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ABSTRACT

A flexible simulation model is presented to study different
variants of software transactional memory (STM), like pes-
simistic STM or optimistic STM either with inplace memory
updates or write buffering.

The dynamic behavior of transactions is encoded in timed
statecharts as provided by the simulation tool AnyLogic in
its implementation of real-time UML. Their graphical rep-
resentation helps to convey the key design issues of the sim-
ulation model within this publication. Statistically signif-
icant numeric results for varying parameters, like number
of threads, number of transactional operations, number of
transactional data objects, are obtained efficiently as part
of a Parameter Variation Experiment.

Categories and Subject Descriptors

C.1.2 [Computer Systems Organization]: Processor Ar-
chitectures—Multiprocessors; C.4 [Computer Systems Or-
ganization]: Performance of Systems

1. INTRODUCTION
With the increased computational power of multi-core pro-

cessors, the concept of transactional memory (TM) has re-
ceived a lot of attention as an alternative to traditional lock-
based concurrent programming. Whereas the latter relies
on the skills of the application programmer to write cor-
rect code that exploits the computational power efficiently,
a TM system provides primitives to the programmer to label
critical code with external memory accesses, so-called trans-
actions, and resolves resulting conflicts between concurrent
transactions at run-time. Thus, drawbacks of lock-based
programming may be avoided, namely

• the inefficiency of too coarse-grained locks, which pre-
vent the execution of concurrent threads, when they
actually could be executed in parallel, and

• the enhanced programming complexity of too fine-grained
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locks, which increases the likelihood of deadlocks or
other incorrect program behavior.

Outside of the TM system, transactions (including several
read and write operations to transactional memory) appear
to be executed atomically, while internally the TM system
deals with several transactions at the same time in a consis-
tent way. This includes ensuring a consistent view of the
transactions on the transactional data and the detection
and resolution of conflicting data accesses by the transac-
tions. Incompatible actions of two concurrent transactions
will cause one to be stalled [18] or eventually aborted [14]
and restarted, which eliminates the problems mentioned above
for fine-grained locking. On the other hand, non-conflicting
transactions may execute unaffectedly until they success-
fully finish (i.e., commit), which accounts for the potentially
higher efficiency of TM systems.

Many different TM systems have been proposed (and also
implemented) with different mechanisms for meta-data or-
ganization, conflict detection, contention management and
consistency check policy [15]. The primitives needed to sup-
port these tasks can be implemented in software [13, 22, 21],
in hardware [14, 11, 5, 1, 20, 18] or a combination of both,
i.e. hybrid TM [7]. Software TM (STM) can avoid most
of the HTM design complexity and may therefore be con-
sidered a more attractive alternative. Still, various tradeoffs
exist between the mentioned TM tasks to be implemented in
software and need to be taken into account in order to pro-
vide a reasonable performance. For instance, when should
transactional data which is write-accessed actually be up-
dated? Does updating at acquire time (inplace memory up-
dates with potential roll-back) outperform updates at com-
mit time (write buffering)? As the number of design pa-
rameters grows, the design decisions become more and more
challenging.

In this paper, we present a simulation model to explore
this design space. Most of the work on the performance
analysis of transactions is dedicated to database systems
(see e.g., [10, 23]). Aspects related to the specific state of a
transaction, like the amount of data held in shared/exclusive
state, are often omitted in database studies, but are deter-
minant for TM system performance. Compared with analyt-
ical models [10, 12] for TM, the presented simulation model
captures more details and allows to validate assumptions
employed in more abstract models. Compared with experi-
mental system implementations, the simulation model may
more easily be extended by alternative or additional system
features and is usually evaluated more efficiently. Moreover,
its presentation in form of real-time UML statecharts (as re-
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alized in the simulation tool AnyLogic [6]) provides insight
into the dynamic behavior of the model. Together with sta-
tistically significant numerical results, this establishes trust
with the simulation model.

The model distinguishes three fundamental concepts of
STM:

• pessimistic STM, where an ongoing write access to
transactional data does not only preclude other write
and read accesses, but (potentially concurrent) read
accesses also preclude write accesses

• optimistic STM with write buffering, where write ac-
cesses may preempt ongoing read accesses and locally
saved changes due to write operations are only made
visible to other transactions at commit time of the
writing transaction

• optimistic STM with inplace memory updates, where
write accesses may preempt ongoing read accesses and
changes due to write operations are visible already at
acquire time, but might have to be rolled back in case
the writing transaction aborts

Related Work

Many performance studies on TM consider implemented sys-
tems with a specific set of TM features (e.g., [11, 18, 1, 2] for
HTM and [8, 19, 9, 16] for STM). Different TM implementa-
tions are also compared. As one example for HTM systems,
we mention [4], which compares the proposed HTM design
with a conventional HTM system with eager or lazy conflict
detection. Some STM systems also allow the evaluation of
different design alternatives within their restricted set of re-
alized TM features. Happyville [19] provides an eager con-
flict detection scheme with either optimistic or pessimistic
concurrency control for reads. Optimistic STM with write
buffering and inplace memory update is compared in [21, 9],
however, – as opposed to this paper – on implemented sys-
tems with their intrinsic implementation-dependent effects
and based on traces for recorded workloads. Differences also
exist in details related to conflict detection, version manage-
ment and conflict resolution, e.g., regarding a global version
lock.

In this paper, we pursue a first step to a systematic com-
parison of the various design decisions in STM (in the simu-
lation tool AnyLogic). For HTM systems, which differ sub-
stantially from STM systems (e.g., versioning), such a sys-
tematic comparison has been attempted in [3]. A simulation
study (tailored to the SPARC architecture) evaluates impor-
tant HTM tradeoffs for (idealized) base HTM systems and
– based on performance results and common ”pathological”
program execution behaviors – suggests system refinements.
Our methodology is different in that we propose to abstract
away any implementation detail and focus on the algorith-
mic performance of the various TM designs. This principle
approach is shared with [24]: the execution model therein,
however, does not consider transactional memory execution,
but rather inter-dependencies between sets of potential par-
allel tasks. As a result, the execution model, which moreover
is limited to optimistic concurrency, cannot provide insight
into the dynamics of TM algorithms.

Finally, we point out that in other publications, write
buffering is sometimes referred to as write-back or lazy ver-
sion management, and inplace memory update as write-
through, eager version management or undo logging.

In Section 2, we describe the different base STM systems
along with the STM primitives that are implemented in the
simulation model, which is presented in Section 3. The nu-
merical results of Section 4 compare the three STM variants.
Finally, we conclude in Section 5.

2. CONSIDERED STM VARIANTS
Different design decisions, e.g., for meta-data organiza-

tion, conflict detection, contention management and vali-
dation, lead to various STM systems [15]. According to
the categorization given in [16], the common features of the
STM systems discussed in this paper can be characterized
as obstruction-free and object-based with per-object meta-
data.

However, regarding contention management and valida-
tion strategy, the three STM systems studied here differ
fundamentally.

Generally, for all STM systems, concurrent transactions
may or may not be granted access to some transactional data
they want to read or write depending on whether a conflict is
detected or not. Typically, such situations are described by
means of locks, where we distinguish between read and write
locks. Locks may be acquired any time between the initial
access to the data (or its meta-data descriptor) and the re-
lease of all locks the transaction holds (either at commit or
abort time). Except when stated otherwise, we assume that
locks are acquired with the initial access, i.e., at open time,
also called eager acquisition. In case a write lock is success-
fully acquired, the respective transaction is said to hold a
write lock on the data or equivalently to own the data. With
the exception of speculative readers (see below for optimistic
STM), a write lock usually corresponds to exclusive access
to transactional data. Read locks are commonly associated
with shared access to transactional data, at least tolerating
parallel read accesses. We will see that for optimistic STM
so-called write-after-read (WAR) situations may occur, in
which different transactions may hold read and write locks
on the same transactional data.

Different STM systems require a different degree of visi-
bility of locks distributed for transactional data, especially
when conflicts may be resolved by one transaction actively
aborting another transaction. In this paper, we do not con-
sider such active aborts and therefore locks cannot be stolen
by one transaction from other ones. Thus, it suffices that
the meta-data for transactional data indicates if the data is
write-locked or not (and additionally for pessimistic STM,
how many transactions currently have a read lock on the
data). Otherwise, transactions are invisible to other trans-
actions, in particular an accessing transaction need not know
which other transactions hold locks on a specific transac-
tional data. The data structures required for a correspond-
ing meta-data organization, e.g., in terms of transaction
records and transaction descriptors, is beyond the scope of
this paper and is described elsewhere (see e.g., [16]). The
possible validation strategies required for optimistic STM,
including the versioning, will be discussed in the respective
subsections.

2.1 Pessimistic STM
Pessimistic STM pursues a conservative approach in that

it prevents transactions from entering an inconsistent state
a priori. Therefore, validation checks to detect such incon-
sistencies become unnecessary.
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To achieve this, (potentially) conflicting write and read
locks on the same data are not granted. More precisely, a
write lock on some data item is only granted to a transaction,

• if this data item is not locked by any other transaction,
neither by a write lock nor by read lock(s).

The above definition implies that if the accessing transaction
has a unique read lock on the data item, this read lock may
be converted to a (unique) write lock.

On the contrary, a read lock on some data item is only
granted to a transaction,

• if this data item is not locked via a write lock by
any other transaction. However, the data item may
be locked by any number of concurrently active read
locks.

Whenever a transaction encounters a situation in which one
of its read/write lock requests is not granted (possibly also
after some stalling), it aborts and restarts. When the trans-
action aborts or finishes successfully, it releases all collected
read and write locks.

The asymmetry in these lock acquisition rules obviously
favors read operations over write operations and therefore
pessimistic STM is expected to perform better with appli-
cations requiring fewer write operations. In these cases, the
efficiency is particularly improved by the fact that no valida-
tion checks - which are usually associated with read accesses
only – are needed. Logically, it does not matter for pes-
simistic STM, when (e.g., at open time or at commit time)
the changes of the write operations are actually performed
to the transactional data.

On the down side, excluding the parallel execution of po-
tentially conflicting transactions, which, however, might fin-
ish successfully after all due to their timing, ignores a pos-
sible performance improvement.

2.2 Optimistic STM
Optimistic STM provides more opportunities for parallel

execution than pessimistic at the risk of more aborted/restarted
transactions. The key difference is that now a write lock on
some data item is only granted to a transaction,

• if this data item is not locked via a write lock by any
other transaction.

Obviously, other transactions may hold a read lock on the
data item at the instant the write access is granted, which
leads to the above-mentioned WAR situation with both trans-
actions being in a potential conflict. Under certain circum-
stances, typically if the reading transaction finishes before
the writing transaction, this potential conflict does not im-
pact the behavior of the two transactions. Both may finish
successfully after all.

Admitting such speculative readers requires a versioning
mechanism to indicate to readers that transactional data has
been written upon and along with it a validation procedure
to detect states of data inconsistency (e.g., to detect that a
reading transaction is working with outdated transactional
data). We assume that such a validation check based on
version numbers of the transactional data is performed right
at the end of every read lock acquisition attempt and at
the final commit operation. (Naturally, such an incremental
validation approach may be loosened up to performing the
validation check only at commit time.)

Versioning essentially means to associate a global counter
(visible to any transaction) with each transactional data.
Write operations eventually increment these counters to in-
dicate that the transactional data has been modified. When
a transaction first reads transactional data and successfully
obtains a read lock, it records the value of its counter (i.e.,
the current global version number of the transactional data)
locally. In every validation procedure, the transaction com-
pares all locally stored version numbers with the respec-
tive current global version numbers. If any global version
number has been incremented by another transaction in the
meantime (i.e., any locally stored version number is smaller
than the corresponding global version number), the valida-
tion check fails and the validating transaction aborts and
restarts. Otherwise the transaction may continue with the
next operation.

When global version numbers are to be incremented also
depends on the instant when changes of the write operations
are actually performed to the transactional data. In this
paper, we distinguish two cases: write buffering and inplace
memory updates.

• With write buffering, transactions manipulate local
copies of the transactional data until the changes are
made visible by a successful commit operation.

• With inplace memory updates, the transactions di-
rectly manipulate the transactional data at lock acqui-
sition time, but save its original value in an undo log
in case the transaction needs to be rolled back due to
an abort. At abort, the logged original value is written
back to the global memory location of the transactional
data.

Transactions must keep track of which read and write
locks they have obtained in the course of their lifetime. We
also refer to these two sets of locks as the read set and write
set, respectively. The elements in the write set indicate
which version numbers will have to be incremented by the
transaction, while the version numbers of the elements in
the read set have to be compared during validation.

2.2.1 Optimistic STM with write buffering

Only when the transaction can finish successfully (indi-
cated by a successful validation of the read set in the com-
mit operation), it copies the local values of the transactional
data in its write set to the global memory locations thus
making the changes visible to other transactions. At the
same time (a compare-and-swap instruction ensures atomic-
ity), the transaction increments the version numbers of these
data items. Therefore, with write buffering, version numbers
are only incremented at commit time, i.e., more precisely at
the end of a successful commit operation and thus at the
end of the lifetime of the transaction.

Let us have a look at the implications for WAR situa-
tions on some transactional data: The reading transactions
(i.e., the transactions with read locks on the data) will not
abort due to the considered WAR data, as long as they do
not attempt to write access this data and do finish before
the transaction with the recently acquired write lock fin-
ishes. A repeated read request on the same data may be
granted despite this write lock by another transaction, since
the reading transaction already has the read lock and the
data has not yet been modified visibly.
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Other transactions with a novel read request to the data
will, however, be aborted due to the write lock. An aborted
and restarted writing transaction does not affect the reading
transactions, because an abort operation does not increment
the version numbers of the write-locked data.

While concurrent transactions may operate on different
values for the transactional data (due to local copies), (in-
cremental) validation checks guarantee that each transac-
tion has a consistent view of the transactional data from its
(re)start until commit. For instance, data that is only read
will always have the same value for a transaction in this
period; otherwise the transaction will be aborted.

2.2.2 Optimistic STM with inplace memory updates

With inplace memory updates for writes, where global
transactional memory locations are already modified at write
lock acquisition time, a transaction increments the version
numbers of transactional data in its write set both at commit
and abort time. (Instead, version numbers might be incre-
mented at write lock acquisition time only, but this would
essentially mean that writing transactions preempt reading
transactions immediately reducing the potential for parallel
executions.)

In principle (i.e., for ideal systems), optimistic STM with
inplace memory updates might also operate without incre-
menting version numbers at abort time. However, STM
implementations require incrementing version numbers at
aborts, since the global memory locations of transactional
data have actually been modified with the inplace memory
update (irrespective of the roll-back), which should be in-
dicated to other transactions. In effect, the versioning of
optimistic STM with inplace memory updates forces specu-
lative readers to be aborted more frequently (than with write
buffering), which can be considered as favoring restarted
writing transactions.

As a consequence, this behavior implies a lower degree of
concurrency in WAR situations. The reading transactions
will not abort due to the considered WAR data, as long as
they do not attempt to write access nor to read access this
data and do finish before the transaction with the recently
acquired write lock finishes or aborts.

As for optimistic STM with write buffering, validation
checks ensure a locally consistent view of the transactional
data, even though inplace memory updates are visible to
other transactions in principle. But since the write lock ac-
quired at open time blocks novel access requests from other
transactions and since repeated read accesses by specula-
tive readers will lead to their abort, written data becomes
effectively visible only after a successful commit.

In summary, increasing version numbers at abort and abort-
ing speculative readers with repeated read accesses to WAR
data constitute the major differences of optimistic STM with
inplace memory updates as compared with optimistic STM
with write buffering.

2.3 Comparison of STM variants
The interaction of different mechanisms makes it very dif-

ficult to predict which STM variant will perform better in
which situations. The general considerations of this sec-
tion are intended to motivate the presented STM variants
and deepen the understanding of the mechanisms at work.
Obviously, TM systems can exploit the available degree of
concurrency best, if only few transactions must be aborted.

This corresponds to applications with limited potential for
conflicts.

For example, if all transactions consist of read opera-
tions only, all discussed STM variants should exhibit the
same qualitative performance – with quantitative benefits
for pessimistic STM due to saved validations. An increasing
number of write accesses increases the potential of conflicts.
With few write operations (and thus few conflicts), opti-
mistic STM should perform better than pessimistic STM,
since in the latter case write lock acquisition is treated more
conservatively and leads to more frequent aborts. Specula-
tive readers in optimistic STM increase the opportunity for
parallel execution.

With few aborts, the variants of optimistic STM behave
very similarly qualitatively. Inplace memory updates should
then benefit from the more efficient implementation of write
operations. With increasing number of conflicts, the ver-
sioning of optimistic STM with inplace memory updates
produces more aborts so that write buffering may eventu-
ally perform better. Aborted speculative readers, as any
restarted transaction, waste computational resources, es-
pecially if these transactions comprise a large number of
read/write operations.

It should be clear that – with increasing potential of con-
flicts – it becomes more and more difficult to argue about the
involved tradeoffs. Dedicated numerical experiments with
the simulation models of the next section help to determine
turning points in performance behavior.

3. THE SIMULATION MODEL
We have developed a common simulation model for the

three discussed variants of STM. Apart from many other
input parameter options, a graphical user interface allows
the user to select between pessimistic STM and optimistic
STM, and in case of the latter choice, between inplace mem-
ory update and write buffering. Integrating the behavior of
the three STM variants into the same statechart lets the
model appear more complex than necessary for a single spe-
cific variant, but this drawback is more than compensated
by the fact that identical code can be reused as often as
possible with less maintenance effort.

The model has been built in the high-level simulation tool
AnyLogic (version 6.2.2, [6]) using its proprietary imple-
mentation of real-time UML. For discrete-event simulations,
AnyLogic combines composite structure diagrams for mod-
eling the system architecture and statecharts for modeling
the dynamic behavior of the components, called active ob-
jects. Active objects may communicate via message passing
(of which we make no use in the simulation model presented
here) or global variables. In our context, each thread in
which transactions may be processed corresponds to a (repli-
cated) active object, while the transactional data represent
global variables. State changes in the statecharts are trig-
gered by (timeout/condition/message) events, which may
be controlled by guards, and associated with actions, whose
code is given in the programming language Java.

3.1 Basic assumptions and data structures
In the current version of the simulation model, we do

not consider meaningful read and write operations for the
transactions, i.e., the specific values to be read and written
are of no interest and, in fact, not necessary for a general
performance comparison of the STM variants. Meta-data
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structures, like transaction records and descriptors, are only
included in a minimalistic way, i.e., as needed in order to
reflect the behavior of the STM variants.

Thus, the transactional data are viewed as L homogeneous
data items only identified by an identification number, id.
The Java class DataUnit for the data items also contains
meta-data variables to record the current version number,
verNumber, the current number of concurrent read accesses,
currAccess (needed only for pessimistic STM, otherwise
helpful for debugging), and a boolean variable to indicate
whether the data item is currently write-locked, exclusive.
The following code snippet shows excerpts of the class defini-
ton for DataUnit:

public class DataUnit {

public int id = 0;

public int verNumber = 0;

public int currAccess = 0;

public boolean exclusive = false;

public DataUnit() /* default constr. */

. . .

}

The L data items may be realized as arrays or for reasons
of efficiency, especially for very large values of L, as hash
tables, in which the data items reside only as long as they
are being accessed. Version numbers are always initialized
with 0. In case hash tables are used, the version numbers
at the end of the simulation run would then give no clue on
how many write operations/accesses have been performed
to this data.

Each transaction maintains its own read and write set,
realized as hash tables in the simulation model composed of
objects of the class RWSetElement:

public class RWSetElement {

public int dataUnitId = 0;

public int verNumber = 0;

public RWSetElement() /* def. constr. */

. . .

}

For write sets, the variable verNumber merely serves to
produce debug information, since the global version number
of a data unit must not be incremented, while a transaction
is holding an exclusive write lock.

The input parameter N specifies the number of threads,
i.e., the maximal number of concurrent transactions com-
peting for transactional data. Note that non-transactional
code to be executed between transactions may reduce the
number of concurrent active transactions. Each transaction
has to perform a number of subsequent (static) read and
write operations successfully in order to finish. This num-
ber of operations may be fixed to k for all transactions or
chosen according to some discrete distribution with mean k

(and additionally optional lower and upper bounds). We do
not assume any particular ordering of the read and write
operations in a transaction. Instead, any lock request is is-
sued as a write access with probability lw (and as a read
access with probability lr = 1 − lw). All transactional data
objects are equally popular, i.e., have the same probability
of being accessed. The assumptions about transaction sizes

and request patterns are quite generic and independent of
any specific application. If statistical data is available for an
application, the simulation model is easily extended to in-
corporate this information. Similarly, the simulation model
assumes a simplified timing behavior for write and read ac-
cesses, validation and commit procedures, etc., as outlined
below. This is also easily refined based on available input
data for these steps.

3.2 Dynamic behavior of a single transaction
The dynamic behavior of each thread process, and thus of

each transaction, is defined by a single AnyLogic statechart
of which N instances execute in parallel during a simula-
tion run. Its graphical representation with simple states
(rounded rectangles), branch states (diamonds) and transi-
tions (arcs) is shown in Figure 1.

Within a thread,

• a transaction may be executed (see activities between
transitions TxnStart and TxnEnd),

• a set of operations on non-transactional data of a pos-
sibly random duration may be performed before or af-
ter a transaction (in states PreInternOps and PostIn-
ternOps, respectively),

• or the thread may be idle for some period (in state
IdleThread), which indicates that too few concurrent
processes are active to exploit the multiple cores.

In our simulation, the threads – started at time 0 in state
PreInternOps (see initial pointer ThreadStart) – continue to
run until the stopping criteria are reached.

The action of transition TxnStart generates the sequence
of read and write operations on items of the L transactional
data. First, the number of static operations to be executed
within the transaction is determined – either fixed according
to input parameter k or randomly (e.g., according to a beta
distribution with lower and upper bound). Then, the type
for each operation, i.e., read or write, is selected according
to the write access probabilities lw. At the same time, the
transactional data item to be accessed is picked from the L

items according to a discrete-uniform distribution.
The sequence of operations is maintained throughout the

lifetime of a transaction, i.e., it survives possible restarts
until the final commit (see state Commit)1.

Except after the final operation, the (unkilled) transaction
returns to state ProcessRequest in order to process the next
operation in the sequence (if the previous operation has been
successful) or to restart with the first operation (otherwise).
In the former case, ProcessRequest is entered via transition
MoreOperations, in the latter via state Abort and transition
TxnRestart.

Depending on whether the next operation is a write re-
quest or a read request, the transaction branches at the
topmost branch state following transitions WriteRequest or
ReadRequest, respectively.

In what has been described so far, the statechart behaves
identically for all considered STM variants. Different lock
management, validation and versioning within the transac-
tions are partly reflected in graphical elements of the stat-
echart, which are applicable only for specific STM variants,

1If livelocks cannot be resolved by the delay in state Abort, a
transaction may not be restarted and an independent trans-
action will be started instead (see transaction TxnKill).
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Figure 1: Statechart of thread and transaction be-
havior

but mostly within the Java action codes associated with
transitions (especially with respect to versioning). Before
we discuss the differences on our model walk-through along
the read and write branches, we link three of them directly
with the statechart in Figure 1:

1. Since pessimistic STM does not perform any read set
validation, the transitions ValidationFailedR and Vali-
dationFailedC will never be taken and no time is spent
in states RSValidationR and RSValidationC.

2. In optimistic STM, existing read locks on transactional
data do not block a write access to this data and there-
fore transition DUNotReadLocked in the write branch
is always chosen over the other alternative transitions
of the branch state before simple state DUinWriteSet.

3. The transition CondRepeatedRead only applies to op-
timistic STM with write buffering, for which specula-
tive readers may successfully read-access WAR data
repeatedly.

Let us now consider the read branch starting with transi-
tion ReadRequest. The first branch state checks if the tran-
sition already owns the data unit (i.e., holds a write lock on
the data), which would imply the right to read the data.

If so (i.e., an element with the respective dataUnitId is
in the write set), read and write sets do not have to be
modified and the transaction may directly validate the cur-
rent read set in optimistic STM or directly process the read
operation in pessimistic STM. In the former case, the read

set is validated in simple state RSValidationR (timing) and
the following branch state (decision), before the operation is
processed in state ProcessOp, if the validation is successful.
Recall (see comment 1. above) that the option for pessimistic
STM makes the validation procedure immediate and always
successful, i.e., it is eliminated.

More commonly, the transaction with the read request
will not have the write lock for the data and will be directed
along transition NotOwnerWriteLockR. By looking up the
respective DataUnit object’s member variable exclusive,
the subsequent check finds out, if the transactional data is
write-locked or not. In the former case, the transaction may

• try to reaccess the data unit after some (possibly ran-
dom) delay (path via state WaitR)

• or may have to abort (path via state Abort).

• Only for optimistic STM with write buffering (see com-
ment 3. above), a repeated read access might initiate a
validation procedure via transition CondRepeatedRead.

If the data unit is not write-locked (transition DUNotWrite-
ExclusiveR), it is added to the read set (at the entry to state
DUinReadSet). The read set is then validated or skipped as
outlined above.

In the read branch, the transaction may be aborted, if a
write lock by another transaction is encountered or if the
validation procedure fails (only for optimistic STM). In the
action code of the transition emanating from state Abort, all
locks that the transaction holds are released, i.e., the write
and read sets are deleted and the variables in the respective
DataUnit objects updated. More precisely, a released read
lock decrements the counter currAccess (which is always
incremented when a respective novel element is entered into
any read set) and a released write lock switches the boolean
variable exclusive to false. In case of optimistic STM with
inplace memory updates, the version number verNumber of
any transactional data indicated by the write set must be
incremented additionally.

Up to the branch state before the simple state DUin-
WriteSet, the write branch is essentially identical to the
corresponding part of the read branch, including the state
WaitW. Related specifiers differ only in the last letter (W
instead of R). Note, however, that transition OwnerWrite-
LockW leads directly to state ProcessOp, since our STM
variants never validate the read set after a write request,
and that the additional branch state to check for repeated
read accesses becomes obsolete in the write branch. Also,
a different backoff mechanism may be employed for write
accesses in state WaitW.

Let us assume that the write branch has certified that
no write lock has been issued on the requested transactional
data, i.e., the statechart control is in the branch state before
state DUinWriteSet. According to comment 2. above, only
pessimistic STM additionally checks that neither a read lock
is held by another transaction2. Only then may the transac-
tion add the respective write lock to the write set (at entry
of state DUinWriteSet) and continue with processing the
operation. Otherwise, the transaction aborts (i.e., enters
state Abort) or goes into backoff (i.e., enters state WaitW),
as already known from other failures in the lock acquisition
phase.
2If the considered transaction holds a unique read lock on
the data unit, the read lock will be replaced by a write lock.
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Like for reads, the transaction is simply delayed in state
ProcessOp by a period, which reflects the complexity of the
transactional memory operation, e.g., the actual manipula-
tion of data values, as well as other types of operations, e.g.,
integer operations, which may be included in the transac-
tional memory region before the next transactional memory
operation.

If the final operation of the transaction has been processed
successfully, the statechart leaves the loop (via transition
NoMoreOperations) and performs the final read set valida-
tion by comparing the version numbers. The logic of the
statechart in simple state RSValidationC and the following
branch state is in complete analogy to the validation in the
read branch - only applied to a larger read set. A successful
validation initiates the commit operation (see state Commit)
with different timing for the three STM variants. The con-
sequences of the action code of transition TxnEnd, however,
will be very similar in all cases:

• The version numbers of the transactional data, for
which write locks are held, are incremented (not nec-
essary for pessimistic STM).

• All read and write locks are released, i.e., read and
write sets of the transaction are dissolved.

• All transaction-related information (counters, data struc-
tures, etc.) is reset.

Finally, we address a technical issue pertinent to the im-
plementation of statechart behavior in AnyLogic, but ele-
mentary for the functionality of our model. Generally, a
transaction must not be interrupted by other transactions
between checking the conditions for lock acquisition and ac-
tually entering the corresponding element into the read or
write set. This is guaranteed in the statechart by calling the
methods DUinReadSet() and DUinWriteSet(), which per-
form the latter set operations, in the entry action code of the
states DUinReadSet and DUinWriteSet, respectively. The
sequence of branch states leading to these simple states is
executed without consuming time and cannot be interleaved
with activities of other transactions.

3.3 Performance measures
Naturally, a discrete-event simulation model allows to spec-

ify all kinds of performance measures. For example, one
could easily find out, whether the last operation of an arbi-
trary transaction is more likely to produce a restart, if it is
a read or a write operation. In order to compare the three
STM variants, we investigate rather global characteristics in
this paper, like

• the mean number of restarts per transaction, denoted
by E[R]

• the mean number of steps per transaction, E[S], in-
cluding all read/write requests and the commit opera-
tions also in repeated attempts after restarts,

• the mean number of locks held by a transaction (at
request epochs), E[Q]

We are primarily interested in the first two characteristics:
E[R] tells us how often (on average) an arbitrary transaction
had to abort and restart, while – for identical values of E[R]
– a smaller value of E[S] indicates that these aborts occurred

earlier (on average) in the static sequence of read/write oper-
ations. In ideal conflict-free situations with optimal perfor-
mance, E[R] and E[S] should assume their minimal values
0 and k + 1, respectively. While k denotes the length of a
transaction, parameter E[S] may be called its lifetime (in
terms of numbers of steps). Finally, the mean number of
locks, E[Q], or more precisely the product E[Q]E[S], serves
as a rough measure for lock-related overhead, including the
overhead due to meta-data organization, allocation of local
copies, read/write set management, etc.

We mainly consider discrete-time statistics to reduce the
impact of timing of the involved activities in order to high-
light the performance differences primarily due to the con-
tention mechanism and lock management. Naturally, the
timing, like the duration of read and write operations, inher-
ently influences the behavior of the STM variants. To under-
stand this issue better, we will also look at the throughput
(i.e., the number of processed transactions per time unit) in
the next section.

In the simulation model, statistics are collected in two
phases. In the active object Thread, which contains the stat-
echart of Figure 1, transaction-specific information is col-
lected in counters or Statistics objects provided by Any-
Logic, as appropriate. For instance, an integer variable is
sufficient to count the number of restarts a transaction un-
dergoes (i.e., whenever state Abort is reached in the stat-
echart), while recording the current number of locks that
the transaction holds (i.e., when leaving state ProcessRe-
quest) in a discrete-time Statistics object is most conve-
nient in order to compute the average value. In the first
phase, counters need to be incremented and Statistics ob-
jects updated at the appropriate (and quite intuitive) loca-
tions in the statechart. In fact, the simulation model does
this for many more and much more detailed statistics than
mentioned above. In the second phase, the action code of
transition TxnEnd records all statistics of this transaction
in model-global Statistics objects in active object Main,
from which the final performance measures are computed at
the end of the simulation.

In order to obtain statistically significant simulation re-
sults, we perform as many replications as required to achieve
a relative error of 5% for confidence intervals of level 95 %.
This kind of simulation control is applied only to the per-
formance measures listed above (except for the throughput)
and partly supported by the tool AnyLogic in the Parameter
Variation experiment. In addition, Parameter Variation ex-
periments facilitate to produce simulation results for varying
input parameters, like increasing write request probabilities
lw.

4. NUMERICAL RESULTS
Applying simulation control as described in the previous

section, we conduct an experiment series to investigate the
performance differences between the three STM variants.
For all cases, the input parameters L, N and k are set to
values of a magnitude as they might occur in typical bench-
mark applications (see STAMP [17] for comparable values):
L = 1.000.000, N = 16, K = 100. The write access proba-
bility lw is varied between 0 and 1. Each transaction must
perform a sequence of k static operations, in which only
repeated reads may occur, but no repeated writes. Fur-
thermore, Table 1 summarizes the timing associated with
the transitions emanating from simple states for pessimistic
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STM. While most timeout values are 0 or constant, but pos-
sibly dependent on the current size of the read and write sets
(i.e., ‖RS‖ and ‖WS‖, respectively), the time spent in states
ProcessOp and Abort is distributed according to a (shifted)
exponential distribution.

Table 1: Sojourn times in simple states for pes-
simistic STM

state delay distr. mean
ProcessRequest constant 0

DUinWriteSet constant 0.1 ‖WS‖
k

DUinReadSet constant 0.1 ‖RS‖
k

RSValidationR constant 0
ProcessOp exponential 1.0

RSValidationC constant 0

Commit constant 0.1 ‖RS‖+‖WS‖
k

PostInternOps constant 0
IdleThread constant 0

PreInternOps constant 0

Abort constant 0.1 ‖RS‖+‖WS‖
k

and exp. 1.0

In order to reflect the operational overhead for optimistic
STM, e.g., due to validation, some timeouts are increased
by some constant as compared with pessimistic STM:

• Validation time in each of the states RSValidationR
and RSValidationC depends on the size of the read set

and takes 0.01 ‖RS‖
k

time units.

• Since optimistic STM with write buffering requires a
commit operation to copy the local write buffers into

global memory locations, the value 0.1 ‖WS‖
k

is added
to the sojourn time in the state Commit in this case.

• Since optimistic STM with inplace memory updates
has to roll back the original values in its undo log dur-

ing an abort, the value 0.1 ‖WS‖
k

is added to the sojourn
time in the state Abort in this case.

Figures 2 to 4 show the behavior of the performance mea-
sures E[R], E[S] and E[Q] for the three STM variants as the
probability lw increases. (We omit the confidence intervals
in the figures, since they are rather small and would impair
the readability of the graphs.) All performance measures for
a single variant with the statistical significance mentioned
above were obtained in less than two hours on a Windows
PC with Intel Pentium 4 CPU with 3.4 GHz and 1 GB RAM.
Each replication, of which between 4 and 11 had to be per-
formed for a fixed value of lw, processed around 100,000
transactions.

With more and more write operations, the mean num-
ber of restarts and the mean number of steps per transac-
tion generally increase due to more conflicts. However, the
mean number of locks held per transaction, E[Q], slightly
decreases, since the restarts cause the transaction to spend
relatively more time in states where it holds fewer locks. As
already indicated in Section 2.3, the three variants exhibit
similar performance in the extremal points, i.e., for lw = 0
and lw = 1. With either only read or only write operations,
the qualitative behavior of pessimistic STM and optimistic
STM (with eager lock acquisition) is actually identical. For
lw = 0, no restarts take place and each transaction finishes
in exactly 101 steps (k operations plus the commit) leading
to a mean number of held locks of 50. For lw = 1, the mean
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Figure 2: Mean number of restarts E[R] per trans-
action vs. write probability lw
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Figure 3: Mean number of requests E[S] per trans-
action vs. write probability lw

number of restarts, E[R], grows to a value of around 0.076,
which causes the transactions to finish in slightly more than
105 steps (on average) and hold around 49.57 locks (on av-
erage).

Between the extremal points, optimistic STM shows a sig-
nificantly better performance than pessimistic STM (with
respect to E[R] and E[S]), especially in the range 0.4 <

lw < 0.6, where the mean number of restarts per transac-
tion is decreased between 20% and 25%. For larger values of
lw, the curves for pessimistic and optimistic STM approx-
imate each other less smoothly than for smaller values of
lw.

For eager lock acquisition, the two optimistic STM vari-
ants do not differ significantly in performance. In Figures 2
to 4, the two optimistic curves can hardly be distinguished.
With the rather few conflicts observed in our experiments
(as desired for realistic applications), the differences in the
versioning rules have only limited impact on the TM perfor-
mance. Especially Figure 2 would support the claim that in
our setting optimistic STM with inplace memory updates is
to be favored over optimistic STM with write buffering: with
the almost identical performance in terms of the low number
of restarts per transaction, the implementation by means of
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Figure 4: Mean number of held locks E[Q] per trans-
action vs. write probability lw

inplace memory updates should be more efficient due to the
lower lock overhead. Recall that then these implementations
reduce the need to copy memory locations to a minimum.
Since an average transaction encounters much fewer abort
operations than the one successful commit operation (with
the set write WS usually being smaller at abort time than at
commit time), the different timing addressed above should
lead to slightly shorter transaction processing times for in-
place memory updates - and thus to slightly larger through-
puts. However, Figure 5 suggests that this is only the case
for lw ≥ 0.5, i.e., when there are more write than read op-
erations. For lw ≤ 0.4, the throughput of optimistic STM
with write buffering appears slightly larger. Theoretically,
both throughputs should be identical at lw = 0 (when the
write set WS is always empty). So, we can only attribute
the deviation of the two optimistic curves in this point of
Figure 5 to the variability of the timing behavior.

The theoretic throughput relation of pessimistic STM at
lw = 0 is captured correctly by Figure 5: as pessimistic
STM does not perform validation checks, transactions finish
faster, which results in higher throughput. With increas-
ing lw, the relationship with respect to optimistic STM is
already inverted at lw = 0.2, when the lower number of
restarts and the higher degree of concurreny begins to pay off
for optimistic STM. However, we point out that this turning
point as well as the quantity of the throughput differences
may be very sensitive to specific model parameters. For ex-
ample, we observed that increasing the validation times as-
sociated with states RSValidationR and RSValidationC by a
factor of 10 pulls down the throughputs for optimistic STM
dramatically at lw = 0. As a consequence, pessimistic STM
then maintains a higher throughput in the range lw ≤ 0.5.
This highlights the importance of proper and efficient vali-
dation schemes.

Finally, we mention that optimistic STM with write buffer-
ing may be (and is often) combined with lazy lock acquisi-
tion, which may further improve the performance of this
variant. We plan to investigate the impact of this and other
modifications of the basic STM variants in future studies.

5. CONCLUSIONS
Optimizing transactional memory systems is a very chal-
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Figure 5: Throughput (in number of transactions
per time unit) vs. write probability lw

lenging task, as it involves dealing with very complex pa-
rameter interactions. This complexity does not facilitate
the understanding of TM systems. Currently implemented
TM systems realize various design decisions and measured
performance differences across systems are very hard to re-
late to specific aspects. Therefore, we propose in this paper
a simulation model that integrates three basic STM variants
into a single model for the purpose of a detailed performance
comparison. In its current version, the model allows the user
to assess baseline algorithms for pessimistic STM and opti-
mistic STM with either write buffering or inplace memory
updates. Thus, the performance impact also of minor quali-
tative differences may be assessed, specifically in this paper
between the two optimistic STM variants with eager lock
acquisition. For parameter settings common for STM appli-
cations, we found that optimistic STM may improve perfor-
mance in terms of mean number of restarts per transaction
by around 25%. In future work, this simulation model will
be extended to study different validation strategies for opti-
mistic STM, different backoff mechanisms before and after
abort and deadlock avoidance mechanisms.
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