An Integrated Tool for Development of Overlay Services

Yuki Sakai
Graduate School of
Information Science and
Technology
Osaka University, Japan
y-sakai@ist.osaka-u.ac.jp

Khaled El-Fakih
School of Engineering
American University of

Sharjah, UAE
kelfakih@aus.edu

ABSTRACT

We propose an integrated environment for supporting the devel-
opment of overlay services. Given a service description written
in a centralized and network-independent way using a high-level
Petri net, our tool automatically derives its distributed version tak-
ing into consideration the targeted overlay network specification
and network/computing resources. Furthermore, our tool interprets
the distributed version and allows the overlay nodes to execute the
service as specified in the description. During that time, the tool
monitors the utilization of overlay links and occupation of proces-
sors so that related information can be provided to the developers.
Consequently, the developers only give the service description and
our toolset supports the subsequent design and development tasks.
An experimental study on using the toolset and a realistic applica-
tion example are provided to show the effectiveness of our method-

ology.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed applications; 1.6.7 [Simulation and Modeling]:
Simulation Support Systems—Environments; D.2.2 [Software En-
gineering]: Design Tools and Techniques—Petri nets

Keywords

Distributed systems, Overlay networks, Petri Nets simulation, Sim-
ulation tools

1. INTRODUCTION

High speed broadband networks with high performance comput-
ers have brought us a novel computing concept where services are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIMUTools 2009, Rome, Italy

Copyright 2009 ICST 978-963-9799-45-5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5580
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5580

Akihito Hiromori
Graduate School of
Information Science and
Technology
Osaka University, Japan
hiromori @ist.osaka-u.ac.jp

Hirozumi Yamaguchi
Graduate School of
Information Science and
Technology
Osaka University, Japan
h-yamagu @ist.osaka-
u.ac.jp

Teruo Higashino
Graduate School of
Information Science and
Technology
Osaka University, Japan

higashino @ist.osaka-u.ac.jp

provisioned by cooperative peers connected via virtual connections
in a decentralized manner. In such a configuration of service plat-
form, highly-dedicated services can be designed and deployed flex-
ibly by combining several simple services provisioned by different
service providers. As an example, let us consider a content sharing
service among several online video service providers. We assume
that users may require video with appropriate format and quality
according to the capability of their terminals (PCs, mobile phones
or others) and their access bandwidth. For provisioning a highly
functional service, the service may be designed in this way; the re-
quested video is searched over the different online video servers,
and if a requested video is found and if its quality or format is
not appropriate to the configuration of the requester’s terminal, the
video is transcoded and the result is returned to the requester.

The development of such overlay services is not an easy task due
to the following reasons. First, we need to distribute the service on
overlay networks consisting of many servers. However, consider-
ing the availability of the network and computing resources, it is not
easy to deploy the service in such a way that the performance of the
service is maximized. Second, to evaluate the performance of the
deployed service, we need to observe the link utility, computation
load of nodes and throughput of the service in real distributed envi-
ronments, which is not easy as well. Furthermore, we need to setup
the environment of experiments, implement the distributed codes,
locate the codes on the overlay nodes, establish connections among
the nodes, and collect logs for the evaluation of the performance.

In this paper, we propose an integrated environment for sup-
porting the development of overlay services. In particular, we use
CPN Tools [14] for writing services in a centralized and network-
independent way. Then, our tool analyzes a given service descrip-
tion and automatically derives a distributed version of the service
taking into consideration the targeted overlay network specifica-
tion. Our tool interprets the distributed version of the service and
let the overlay nodes execute the service as specified in this descrip-
tion. During that time, the tool monitors the utilization of overlay
links and occupation of processors so that related information can
be provided to the developers. In particular, our tool is equipped
with the resource optimizer, which determines the best way to ex-
ecute the service in the targeting overlay network to maximize the
performance of the service. As an application example, we have
developed a video transcoding service on an overlay network con-
sisting of four overlay nodes using our environment. The experi-

mental results have shown that our environment was very helpful
to shorten the response time of the service.

Several frameworks and related toolsets have been proposed and
developed for similar or different objectives. For designing service
overlay, Refs. [6, 17, 18] have dealt with service design method-
ologies, and Refs. [1,11, 12, 15, 16] have developed some support
tools for development of overlay networks. Compared with these
methodologies or tools, our contribution is summarized as follows.
First, we provide a toolset with several unique features in support-
ing high level design of service overlay. Using the algorithm pre-
sented in our previous work [19], the tool can automatically derive
a distributed service description from a given centralized service
description written in high-level Petri nets. Also the tool has the
resource optimizer that allows to optimize the performance of the
service. By these features, developers can design the optimized ser-
vices using powerful GUI from CPN Tools, without knowing the
overlay network specification. Second, the tool has several func-
tions for program deployment, debug and performance monitoring.
Finally, using a realistic example service, we have conducted ex-
periments in real distributed environment to demonstrate the ad-
vantages of our tool. A more detailed discussion on the advantages
of our integrated environment along with some related methodolo-
gies will be given in Section 6.

2. SERVICES IN OVERLAY NETWORKS;
ARCHITECTURE AND EXAMPLE

An overlay network consists of overlay nodes (or simply nodes,
hereafter) with network connections between every pair of nodes.
Thus, an overlay network can be modeled as a complete graph.
A service is a computation flow consisting of a set of “subtasks”.
In our methodology, developers can write the service as a central-
ized program, but when the service is deployed on an overlay net-
work, the overlay nodes need to execute the computation flow in
distributed environment. For the distributed execution, we assume
that (i) each subtask is executed by one of the overlay nodes, (ii)
each data needed to execute the subtasks is located on one of the
overlay nodes, and (iii) every overlay node is capable of receiving
data needed for executing its own subtasks, executing the subtasks
and sending the modified or generated data to some other nodes.
Under this assumption, in the distributed execution, it needs to be
determined how these overlay nodes should behave to provide the
given service.

As an example of a distributed execution of a service on an over-
lay network, we consider a network of four fully-connected overlay
nodes as shown in Fig. 1 and a “Video for Mobile” service (VIM
service in short) that provides a video repository service for mobile
users as shown in Fig. 2. This service uses two video repositories
“A” and “B”, which are video databases for PC users and for mo-
bile users, respectively. The service also uses an index database that
holds information about the video contents stored in these reposito-
ries. Whenever a video is requested with a set of keywords, the ser-
vice first retrieves the video entries from the index that matches the
given keywords and returns the best-matched entry. If the requested
video is stored in repository “B”, then the service just obtains the
content from repository “B” and provides it to the requester. If the
requested video is stored only in repository “A”, which means that
the content is not prepared for mobile users, then the service ob-
tains the content from repository “A”, downsizes the video to fit
for mobile users, and then provides the downsized video to the re-
quester. In this case the downsized video is registered to repository
“B” accordingly. Finally, if no video entries match the requested
video, then the service just informs the requester by sending a re-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5580
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5580

overlay node

keywords . .
- search video index

> using keywords
video info

video repository index

a

obtain video from reposity = “repository B”

B

In which repository =
is the video stored?

video info

X 5 = “repository A”
Video Repository A (for PC) video info
. ideo inf L
\{ldeo ‘VI ©o info obtain video from
info repository A

ideo content

a

ideo

. video content
video content bontent i

video content .
transcode video and store

it to repository B

Video Repository B
(for Mobile)

video content

Figure 2: Overlay service example (“Video for Mobile” (VfM)
service); several services like video content server, video
transcoding and indexing are organized to provide highly-
structured services.

lated notification message.

In this example, we assume that the index and the repositories
are located on different overlay nodes for some technical reasons
such as for better load distribution or fault tolerance. Another pos-
sibility is that these resources are owned and managed by different
service providers in different locations. In such a distributed en-
vironment, a possible execution of the VIM service can be as fol-
lows: First, an overlay node that acts as the service access point
accepts a request with keywords from a requester. The request is
then forwarded to the overlay node that contains the index, which
in response retrieves entries that match the given keywords. Ac-
cording to the result, one of the overlay nodes that holds reposi-
tory “A” or “B” retrieves and transcodes the content if necessary.
The retrieved/transcoded content is sent back to the overlay node
that received the request which in turn notifies appropriately the re-
quester. In this execution, each retrieval or trancoding corresponds
to a subtask of the service.

In our previous work [19], we have proposed a method for mod-
eling overlay services that include conditional branches, parallel
and/or sequential executions of subtasks involving parameters (re-
sources). In particular, we proposed modeling overlay services us-
ing high-level Petri nets, namely the Predicate/Transition nets. We
also presented an algorithm to derive distributed specifications of
the services. In this paper, based on this work, we provide an in-

<x@z,y, z>

p4 p5

(a) Before firing of ¢. (b) After firing of ¢.

Figure 3: Example of Predicate/Transition net.

tegrated tool for supporting the development of overlay services.
This tool helps not only in designing distributed overlay services
but also optimizing and evaluating the performance of the services
in real distributed environment.

3. MODELING OVERLAY SERVICES

In this section we introduce the Predicate/Transition nets (Pr/T-
nets) [4, 5] model used for writing overlay services and we briefly
introduce the method proposed in our previous work [19] to derive
a distributed version of a given service. The tool presented in this
paper is based on this method.

3.1 Predicate/Transition Net

In this paper we deal with services written as Pr/T-nets. Pr/T-nets
are extended Petri nets where tokens have values and the firability
of transitions may depend on those values. We note that Coloured
Petri Net (CPN) [8] is a known high-level Petri net that falls into
this category. These models have enough modeling power, analyt-
ical power and tool support (such as CPN Tools [14]) to specity,
verify and analyze large and practical software systems [2], com-
munication protocols [3, 7], control systems and so on [8, 13].

In Petri nets, a place (denoted as a circle) and a transition (de-
noted as a rectangle) may represent data (or system state) and a
task, respectively. A place and a transition may be connected by a
directed edge called an arc (denoted by an arrow). Tokens (denoted
as black dots) in places represent the current state of the system,
and execution (“firing” in the Petri net terminology) of a transition
may consume/produce tokens from/to the places connected to the
transition.

Formally, in Pr/T-nets, each incoming arc to transition ¢ from
place p has a label (called an arc label) of the form of k1 X1k2 Xo...
where k; is a positive integer, X; is a n-tuple of variables like
(z1,x2,...r,) and n is an arbitrary non-negative integer assigned
to place p. Place p may have tokens, each of which is a n-tuple of
values C; = {c1,c2,...cn). A set of tokens which can be assigned
to the label of an incoming arc to transition ¢ is called an assignable
set of the arc. Moreover, a transition ¢ may be associated with a
logical formula of variables from the labels of incoming arcs of ¢,
called a condition. Conditions are depicted inside transitions rect-
angles. A transition ¢ may fire iff there exists an assignable set in
each input place of ¢ and the assignment of values to variables by
the assignable set satisfies the condition of ¢. Also, each outgo-
ing arc from transition ¢ to a place p’ has a label of the form of
K Y1k,Ys... where K is a positive integer and Y; is a n'-tuple of
values, variables on the incoming arc labels of ¢ or functions over

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5580
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5580

p3

p5

P1: service input

<"news, , Oct. 1">

P5: video repository index <keys>

<index>
<index>

<retrieve(keys, index)>

Tl:search video index

<repo.id>

P6: video repository

A (for PC) <repo,id>

T2: obtain video
from repository A
and transcode

P7: video repository <id: ranscode(retrieveid.a))>

T4: obtain video B (for mobile)

from repository B T5: notify no video

is found
repo=="null"

T3: register transcoded
video to repository B

repo=="B"
P

<null>

<retrieve(id b)> <add(id,v,b)>

P4 : service output

Figure 4: VIM service of Fig. 2 formally written in Pr/T-net.

Table 1: Example of place location table for VM service.
Places | Role Location
P1 service input Node 1
P4 service output
P5 video repository index Node 2
p2 index search result
pP6 video repository A Node 3
P3 repository search result
p7 video repository B Node 4

the variables. Therefore, if ¢ fires, the values of the labels on the
outgoing arcs from ¢ are determined by the assigned input tokens
according to the output arc labels. New sets of tokens are generated
and put into the output places of ¢.

In Fig. 3(a), the incoming arc to ¢ from p1, (p1,t), has the label
2(x,y) where = and y are variables. This means that two tokens
each consisting of a pair of values are necessary in place p; for
the firing of transition ¢. Here, since the following assignable sets
2(*a”,*c”) inp1 (“a” and “c” are strings here), (“a”) and (*“c”) in ps
and two tokens without values in p3 satisfy the condition of ¢, (x =
z Ay = w), t can fire using these sets. Note that tokens without
values are represented as black dots in the following figures. After
the firing of ¢, new tokens are generated to the output places p4 and
ps using those token values. The marking after the firing of ¢ is
shown in Fig. 3(b). Note that “@” is a concatenation function of
two strings. Thus a tuple of strings “aa”, “c” and “a” is generated
to ps. The arc label “1”, which means the delivery of one token
without values, is omitted in the following figures.

3.2 Overlay Service Description

Fig. 4 shows an example Pr/T-net which describes the VM
service of Fig. 2. Places are used to represent service access
points, persistent contents (or data repositories), and variables such
as those used to hold values of computations. In Fig. 4, places
P1 and P4 are introduced to represent the input and output ports
of service requests, respectively, places P6 and P7 are introduced
to represent repositories “A” and “B”, respectively, and places P2
and P3 are introduced to hold the results of retrievals of the index

Node 1 (P1,P4) Node 2 (P2,P5)

P1: service input

, Oct. 1">

<keys> P5: video
repository
index

Tlo12

<"news,
<keys>

Tl.read

<index>
<keys,index>

<keys,index>

<index>

T5 (121 N .
<retrieve(keys, index)>

<repo,id>

Tl.commit

<repo,id>

T5.read lq'u")
[]

repo
=="null"

Node 3 (P6, P3)

Node 4 (P7)

P7: video

repository B
) <repo,id> g:; mOb”eth <id,v>
P6: video C——1T2read T4readC— 1 [_1T3.read
repository]

A (for PC)

<repo,id,a> <id,v,b>

" 1T2.commit

1 - I
<id, transcode(retrieve(id,a))> T4.commit <add(dv.b)> T3 commit

1

1

T4 comml T3 commn T5.commit T4:0£21 T4 CL24 T (123 T5 (121
<relr|eve(|d b)> <v> <null>

U P4 : service output

<|d> <null> .
<repo,id>
repo repo
T4.starty=="B" T2.start y=="A" T5.start
[] [] [
d Il
= =l <¢> 4 {<|d> <id>

{<null>

T3.051T3 034

Figure 5: Distributed VfM service of Fig. 2 under place location of Table 1.

and repositories, respectively. In addition, we use the label of an
arc from a transition to a place to represent a subtask of the service
and also use the transition to represent synchronization of the ex-
ecutions of those subtasks. For example, transition 7'2 has places
P2 and P6 as input places and places P3 and P6 as output places.
The label (id, transcode(retrieve(id,a)) of arc (T2, P3) rep-
resents the subtask which transcodes the video content (the value
of retrieve(id, a)) obtained from repository “A” into a downsized
one. Transition 7’2 also has another label (a) of arc (172, P6)
which represents the subtask that returns the video content taken
from repository “A” to the original place. On firing of 72, these
two subtasks are executed in parallel.

3.3 Place Allocation to Overlay Nodes

One of the important features of our methodology is to decouple
service descriptions from overlay network specifications. Accord-
ingly, developers are allowed to write services without being aware
of the actual locations of data. That is, they can refer to and up-
date tokens in any place from any transition in writing services.
To accomplish this, the method given in [19] provides a way for
distributing the given service into overlay nodes knowing an al-
location of the places to the overlay nodes. However, it is clear
that the performance of a service is affected by this allocation of
places. For example, allocating a frequently-accessed database into
an overlay node with limited computation power usually leads to a
performance bottleneck. Accordingly, in [19], before distributing
a given service into overlay nodes, an optimal allocation of places
into the overlay nodes is determined using a given optimization
model. The model takes into account the computation power of the
overlay nodes, the network capability, and the execution orderings
of subtasks in given services and simulation experiments were con-
ducted to see the effectiveness of the optimization. The reader may
refer to [19] for a detailed description of the optimization model.

The tool presented in this paper implements this optimization
model. In addition, optimization is done using collected informa-
tion about the performance of the overlay nodes and the network.
This helps in optimizing the performance of a distributed service as
will be demonstrated in Section 5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5580
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5580

3.4 Deriving Distributed Version of Service

We briefly explain the algorithm for deriving a distributed ver-
sion of a given service. The algorithm inputs a Pr/T-net description
of a service and an allocation table of places into overlay nodes
(called place location table), and outputs a distributed version of
the service which is a set of Pr/T-nets that contain communicating
behavior between the nodes. Each obtained Pr/T-net corresponds
to the behavior description of an overlay node.

We assume that two places with a common name “X, ;;” (X is
used in the derivation algorithm and is « or y [19]) in the Pr/T-nets
of two different nodes where ¢ and j represent the end points (send
and receive buffers) of a reliable communication channel from node
i tonode j. If a token is put on place “X,, ;;” at node ¢, the token is
eventually removed and put onto the same place “X,, ;;” at node j.
These places are called communication places, and are like “fusion
places” in coloured Petri nets [8]. Note that » means that these
communication places are used with respect to the execution of
transition T, of the service. In the following figures, communica-
tion places are represented as dotted circles with their names inside.
Also, in a distributed version of a given service, we introduce a re-
served symbol denoted by ¢, used in tokens for notification purpose
only.

Fig. 5 shows a distributed version of the service of Fig. 4 on
four overlay nodes based on the place location table in Table 1.
The reader may refer to [20] for a complete description of the algo-
rithm. Here, we provide a simple example that demonstrates how
nodes can collaborate for providing a given service in a distributed
environment and how such cooperative behavior is described using
Pr/T-nets with communication places. In the algorithm, one of the
overlay nodes that has input places of a transition is selected as the
node that starts the execution of that transition (such a node is called
the primary node of the transition). In Fig. 5, node 1 is selected as
the primary node of T'1 since it has place P1. Whenever the input
place P1 of T'1 receives a token (a request with keywords), node
1 instantaneously sends this token to node 2 which has place P5
through the communication place “T'1.a;12” (it is worth noting that
both nodes 1 and 2 include the communication place “T'1.ci12”).
Afterwords, at node 2, the retrieval from video index P5 is done

and the result retrieve(keys, index) is generated as a token into
place P2 at node 2. This simulates the behavior of T'1. Place P2
represents a choice of 7'2, T'4 or T'5 based on the token value of
variable ‘repo” in P2, and this value has been determined as the
result of the previous computation retricve(keys,index). The
reader may verify that the Pr/T-nets of Fig. 5 simulate/realize the
service of Fig. 4.

4. INTEGRATED ENVIRONMENT

Our integrated environment mainly consists of the following func-

tional components; (i) distributed service generator that derives
distributed versions of services, (ii) resource optimizer that is the
part of the distributed service generator and suggests the “optimal”
allocation of places for better performance of the services, (iii) ser-
vice executer that interprets distributed service descriptions written
in Pr/T-nets and executes the services on overlay nodes, and (iv)
resource monitor that monitors overlay nodes and link status.

4.1 Distributed Service Generator and Resource

Optimizer

The distributed service generator takes as an input a service writ-
ten using CPN Tools, coded according to CPN Tools XML format,
and a description file of the given service parsed using our dedi-
cated/special XML parser designed for this purpose. Moreover, the
generator also takes inputs regarding the overlay network such as
the number of overlay nodes and the nodes identifiers, [P addresses
and ports.

The service description and the overlay service information are
given to the resource optimizer which generates, from the give in-
formation, an allocation of places, represented as a place location
table, that optimizes the performance of the service. Optimizing
the performance is done using the integer linear programing (ILP)
model given [19] and using the optimization functions provided
later in paper. We use CPLEX to solve the optimization problem
and obtain a place location table that achieves the best performance
in terms of the considered objective functions. Based on the derived
place location table, the corresponding distributed service descrip-
tion is then derived by the distributed service generator. However,
due to network uncertainty, the optimized place allocation does not
always provide a good performance. To obtain better performance,
we provide more information about the overlay networks’ status,
such as the overlay link status (delay and bandwidth) and the over-
lay node status (CPU load) which are usually difficult to predict in
advance. Thus, we may need to run again the optimization prob-
lem and evaluate, by monitoring the execution of the service, the
obtained results using the real network . We show how our toolset
achieves this goal in Section 5.

4.2 Service Executer

The architecture of the serive executer function is shown in Fig.
6. This function is realized by the cooperation of service access
point module, a controller, and a set of overlay nodes. The con-
troller consists of an interpreter of the distributed services, written
using CPN tools format, and a system controller that handles the
exchange of data among the overlay nodes and the execution of
subtasks according to the commands provided by the interpreter.
The service access point provides users with Web interfaces for ac-
cessing services and also has a system interface module that allows
the exchange of input/output data between users and services.

The system interface receives requests from users through the
Web-based user interface. Then, it requests the CPN interpreter to
put a corresponding token into the service. This request is passed
through the system controller. The system interface also requests

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5580
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5580

request

Controller Service Access Point reply

CPN —s| System request System) User
Interpreter Controller Interface Interface

eply

;

Data Excha'
Node B Data Exchange

Overlay Node

Figure 6: Overview of service executer.

System Controller

Node | | Message

Processor
Node 3
Node 2

Node 1
1/0 Controller I-—-I Command Controller |

 ——

| SSH Client /10 | | Data Synchronizer

e —HH

| SSH Client l—r| SCP Client etc.

|| Node Mapper | Event Monitor

Figure 7: System controller.

the controller to put corresponding data onto the overlay nodes.
After executing the service, the system interface receives the output
of the service and replies back to the system user. The output is
provided to the user as a URL.

The system controller is designed as shown in Fig. 7. The con-
troller manages the execution of at the overlay nodes by receiving
commands from the CPN interpreter. When the system starts, it ini-
tializes the CPN interpreter and registers the distributed service at
the interpreter. Also it sends the (compiled) subtask program codes
of the service to the overlay nodes that execute these subtasks. The
interpreter also sends to every overlay node an initialization shell
script that makes the node ready to execute the service by establish-
ing overlay links with other nodes. Managing connections between
the system controller and the overlay nodes is done by the Node
Maintainer. Moreover, the association of overlay nodes of a Pr/1-
net service with the actual overlay nodes is done by a Node Map-
per. Every connection is established using the Secure SHell (SSH)
program and the inter-process communication port of the system
controller is redirected to the standard I/O of the SSH program.

Message Processor is a message handler that communicates the
control messages between the system controller and the overlay
nodes. Finally, the Data Synchronizer collects the log files recorded
at every overlay node using the SCP or the RSYNC programs.

The system controller has an Event Monitor that intermediates
the CPN interpreter and the overlay nodes. When the CPN inter-

Table 2: System controller’s commands for overlay nodes.

command | receiver node’s behavior

connect node send a connection request to node

accept node wait for and accepts a connection request
from node

disconnect node disconnect the connection with node

suspend suspend execution

resume resume execution

transmit file node send file to node

execute prog execute prog

sync execute clock sync. module to synchro-
nize the nodes’ clocks with each other

exit quit from service

preter finds an executable transition, the transition is fired and the
programs that correspond to its subtasks are executed at the cor-
responding overlay nodes. Here, we note that in our model the
firing of transitions is not instantaneous since the subtasks asso-
ciated with transitions (represented as labels of output arcs) may
require some execution time. For example, in Fig. 5, T'2.commit
of node 3 has a function “transcode(retrieve(id,a))” on its out-
put arc. The function represents a subtask to downsize the video
retrieved from repository A and this subtask may take considerable
execution time for transcoding. Similarly, the transmission of large
data between overlay nodes (represented as communication places)
may require a transmission delay. The event monitor observes the
execution of the programs and the transmissions of data, and upon
completion, the monitor notifies to the CPN interpreter. The CPN
interpreter, after the firing of transitions, delays the generation of
tokens to the output places and also delays moving tokens between
communication places of different nodes until receiving the notifi-
cations from the event monitor. We note that we have developed a
dedicated/special CPN interpreter although there are several simu-
lators that can deal with high level Petri nets. This is done to take
care of aspects discussed above. In our case, the CPN interpreter
needs to interact with the system controller, that controls overall
execution of services on overlay nodes, and also needs to deal with
multiple Petri nets representing the behavior of overlay nodes.

4.3 Overlay Node Control and Network Man-
agement

The overlay nodes execute the programs, which correspond to
the subtasks of services including those for exchanging data be-
tween nodes, according to the commands given by system con-
troller. These commands are listed in Table 2.

We note that since we allow parallelism in the behavior of an
overlay node, while transmitting data from an overlay node, an-
other transmission request with the same destination node may oc-
cur. We may delay the latter request till the completion of the cur-
rent transmission. However, in this case, the response time of the
latter request may be long, especially when dealing with large-size
files such as video files.

To overcome this problem, we have implemented a multiplexer
that allows the sharing of an overlay link among multiple transmis-
sions of data with designated occupancy ratios. Here, the occu-
pancy ratio of one transmission is set as the ratio of the transmis-
sion’s throughput to the overlay link throughput. To realize parallel
transmission of data, the system segments the data into fixed size
pieces. Fig. 8 shows an example where three data transmissions
are transferred, in parallel, from node A to node B with occupancy
ratios 0.25, 0.25 and 0.5, respectively.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5580
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5580

Overlay Node A Overlay Node B

RxQueue comm1

Occupancy Ratio
TxQueue comm1 comm1, comm2, comm3

=0.25,0.25,0.5

comm3 comm1 comm3 comm2
TxQueue _Comm2

IS —Ti—s—]

TxQueue comm3

Figure 8: Overlay link control.

Table 3: Performance index of overlay nodes.

Node [Index
Node A 80
Node B 175
Node C 900
Node D 200

S. EXPERIMENTAL STUDY

In order to show the benefits of using our toolset, we provide a
software development process that uses our toolset for implement-
ing an example service. We show that our process and toolset facil-
itate the software development process and contribute to providing
an implementation, of a given service, that outperforms the one de-
rived using the existing method given in [19]. In the development
process, we first derive and optimize a distributed version of a given
service. Then, we deploy the obtained service on an overlay net-
work and evaluate the deployed service and related obtain results.
The obtained results are then used for deriving a service with better
performance.

As an application example, we consider a movie transforma-
tion service where a raw movie is concurrently coded into both
a high-quality MPEG2 movie for high-quality playback purpose
and a middle-quality MPEG4 movie for network streaming pur-
pose (Fig.9). Also, we assume four computers in the same net-
work segment of 100Mbps LAN. Since the computers have differ-
ent computing powers, we have measured the execution time of a
reference task at each computer and derived their corresponding
performance indexes based on the ratios of the inverse of the exe-
cution times (therefore larger values indicate higher performance).
Table 3 shows these indexes.

In the following, we summarized the development process that
we use for deriving a distributed implementation. The process has
three phases. In the initial phase, we derive an initial optimized dis-
tributed implementation without having any information about the
performance of the implemented service and the considered over-
lay network resources. The initial derived implementation is opti-
mized with respect to the number of messages exchanged among
nodes. In the second phase, we first execute the initial derived im-
plementation on the overlay network and record the execution logs
of subtasks and then optimize the total execution time of the sub-
tasks knowing the performance indexes of overlay nodes and the
executed implementation. However, we observe that after the sec-
ond phase there is still a possibility to obtain an implementation
with a better performance by considering the transmission delay
of large-size data. Consequently, in the third phase, we optimize
considering the sum of the total execution and transmission times.

5.1 Initial Phase

TO1{ Assemble and Anglyze

T05: Encode

T08: Multiplex T09: Muliplex

Figure 9: Movie transformation service (we omit transition la-
bels in this figure for simplicity).

Table 4: Place location table (in the initial phase)

Node | Place Assignment
Node A POI, P02, P03
Node B P04, P06

Node C P08, P09, P11
Node D P05, P07, P10

A given service may handle a large amount of multimedia data.
Therefore, in order to execute the service efficiently, we try to make
the traffic load between overlay nodes as small as possible. How-
ever, at the initial development phase, we do not usually know the
overlay network status, e.g., how much throughput can be achieved
between nodes. Therefore, we derive an optimal place allocation so
that the total number of the data exchanged among overlay nodes
can be minimized. For this purpose, we use the ILP constraints
given in [19] and the following objective function.

Z Z {Oéfj + ’ij}

i,JENXN(i#£j) teT

Frin =

where N and T denote the set of overlay nodes and the set of tran-
sitions, respectively, and Xf]- (X is either « or +y) is a 0-1 variable
that represents whether an « (or) message from node ¢ to node
j for simulating transition ¢ is sent or not. Thus, we derive an op-
timal allocation of places by minimizing function F,,;, subject to
the constraints given in [19]. For the considered service, the corre-
sponding obtained place allocation table is given in Table 4.
Afterwards, in order to evaluate the obtained service under the
obtained place locations, we execute the service on the overlay net-
work using our toolset. During the execution of the service, the
overlay nodes record the average CPU load to process each subtask
and the average network throughput to send data to other nodes.
After the execution of the service, we analyze the execution logs
collected from the overlay nodes and provided to the system con-
troller. Fig. 10 shows the timing chart and the network/node status.
The upper part of the figure shows when and by which node the

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5580
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5580

Table 5: Place location table (in the second phase)

Node | Place Assignment
Node A POI, P02

Node B P03, P04, P05
Node C P06, P08, P09, P11
Node D P07, P10

subtasks are executed and the corresponding exchanged date, and
the lower part shows the CPU load and network throughput of each
node at the corresponding time.

In this experiment, the response time of the service which is the
time to return the result to the requester, was 224 seconds (see the
x-axis of Fig. 10). The response time of the service is usually
determined by the longest path in the timing chart from starting
the execution of the service to ending the execution of the service.
Such a longest path is called a critical path and is a sequence of
subtasks (execution and data transmission). In Fig. 10, we observe
that the execution time of transition 7°03 is relatively large and 7703
affects the execution time of its succeeding transitions 7°05, 7°06,
T08 and T'09. Based on this result, in the second phase, we try to
minimize the total time of executing subtasks.

5.2 Second Phase

Let C}, denote the amount of required computation power, in
terms of performance index, to execute a subtask attached to a tran-
sition ¢, and PI; denote the performance index of node ¢. More-
over, let Sp; be a 0-1 (integer) variable that denotes the fact that
place p is located at node ¢ (the value is one) or not (the value is
zero). Using these variables, we introduce the following formula
for allocating places to nodes so that the total execution time is
minimized

Co
o= 53 s
i€EN peEP
where P is the set of places and g—}’i is the time for node 7 to ex-
ecute the subtask attached to place p. We apply the above to the
considered example and obtain the place location table given in Ta-
ble 5.

We have executed the obtained service and measured its perfor-
mance. Fig. 11 shows the time chart and the performance. We
observe that the response time is 99 seconds and it is less than half
that obtained in the initial phase. Thus, the second phase, con-
tributed significantly to obtaining an implementation with a better
performance. However, there are still some problems in Fig. 11.
The graph shows that the utilization of the overlay link from A
and B is high but the utilization of other links is low. Therefore,
we investigate the possibility of improving performance by utiliz-
ing other overlay links. In the initial and second phase, we have
optimized the performance by minimizing the number of data ex-
changes and the execution time of subtasks. However, Fig. 11
shows that the time occupied by data transmissions may affect per-
formance. Therefore, in the third phase, we try to adapt an opti-
mization strategy that considers both transmission and execution
times.

5.3 Third Phase

Let D(Xf]-) denote the size (amount) of data of a message Xf]-
(X is aor y) and let L; ; denote the overlay link throughput from
node ¢ to node j, which can be obtained as described in the second

T01
*—e
Subtask execution
Node A T03 -
—a
Data communication
(Upload)
" y—
Node B 5 -
4 v ata communication
\ (Download)
F Processwaiting for
execution
Node C T8
Critical path
T08 .
Ay Data stream
07 H
Node D
TO!
, T00% T P S O S PR
0 50 100 150 200 224 [sec]
100 % 100 Mbps
Node A
o " CPU Load [%]
100 % “~ Network
Node B Load [Mbps]
100 % 100 Mbps
Node C [t W AWMt tnAAAVVMANAMAL
A ALY
100 % 100 Mbps
Node D 1 MM%
B —— ————— . rr———————
0 50 100 150 200 224 [sec]

Figure 10: Timing chart of the service and node performance (in the initial phase).

Table 6: Place location table (in the third phase)

Node | Place Assignment
Node A P08, P09, PI1
Node B P04, PO6

Node C P01, P02, P03, PO5
Node D P07, P10

phase. Using these values, we have use the following formula

Foin = 37 3" 528

1€EN peP

" Z ZD(afj)*afj + D(vi;) * i

- . L,
1,JEN XN (i#£j) teT

to minimize the sum of the execution time and transmission time.
We apply the above to our application example and obtain the

evaluation shown in Fig. 12. The response time is 84 seconds

and thus by considering both the computation power and the traffic

amount, we could obtain a better performance than only using the

initial and second phases described above.

6. RELATED WORK

Recently, more and more computers are connected to the Inter-
net and new distributed computing paradigms such as P2P com-
puting [16], grid computing [9, 10], and service overlay [6, 17,
18] are arising. An important yet common concept to all these
Internet-based distributed paradigms is the management of over-
lay networks. Since computers engaged in a network are usually
heterogeneous and located on different network segments, we need
to care about the network dynamics and the heterogeneity of nodes

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5580
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5580

in designing a computation services of overlay networks. Further-
more, distributed programming is very complicated because we
need to organize several programs to provide services taking into
account the communication between these programs and services.
To overcome some of these difficulties, in overlay networks, sev-
eral computer-supported design methodologies have been consid-
ered [1,11,12,15,16].

iOverlay [11] provides a distributed platform on overlay net-
works. This is a middleware that has several features in implement-
ing and evaluating overlay services. For example, the middleware
has a mechanism for sending and receiving messages efficiently
on overlay networks and this allows developers to concentrate on
the development of applications on the overlay networks. Also,
Arigatoni [1] helps in implementing distributed services by offer-
ing a resource discovery mechanism to find resources needed to
execute services. Similarly researches like [12, 16] focus on allevi-
ating developers’ effort in designing distributed services. MACE-
DON [15] mainly focuses on helping the evaluation and analyses of
distributed services executed on P2P networks by allowing to use
both simulators and testbed networks like PlanetLab.

Compared with the above methodologies, in our work, we deal
with services that are decoupled from overlay network specifica-
tions. A service can be written in a centralized way, using a known
Petri net model, and developers can start building the design with-
out being aware of overlay network architecture. The distributed
version of the given service description is automatically derived to
alleviate developers’ load in writing distributed programs directly.
Also, the resource optimizer allows optimizing the performance of
the service using some given objective functions. Several objective
functions are provided for the convenience of deployment of pro-
grams with better performance. A toolset that integrates our work
with existing methods and tools is provided.

7. CONCLUSION

T01
Node A m
T02 @—® Subtask execution
Node B T03 _ B—H Data communication
hd (Upload)
Fe—k Data communication
_f Toa _ (Download)
\ To7 P Process waiting for
! execution
Node C d A 06 !
;ﬁ. s “ ° Critical path
% I o ;
05 Ay Data stream
Node D
TOS\\-
L L L L | L L L L 1 L L 1 L L | | | L
0 25 50 75 99100 [sec]
100 % 100 Mbps
Node A , \ —— CPU Load [%]
= Network Load
100% 100Mbps [Mbps]
Node B ,
100 % 100 Mbps
Node C
100 % 100 Mbps
Node D
1 L L L | L 1 L L | L L L 1 L L L | 1 | L
0 25 50 75 99100

Figure 11: Timing chart of the service and node performance (in the second phase).

In this paper, we have proposed an integrated development envi-
ronment for supporting the development of overlay services. In par-
ticular, we have used Pr/T-net and related tools for writing services
descriptions in a centralized and network-independent way. Then,
we have presented a tool for deriving a distributed version of the
service taking into consideration the targeted overlay network spec-
ification. Our tool interprets the distributed specification and let the
overlay nodes execute the assigned tasks of the specification. Dur-
ing that time, the tool monitors the utilization of overlay links and
occupation of processors so that related information can be used
for building a better implementation. Developers only write the
service description and our tool supports the corresponding subse-
quent design and development tasks. An experimental study using
a realistic application example is given. The study demonstrated
the benefits of using our tool for providing a distributed implemen-
tation of a given service and for finding bottlenecks in the imple-
mentation by taking into account the given overlay network proper-
ties. A re-design that fits better the considered network can then be
implemented without additional efforts from the developers side.
Currently, we are working on opening our tool to the public. Fur-
thermore, we are planning to extend the concept provided in this
paper to other domains such as P2P networks of sensor gateways.
In parallel, we would like to test the scalability of our tool on large-
scale overlay networks such as PlanetLab.

8. ACKNOWLEDGMENTS

This work was supported in part by Research and Development
Program of “Ubiquitous Service Platform” (2008), The Ministry of
Internal Affairs and Communications, Japan.

9. REFERENCES

[1] D. Benza, M. Cosnard, L. Liquori, and M. Vesin. Arigatoni:
A simple programmable overlay network. In JVA "06:

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5580
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5580

(2]

3

[4

[5

[6

[7

[8

[9

]

—

]

]

—

[l

—

Proceedings of the IEEE John Vincent Atanasoff 2006
International Symposium on Modern Computing, pages
82-91. IEEE Computer Society, 2006.

L. A. Cherkasova, V. E. Kotov, and T. Rokicki. On net
modeling of industrial size concurrent systems. In Proc. of
14th Int. Conf. on Application and Theory of Petri Nets 1993
(LNCS 691), pages 552-561. Springer-Verlag, 1993.

J. de Figueiredo and L. Kristensen. Using coloured Petri nets
to investigate behavioural and performance issues of TCP
protocols. In Proc. of 2nd Workshop on Practical Use of
Coloured Petri Nets and Design/CPN, pages 21-40, 1999.
H. J. Genrich and K. Lautenbach. The analysis of distributed
systems by means of Predicate/transition-nets. In Proc. of
Int. Symp. on Semantics of Concurrent Computation (LNCS
70), pages 123-147, 1979.

H.J. Genrich and K. Lautenbach. System modeling with
high-level Petri nets. Theoretical Computer Science,
13(1):109-136, 1981.

X. Gu, K. Nahrstedt, and B. Yu. Spidernet: An integrated
peer-to-peer service composition framework. In Proc. of
1EEFE Int. Symposium on High-Performance Distributed
Computing (HPDC-13), 2004.

P. Huber and V. Pinci. A formal executable specification of
the ISDN basic rate interface. In Proc. of 12th Int. Conf. on
Application and Theory of Petri Nets, pages 1-21, 1991.

K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis
Methods and Practical Use Volume 1: Basic Concepts.
Monographs in Theoretical Computer Science. An EATCS
Series. Springer-Verlag, 1997.

E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and

M. Leboisky. Seti@home-massively distributed computing
for seti. Computing in Science & Engineering, 3(1):78-83,
2001.

[10]

(11]

[12]

[13]

(14]

[15]

(16]

(17]

29 102 —e
Subtaskexecution
T03 o
e i ¢ T05 o m—m
Node C [1 Nyl Data
S 1 T06) (Upload)
Sk
Data communication
104 (Download)
Node B Y?_ T07 °
H Processwaiting for
Y A execution
Y ¥ v
Node A T 1?_ T09 o Critical path
Av Data stream
v
Node D
L L L L | L L L | L L L L | L L L
0 25 50 75 84 [sec]
100 % 100 Mbps
Node C
9 " CPU Load [%]
100% “ Network
Node B Load [Mbps]
100 % 100 Mbps
Node A
100 % 100 Mbps
Node D LN MAA S~ A
N N N N I N N N T N N N N I N . 1
0 25 50 75 84 [sec]

Figure 12: Timing chart of the service and node performance (in the third phase).

S. M. Larson, C. D. Snow, M. R. Shirts, and V. S. Pande.
Folding@home and genome @home: Using distributed
computing to tackle previously intractable problems in
computational biology. Computational Genomics, 2002.

B. Li, J. Guo, and M. Wang. iOverlay: A lightweight
middleware infrastructure for overlay application
implementations. In Proceedings of the Fifth
ACM/IFIP/USENIX International Middleware Conference
(Middleware 2004), also Lecture Notes in Computer Science,
pages 135-154, 2004.

B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,

T. Roscoe, and L. Stoica. Implementing declarative overlays.
SIGOPS Oper. Syst. Rev., 39(5):75-90, December 2005.

J. L. Rasmussen and M. Singh. Designing a security system
by means of coloured Petri nets. In Proc. of 17th Int. Conf.
on Application and Theory of Petri Nets (LNCS 1091), pages
400419, 1996.

A. Ratzer, L. Wells, H. Lassen, M. Laursen, J. Qvortrup,

M. Stissing, M. Westergaard, S. Christensen, and K. Jensen.
CPN Tools for editing, simulating, and analyzing coloured
Petri nets. In Proc. of 24th Int. Conf. on Application and
Theory of Petri Nets, 2003.

A. Rodriguez, C. Killian, S. Bhat, D. Kostic, and A. Vahdat.
MACEDON: Methodology for automatically creating,
evaluating, and designing overlay networks. In Proceedings
of the USENIX/ACM Symposium on Networked Systems
Design and Implementation (NSDI2004, pages 267-280,
2004.

K. Shudo, Y. Tanaka, and S. Sekiguchi. Overlay weaver: An
overlay construction toolkit. Computer Communications,
31(2):402-412, February 2008.

M. Wang, B. Li, and Z. Li. sFlow: Towards resource-efficient
and agile service federation in service overlay networks. In
Proc. of 24th Int. Conf. on Distributed Computing Systems

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5580
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5580

(18]

[19]

(20]

(ICDCS2004), 2004.

D. Xu and K. Nahrstedt. Finding service paths in an overlay
media service proxy network. In Proc. of Int. Conf. on
Multimedia Computing and Networking 2002 (MMCN2002),
2002.

H. Yamaguchi, K. El-Fakih, A. Hiromori, and T. Higashino.
A formal approach to design optimized multimedia service
overlay. In Proc. of 15th ACM Int. Workshop on Network and
Operating Systems Support for Digital Audio and Video
(NOSSDAV 2005), pages 57-62, 2005.

H. Yamaguchi, K. El-Fakih, G. v. Bochmann, and

T. Higashino. Deriving protocol specifications from service
specifications written as predicate/transition-nets. Computer
Networks Journal, 51(1):2581-284, Jan. 2007.

