal error contributions, it can be shown that

max max
/ 2 2 Y

EZ X' '

(1)
X X Y Z Z

N E E N E � � � � � (3)

Using the same derivation, it can be concluded that
X Y

N N .

In summary, performing fixed-point multiplication can be

formulated based on these findings. The fixed-point parameters of

a multiplication operation *Z X Y can thus be determined in

steps as outlined below.

1. The scaling factor of multiplicands can be determined

according to the following rules.

2
log 1

X
E floor X � ,

2
log 1

Y
E floor Y � (4)

Likewise, if the operand is a variable with a dynamic range

X ~[min, max], then
X

E can be determined with the

following rule

� �
2

log max 1
X

E floor X � , (5)

where � � � �max max(min , max)X X X

2. The scaling factor of Z can be determined by the following

rule

� �
2

log max 1
Z

E floor Z � , (6)

 where � � � �max max(min , max)Z Z Z

 (0.0.7)

3. The dynamic range of the product Z can be determined

according to the formulas given below

^ `min() * min(), max() * min(),
min() min

min() * max(), max() * max()

X Y X Y
Z

X Y X Y
 (8)

^ `min() * min(), max() * min(),
max() max

min() * max(), max() * max()

X Y X Y
Z

X Y X Y
 (9)

Assuming one of the operands (X) is a constant and the

other (Y) is a variable, the range of Z can be determined as

follows

min() * min()Z X Y (10)

max() * max()Z X Y (11)

4. The word length of Z can be determined according to the

precision criteria for the output. Given a required accuracy

of 2
k

, where
Z Z

k N E � � ,
Z

N can be determined by the

following rule

Z Z
N E k � (12)

5. From (3), the word length of operands X and Y can be

determined according to the following rule

(1)
X Y X Y Z Z

N N E E N E � � � � � (13)

Each register requires an extra bit, added to the word length of

each operand to allow for the sign bit.

For fixed-point multiplication, no shift is required prior to

operation as there is no risk of overflow and underflow. However,

a shift might be required on the result in cases where

Z X Y
E E E�� has resulted from following the steps above. If

1
Z X Y

E E E � � , a logical left shift is to be performed on the

mantissa of the fixed-point number Z . The number of shifts is

X Y Z
E E E� � bits.

2.3.2 Fixed-point addition/subtraction
Fixed-point parameters for addition/subtraction operations can be

determined with similar analysis and rules as outlined in this

section. Consider real numbers X , Y , and Z , where Z is the

sum of X and Y . It can be shown that the error in representing

the sum in fixed-point (Z') is the sum of the quantization error

of the operands. The error in the addition operation can be derived

as follows:

Z X Y

X X Y Y Z Z

 �

 � ' � � ' � '

Z X Y' ' � '

The maximum error in representing Z ,
max

Z' , can be derived as

follows

max max max
max

2 2X X Y Y
N E N E

Z Z Z X Y

Z � � � �

' � ' � '

' � �

Assuming equal error distribution 2 2X X Y Y
N E N E� � � � , it can be

shown that

� �2 2 2X X
N EZ X� �' � '

From this analysis, it can be concluded that, in order to obtain a

precision of 2
k

, where
X X

k N E � � , the operands must be

represented with a minimum precision of
1

2
k�

.

In summary, the selection of the word length of variables for

fixed-point addition operations can be formulated based on this

analysis. The fixed-point parameters of each operand in an

addition operation Z X Y � can be determined according to the

following steps:

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5606
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5606

1. The value of scaling factors
X

E and
Y

E can be determined

according to (4) and (5).

2. The scaling factor of Z can be determined according to the

same rule given in (6).

3. The dynamic range of the sum Z can be determined

according the rules described in (8)-(11) and by replacing the

multiplication operator (*) with an addition operator (+).

4. The word length of Z can be determined based on the

precision criteria for the output. Given a required accuracy

of 2
k

, where
Z Z

k N E � � ,
Z

N can be determined by the

following rule

1
Z Z

N E k � � (14)

Note that Z requires an extra bit to accommodate the

precision carried by the operands that have a precision of
1

2
k�

.

5. The word length of operands X and Y can be determined

according to the following rules

� �
X Z Z X

N N E E � � (15)

� �
Y Z Z Y

N N E E � � (16)

Every register that stores a fixed-point representation contains

an extra bit to allow for the sign bit.

6. The number of shifts required by both operands prior to

addition is given by
Z X

E E� and
Z Y

E E� . These values

correspond to the number of logical right shifts to be

performed on the operands A and B respectively.

The analysis presented in this section can be applied to both

addition and subtraction operations.

2.4 Resolution of Arithmetic Operators
In fixed-point implementation, the number of bits required for

each arithmetic operation in the algorithm varies depending on the

data widths of its inputs as well as the resolution constraint at the

output. Arithmetic modules typically assume a uniform width for

its operands. For example, a 12-bit adder assumes its input and

output variables to have 12 bits of data width. For this reason,

arithmetic shifts are required to align the operands for

computation. For a fixed-point operation C A BU , where U is

an operator unit, the resolution of the operator is determined

according to the rule

� � max(, ,)
A B C

bits N N NU (17)

where � �bits U signifies the weight of the operator. This provides

sufficient width to execute the operation without losing the

required precision.

This attribute is determined only after , ,
A B

N N and
C

N are

resolved. In order to achieve a uniform width for computation,

input operands whose word lengths are less than � �bits U are

adjusted by padding their mantissa with zeros.

3. THE JAVA SIMULATION TOOL
In this section, a technique that can be used to automatically

determine the fixed-point parameters of a given algorithm is

proposed. This method relies on the DFG representation of

algorithms and a graph traversal algorithm to achieve design

automation. The proposed technique, in conjunction with the error

bound analysis presented in section 2.3, allows the development

of the Java simulation tool capable of generating a design

satisfying the precision constraint rc. The input to the tool is

described in a text file, according to pre-defined syntax rules. The

current implementation is text-based, however a graphical

interface can be easily adopted using on the same principle of

operations.

A pipelining feature integrated in the tool will further assist

developers to meet the speed constraint of the system. This

feature, however, will not be discussed in this paper.

3.1 Data Flow Graph Representation
In this paper, a data flow graph(DFG) representation is utilised to

automate the translation of algorithms into fixed-point. This

diagram aids in the visualisation of algorithms by providing a

complete layout of operators, operands, as well as the

interconnection between them. A DFG includes the direction of

the data flow and should not contain cycles.

Figure 2. A sample DFG representation

For clarity in notation and presentation of the graph traversing

algorithm, the operator and operand nodes are distinguished by

the following notation:

x J � Operand

x U �Operator

In Figure 2, { , , , , , , }Operand A B C D E F G and

{ 1, 1, 2}Operator A M A .

For J � Operand , J must be a member of one of the

following subsets:

x J � InputVar – input variables

x J � Constant – inputs that are constants

x J � IntermediateVar – intermediate variables

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5606
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5606

In Figure 2, { , }InputVar B D , Constant { , }A E ,

{ , , }IntermediateVar C F G

An operand node J is characterised by the following attributes:

x The dynamic range of J , � �range J

This attribute represents the dynamic range of the operandJ

in infinite precision. For J � InputVar or J �

IntermediateVar, this attribute is characterised by

> @min, max that represents the lower and upper bound value

ofJ . For J � Constant, � �range J is characterised by

> @value that corresponds to the numerical value of the

constant. The dynamic range of J � InputVar and J �

Constant is specified as DFG inputs. The dynamic range of an

intermediate variable can be derived using the conservative

range propagation technique described in equations (8) - (11)

for fixed-point multiplication. Similar rules can be used for

fixed-point addition.

x The scaling factor of J , E
J

The scaling factor directly corresponds to the fixed-point

parameter E
J
of J , which has been defined in Section 2.1.

The rules to obtain the scaling factor E
J

of operand J are

described in equation (4) - (6).

x The word length of J , N
J

The word length of the operand J in a DFG is directly

related to the parameter N
J
, that characterises the word

length for the fixed-point representation of J . The value of

N
J
 does not take into account an extra bit that is allocated for

the sign. The word length N
J
 of operand J can be selected

using the rules described in (12) - (13) for fixed-point

multiplication operations. Similarly, the rules given in (14) -

(16) can be used to select the word length of the operand J

for fixed-point addition operations.

For U � Operator, U must be a member of one of the

following subsets:

x U � AddSub – adder/subtractor operator

x U � Multiplier – multiplier operator

Operator nodes are always connected to two input nodes and one

output node. In Figure 2, { 1, 2}AddSub A A and

{ 1}Multiplier M .

An operator node U is characterised by attribute bits(U). This

attribute represents the bit resolution (weight) of the operator. For

example, in fixed-point computation, a 16-bit adder might be

required for one operation while a 12-bit one might be sufficient

for another. This attribute defines the minimum bits required to

perform the operation U without losing the precision of the

result. The formula used to determine this attribute is given in

(17).

Each operator node U is associated with input and output

variables, which are described by the following notation:

x � �
o

v U - an output node that is connected to U . The DFG

used in this paper is arranged such that an operator is

connected exclusively to one output.

x � �
i

v U
G

- a vector of input nodes related to U . An operator

U is associated with at least one input node.

For example, in Figure 2, � �1 { }
o

v A C and � �1 { , }
i

v A A B
G

.

For clarity in the sorting procedure, the following notation is used

to describe the sequence of vertices related to any node v � V :

x precedingAdj(v) – a set containing preceding adjacent vertices

x subsequentAdj(v)– a set containing subsequent adjacent

vertices

For example, in Figure 2, precedingAdj(A2) = {C,F} and

subsequentAdj(F)={A2}.

3.2 DFG Traversal Algorithm
The DFG traversal algorithm proposed in this section allows

fixed-point design to be automated. Namely, the critical

parameters of each variable in the algorithm implementation

satisfying the output resolution constraint rc are calculated and

produced.

The proposed technique involves traversing the DFG which

represents the target algorithm such that all U � Operator and

J � Operand are visited. The fixed-point parameters associated

with each operator and operand, such as E
J

 and N
J

, are then

determined during this traversal. The process can be explained in

steps as follows:

1. Firstly, the nodes of the DFG are sorted according to their

arithmetic evaluation order.

2. Once the nodes are sorted, the DFG is traversed in the

forward direction. During traversal, the attributes of the

operator output are determined, including range(� �
o

v U) and

� �ovE U for all U � Operator.

x � �� � � �� �1o i
range v f range vU

G

x � � � �� �
2

()
oovE f range vU U

 where
1
f and

2
f are some given functions.

3. The word length of the output is determined based on the

output resolution criteria rc.

4. The DFG is traversed in the reverse direction and the word

length of operator inputs
� �iv

N
U

G for all U � Operator are

determined such that the output resolution criteria rc is met.

 � � � �� �3 oi vv
f NN UU

 JJG

The resolution of U is determined such that

 � �4 () ()
() ,

o i
v v

bits f N NU U
U JJG

where
3

f and
4

f are some given functions.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5606
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5606

In the subsections that follow, each of these steps will be

discussed in more detail.

3.2.1 Topological Sort
Evaluating arithmetic expressions as DFGs requires the order of

precedence to be maintained to avoid having incorrect results.

The order of evaluation is such that the topmost leaves of the

DFG are examined first and its root examined last. In Figure 2,

nodes A and B are to be evaluated before node 1A , and 1A

before C .

In developing the Java tool, a sorting algorithm has been utilised

to arrange computation nodes according to their evaluation order.

Sorting has been the subject of extensive research in computer

science literature due to its significance. Various sorting

techniques have been developed as a result [19], one of which is

termed topological sort. Topological sort involves a linear

ordering of all nodes in a directed acyclic graph (DAG) with

precedence constraints. It defines the sequence for traversing a

graph such that a node v � V is visited only after all preceding

nodes precedingAdj(v) have been visited.

The topological sort algorithm [19] can be summarised as

follows:

1. Find a node vk that has no successors, i.e.

subsequentAdj(vk) = {} or |subsequentAdj(vk)| = 0

2. Delete this node vk from the graph and all edges

connected to this node, i.e. ei � {(vj,vk), (vm,vk),…}
3. Insert node vk into a queue/list

The result of applying this sorting algorithm is a list that defines

the order in which the graph should be traversed. The use of the

topological sort algorithm allows the node entries described in the

input text file to be given in any order.

3.2.2 DFG Downward Traversal
Computation nodes are visited according to their topological

order, from the leaf nodes to the root. During graph traversal,

fixed point parameters are determined based on the rules

developed in Section 2.3. The following procedures are executed

when the graph is traversed downward:

For all J � InputVar or J �Constant,

1. Identify range(J)

2. Determine the scaling factor EJ based on range(J)

For all U �Operator,

1. Determine the dynamic range of the operator’s output

� �� �
o

range v U based on the range of the operator’s

input � �� �i
range v U

G
 .

2. Determine the scaling factor of the operator’s output

� �ovE U based on their respective dynamic range

� �� �
o

range v U .

3. Detect overflow if U �Adder

When the graph is traversed downward, different procedures are

carried out depending on whether the node is an operand or an

operator. The Java tool assigns the scaling factor for every input

variable and constant based on its given range. For every operator

encountered during downward traversal, the tool estimates the

dynamic range and determines the scaling factor associated with

the operator’s output.

For example, consider the operation C=A+B. Assume operand A

has a dynamic range of [10,20] and B [-15,5]. A graph G that

represents this operation will consist of 4 nodes,

{ , , , 1 | , , , 1 }V A B C Add A B C Operand Add Operator � � . The

order of traversal is such that input nodes are visited before

output, i.e. A : B : Add1 : C. The following operations are

performed at each node:

1. Visit A, assign
A

E = 5

2. Visit B, assign
B

E = 4

3. Visit Add1, assign range(C)=[-5, 25], assign
C

E = 5

4. Visit C, assign
C

E = 5

3.2.3 Determination of Output Word Length
Given a resolution constraint rc for the output variable Z , the

output word length can be determined using (18).

� �
2

max max() , min()
log 1

()
c

Z

Z Z
N floor

r Z
 �

§ ·
¨ ¸
© ¹

 (18)

The number of bits allocated for Z must allow the maximum

possible magnitude to be represented. As a signed magnitude

representation is used, the maximum amplitude can be obtained

by comparing the positive and negative extremes.

3.2.4 DFG Upward Traversal
Once the word length is of system output is determined, nodes in

the DFG are visited starting from the root and in reverse order to

the initial direction of traversal. As the DFG is traversed, the

word-length of operands and intermediate variables are assigned

by taking into account the constraint rc.

The following procedure is performed as each node is visited:

For all U � Operator ,

1. Determine
()iv

N
U

JJG for all U according to

x ()ovN U and ()ovE U

x The type of operator

2. Determine bits(U) – bit resolution of the operator. The

resolution of the operator is determined by choosing the

maximum word length of all operands connected to it.

� �() ()
() max ,

o i
v v

bits N NU U
U JJG

If operator U has a branched input, a uniform word length is

selected by examining all possible paths and choosing the

maximum word length among the values presented during upward

traversal.

3.3 Textual Representation of the Tool
The information on all nodes of the DFG, including their

parameters, is incorporated in a text file. Each line in the input file

describes a node in the DFG. Each field of information in each

entry is separated by a semicolon. Some keywords are used to

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5606
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5606

differentiate various types of nodes. For the DFG depicted in

Figure 2, some examples of node entries are given below.

operand;constant;A;3;A1
operand;inputVar;B,-1;1,A1
operator;adder;A1;A;B;C

The first line describes a node A , which is a constant input with

a value of 3 and is connected to operator 1A . The second line

describes a variable input B , with a dynamic range of [-1, 1] and

is connected to operator 1A . The third line describes an adder

1A , which is connected to two input nodes, A and B , and an

output node, C .

Similarly, the output of the tool is given as a text. For example,

after simulation run, the fixed-point parameters for operand

,A B , and 1A are given below (for rc =0.5).

 Label : A
 Is a constant
 SF : 2
 WL : 5
 Value : 3
 Neighbour node(s) : A1

 Label : B
 Is an input variable
 SF : 1
 WL : 4
 Minimum : -1
 Maximum : 1
 Neighbour node(s) : A1

 Label : A1
 Is an adder
 Bits : 6
 Neighbour node(s) : A B C

4. AN EXAMPLE OF SYSTEM DESIGN
In this section, the Java tool is employed to provide a fixed-point

realisation of a control algorithm.

4.1 EDFA Control Algorithm
Erbium Doped Fibre Amplifier, commonly abbreviated as EDFA,

is one of the more popular optical amplifiers [20, 21]. The EDFA

has contributed significantly to the success of Wavelength

Division Multiplexing (WDM) technology [22]. This technology

allows optical signals of a range of wavelengths, each represented

in an individual channel, to be transmitted simultaneously within

one optical fibre without interfering with one another.

The dynamic nature of optical networks allows channels in WDM

systems to be added or dropped arbitrarily due to network

reconfigurations or component failures [23, 24]. Disruptions to

the input signal channels can cause the EDFA gain and the power

in the surviving channels to fluctuate as a result. As transient

EDFA gain excursions can adversely degrade the performance of

the system [23-27], it is necessary to implement dynamic control

of the pump power in order to mitigate EDFA gain excursions. As

a consequence, the design of EDFA pump control algorithms has

been the subject of extensive research over the past decade [23,

24, 28, 29].

The EDFA control algorithm considered in this paper has been

proposed in [23, 30-32]. In this approach, the suppression of

EDFA gain excursions is achieved by adjusting the signal power

of the external laser pump, according to measurements of the

EDFA total input and output signal power.

The EDFA control algorithm, illustrated in Figure 3, is a closed-

loop system which consists of two components, a feed-forward

and a feed-back component. The feed-forward component

provides a quick adjustment to the pump power as soon as a

fluctuation in total input signal power is detected. The feed-back

component is a proportional integrator (PI) controller which

provides correction to the feed-forward values. The pump control

block combines the feed-forward and feed-back components to

produce a pump output in such a way that keeps the gain constant.

Two types of pump control, additive and multiplicative, are

considered. Both are illustrated in Figure 4.

Figure 3.Discrete time EDFA closed loop system

Figure 4. Discrete time pump-control block: a) additive type
and b) multiplicative type

The mathematical formulation of the discrete time EDFA control

algorithm can be found in [23, 30-32] and is summarised below.

1. Feed-forward component

� � � �in

ff ff s ff
U nT K P nT O � (19)

where � �
ff

U nT is the feed-forward component, � �in

s
P nT is

the input signal power,
ff

K and
ff

O are the feed-forward

constant and offset respectively.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5606
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5606

2. Feed-back component

� � � � � �
fb p p i i

U nT K E nT K E nT � (20)

where � �
fb

U nT is the feedback component,
p

K and
i

K are

proportional and integral constant respectively. � �
p

E nT and

� �
i

E nT represent the proportional and integral error

respectively.

3. Error formation

� � � � � �
0

in out

p s s s
E nT G P nT P nT � (21)

� � � �� � � �1
i i p

E nT E n T E nT � � (22)

where
0s

G is the desired gain. The proportional error is

calculated based on the difference between the desired output

signal power � �
0

in

s s
G P nT and the actual measured output

signal power � �out

s
P nT . The integral error is the summation

of proportional error over time.

4. Pump control block

Additive � � � � � �
p ff fb

P nT U nT U nT � (23)

Multiplicative � � � � � �� �1
p ff fb

P nT U nT U nT � (24)

where � �
p

P nT represents the pump power, which is the

primary output of EDFA control algorithm.

4.2 Fixed-point Realisation of EDFA Control
Algorithm
The realisation of EDFA control algorithm in fixed-point allows

an improvement in the execution speed over a floating-point

design. The control system is thus able to respond more rapidly to

the changes in network configuration.

In this paper, fixed-point realisation of EDFA control algorithm

involves three different stages of verification:

x Floating-point simulation

x Fixed-point simulation

x Emulation

In the first stage, a MATLAB Simulink model was developed to

simulate the behaviour of the EDFA closed-loop system. The

result of the floating-point simulation is used as a reference model

for the fixed-point equivalent. In the second stage, the EDFA

control algorithm is substituted with the fixed-point model,

according to the design generated by the Java tool. The last stage,

the EDFA emulation, combines the two components of the EDFA

amplification system (the amplifier and the control system),

which are implemented on two different platforms. The EDFA

control algorithm, which is run on a hardware platform, is

coordinated with the software simulation of the EDFA to form a

closed-loop system. In this paper, the algorithm is implemented

Stratix FPGA in fixed-point using a hardwired approach. Note

that the same input signal is used in all the three stages of

development.

In this paper, the control parameters are chosen to achieve a

desired steady-state gain
0s

G of 14 dB and a tolerance of

s
Gw =±0.1 dB. Using the formulation of EDFA dynamic model

found in [23,31-33], it can be shown that in order to achieve this

gain precision, the pump power has to maintain a resolution of

1.2059 mW. This value is specified as the output precision criteria

rc when designing the EDFA control algorithm in fixed-point

using the Java tool.

The representation of the feedback component of the EDFA

control algorithm as a DFG presents a challenge as the summation

operator introduces a cycle in its graph representation. This

challenge is addressed by making an assumption that

,i nE and
, 1i nE � are independent variables. The dynamic range of

the
, 1i nE � can be estimated through the EDFA simulation

environment, which allows the values of intermediate variables to

be read.

The results of floating point simulation are shown in Figure 5 and

Figure 6. It is shown that EDFA steady state gain of 14 dB is

achieved with the pump power depicted in Figure 6. A glitch

observed at t = 5ms and t =10ms is triggered by a fluctuation in

EDFA input signal power. It can be observed that while transient

of EDFA gain is suppressed, the pump power is adjusted at t =

5ms and t =10ms as the result of this variation.

1 2 3 4 5 6 7 8 9 10 11

x 10
-3

11

12

13

14

15

16

17

18

19

20

21

G
ai

n
(d

B
)

Time(s)

Figure 5. EDFA gain as a function of time for floating-point
multiplicative model

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

500

1000

1500

2000

2500

3000

P
u
m

p
 p

o
w

er
 (

m
W

)

Time(s)

Figure 6. Pump power as a function of time for floating-point
multiplicative model

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5606
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5606

The results of fixed-point simulation of EDFA control algorithm

is shown in Figure 7 and Figure 8. In Figure 7, it is shown that

0s
G of 14 dB is maintained and a tolerance of

s
Gw =±0.1 dB is

achieved. In Figure 8, it can be observed that the pump power

signal is quantised as a result of realising the control algorithm in

fixed-point.

2 4 6 8 10 12

x 10
-3

12

13

14

15

16

17

18

19

Time (s)

G
ai

n
 (

d
B

)

Figure 7. EDFA gain as a function of time for fixed-point
multiplicative model

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (s)

P
u

m
p

 p
o

w
er

 (
m

W
)

Figure 8. Pump power as a function of time for fixed-point
multiplicative model

The results of EDFA emulation are shown in Figure 9 and Figure

10. It is shown that a good agreement exists between these results

and those produced using pure software

simulation.

2 4 6 8 10 12 14

x
10

-3

13

13.5

14

14.5

15

15.5

16

16.5

17

17.5

18

Time(s)

E
D

F
A

 G
ai

n
 (

d
B

)

Figure 9. EDFA gain as a function of time, as obtained from
system emulation

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (s)

P
u
m

p
 P

o
w

er
 (

m
W

)

Figure 10. A plot of pump power as a function of time, as
obtained from system emulation

5. CONCLUSION
In this paper, it has been shown that the process of realising an

algorithm in fixed-point can be facilitated through the numerical

analysis of quantisation errors which are propagated in the

system. This realisation concept has been implemented as a tool

that automates the computation of this error analysis based on the

data flow diagram representation of the algorithm.

It was shown that given a generic algorithm consisting of

primitive arithmetic operations, the developed framework can

provide a fixed-point design which is capable of satisfying the

precision constraint of its primary output. Specifically, it has been

demonstrated that the technique is viable for the practical

implementation of EDFA control algorithms on a dedicated

hardware platform. Agreeable outcomes are observed between

floating-point simulation, fixed-point simulation, and fixed-point

implementation of the control algorithm on Stratix FPGA.

6. REFERENCES
[1] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde, and I.

Bolsens, "A methodology and Design Environment for DSP

ASIC Fixed Point Refinement," in Proc. Design, Automation
and Test in Europe Conference and Exhibition. Munich,

1999, pp. 271-276.

[2] M. Barberis and N. Shah. (2004). Migrating Signal

Processing Applications From Floating-Point to Fixed-Point.

Catalytic Inc. White Paper. [Online]. Available:

http://agilityds.com/literature/catalytic-whitepaper-2.pdf

[3] T. Aamodt and P. Chow, "Embedded ISA support for

enhanced floating-point to fixed-point ANSI-C compilation,"

in Proc. Int. Conf. on Compilers, Architecture and Synthesis
for Embedded Systems San Jose, California, 2000, pp. 128-

137.

[4] H. Keding, M. Willems, M. Coors, and H. Meyr, "FRIDGE:

A Fixed-Point Design and Simulation Environment," in

Proc. Design Automation and Test in Europe. Paris, France,

1998, pp. 429-435.

[5] N. Doi, T. Horiyama, M. Nakanishi, and S. Kimura,

"Minimization of Fractional Wordlength on Fixed-Point

Conversion for High-Level Synthesis," in Proc. Asia and

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5606
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5606

South Pacific Design Automation Conference, 2004, pp. 80-

85.

[6] K.-I. Kum and W. Sung, "Word-length optimization for high

level synthesis of digital signal processing systems," in Proc.
IEEE Int Workshop on Signal Processing Systems, 1998, pp.

569-578.

[7] J. Yli-Kaakinen and T. Saramaki, "An efficient algorithm for

the design of lattice wave digital filters with short coefficient

wordlength," in Proc. IEEE Int. Symposium on Circuits and
Systems, vol. 3. Orlando, Florida, 1999, pp. 443-448.

[8] M.-A. Cantin, Y. Blaquiere, Y. Sarvaria, P. Lavoie, and E.

Granger, "Analysis of quantization effects in a digital

hardware implementation of a fuzzy ART neural network

algorithm," in Proc. IEEE Int. Symposium on Circuits and
Systems, vol. 3. Geneva, 2000, pp. 141-144.

[9] V. J. Mathews and Z. Xie, "Fixed-point error analysis of

stochastic gradient adaptive lattice filters," IEEE Trans.
Acoustics, Speech, and Signal Processing, vol. 38, pp. 70-80,

1990.

[10] M. P. Leong, M. Y. Yeung, C. K. Yeung, C. W. Fu, P. A.

Heng, and P. H. W. Leong, "Automatic Floating to Fixed

Point Translation and its Application to Post-Rendering 3D

Warping," in Proc. 7th IEEE Symposium on Field-
Programmable Custom Computing Machines. Napa Valley,

CA, 1999, pp. 240-248.

[11] S. Kim and W. Sung, "A floating-point to fixed-point

assembly program translator for the TMS 320C25," IEEE
Transactions on Circuits and Systems II, vol. 41, pp. 730-

739, 1994.

[12] G. A. Constantinides, P. Y. K. Cheung, and W. Luk,

"Heuristic Datapath Allocation for Multiple Wordlength

Systems," in Proc. Design, Automation and Test in Europe.
Munich, 2001, pp. 791-796.

[13] G. A. Constantinides, P. Y. K. Cheung, and W. Luk,

"Optimal datapath allocation for multiple-wordlength

systems," Electronic Letters, vol. 36, pp. 1508-1509, 2000.

[14] W. Sung and K.-I. Kum, "Simulation-based word-length

optimization method for fixed-point digital signal processing

systems," IEEE Trans. Acoustics, Speech, and Signal
Processing, vol. 43, pp. 3087-3090, 1995.

[15] M. Willems, V. Bursgens, T. Grotker, and H. Meyr,

"FRIDGE: an interactive code generation environment for

HW/SW codesign," in Proc. IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, vol. 1. Munich, 1997, pp.

287-290.

[16] M. Willems, V. Bursgens, T. Grotker, and H. Meyr, "System

level fixed-point design based on interpolative approach," in

Proc. 34th Design Automation Conference, 1997, pp. 293-

298.

[17] K.-I. Kum, J. Kang, and W. Sung, "A floating-point to fixed-

point C converter for fixed-point digital signal processors,"

in Proc. 2nd SUIF Compiler Workshop, 1997.

[18] A. A. Gaffar, O. Mencer, W. Luk, and P. Y. K. Cheung,

"Unifying Bit-width Optimisation for Fixed-Point and

Floating-Point Designs," in Proc. 12th IEEE Symp. on Field-
Programmable Custom Computing Machines, 2004.

[19] R. Lafore, "Graphs," in Data Structures & Algorithms in
Java. USA: Mitchell Waite, 1998, pp. 495-533.

[20] G. P. Agrawal, "Optical Amplifiers," in Fiber-Optic
Communication Systems, K. Chang, Ed., 3rd ed. New York:

John Wiley and Sons, 2002, pp. 226-278.

[21] S. V. Kartalopoulos, "Light Amplifiers," in Introduction to
DWDM Technology: Data in a Rainbow. New York: Wiley -

IEEE Press, 2000, pp. 119-130.

[22] Guide to WDM Technology & Testing : A Unique Reference
For the Fiber-Optic Industry, 2nd ed. Quebec City, Canada:

EXFO Electro-Optical Engineering Inc., 2000.

[23] M. Males, "Suppression of transient gain excursions in an

erbium-doped fibre amplifier," Ph.D. dissertation, the

University of Western Australia, Nedlands, WA, Australia,

2007.

[24] C. Tian and S. Kinoshita, "Analysis and Control of Transient

Dynamics of EDFA Pumped by 1480- and 980-nm lasers,"

Journal of Lightwave Technology, vol. 21, pp. 1728-1734,

2003.

[25] J.-P. Laude, DWDM: Fundamentals, Components, and
Applications. Norwood, M.A.: Artech House Publishers,

2002.

[26] A. K. Srivastava, Y. Sun, J. L. Zyskind, and J. W. Sulhoff,

"EDFA transient response to channel loss in WDM

transmission system," IEEE Photonics Technology Letters,

vol. 9, pp. 386-388, 1997.

[27] M. I. Hayee and A. E. Willner, "Transmission Penalties Due

to EDFA Gain Transients in Add-Drop Multiplexed WDM

Networks," IEEE Photonics Technology Letters, vol. 11, pp.

889-891, 1999.

[28] S. Y. Park, H. K. Kim, G. Y. Lyu, S. M. Kang, and S.-Y.

Shin, "Dynamic Gain and Output Power Control in a Gain-

Flattened Erbium-Doped Fiber Amplifier," IEEE Photonics
Technology Letters, vol. 10, pp. 787-789, 1998.

[29] Y. Sun, A. K. Srivastava, J. Zhou, and J. W. Sulhoff,

"Optical fiber amplifiers for WDM optical networks," Bell
Labs Technical Journal, vol. 4, pp. 187-206, 2002.

[30] M. Males and A. Cantoni, "Experimental Comparison of

Two Pump Control Schemes for Suppressing Transient Gain

Excursions in EDFA's," in Proc. Asia-Pacific Optical
Communications. Shanghai, China, 2005, pp. 6021-48.

[31] M. Males and A. Cantoni, "Stability Analysis of Two

Closed-Loop Systems for Suppressing Transient Gain

Excursions in an Erbium-Doped Fibre Amplifier," in Proc.
45th IEEE Conf. on Decision and Control. San Diego, USA,

2006, pp. 6425-30.

[32] M. Males, A. Cantoni, and J. Tuthill, "Suppression of

Transient Gain Excursions in EDFA's: Comparison of

Multiplicative and Additive Schemes for Combining

Feedforward and Feedback Blocks," in Proc. Optical
Networks and Technologies Conf. . Pisa, Italy, 2004, pp.

319-326.

[33] A. Bononi and L. A. Rusch, "Doped-Fiber Amplifier

Dynamics: A System Perspective," IEEE Journal of
Lightwave Technology, vol. 16, pp. 945-956, 1998.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5606
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5606

