
The Modelling4All Project

A web-based modelling tool embedded in Web 2.0
Ken Kahn

Oxford University
13 Banbury Road
Oxford, OX2 6NN
+44 1865 283 377

Kenneth.Kahn@oucs.ox.ac.uk

 Howard Noble
Oxford University
13 Banbury Road
Oxford, OX2 6NN
+44 1865 273 211

Howard.Noble@oucs.ox.ac.uk

ABSTRACT

The Modelling4All Project is building a web-based tool for
constructing, running, visualising, analysing, and sharing agent-
based models. These models can be constructed by non-experts by
composing pre-built modular components called micro-

behaviours. We are attempting to seed and nurture a Web 2.0
community to support modelling. Models, micro-behaviours,
lesson plans, tutorials, and other supporting material can be
shared, discussed, reviewed, rated, and tagged.

Categories and Subject Descriptors

I.6.2 Simulation Languages: Modeling methodologies, agent-

based, visual, discrete. H.3.5 Online Information Services:
Web-based services

General Terms

Design, Languages

Keywords

Agent-based modelling, NetLogo, simulation construction kits,
micro-behaviours, BehaviourComposer, Web 2.0.

1. SOCIAL SUPPORT FOR MODELLING

BY NON-EXPERTS
The Modelling4All Project began by building upon the results of
Constructing2Learn Project [1, 2] also at Oxford University in
which a modelling tool called the BehaviourComposer was
designed, implemented, and deployed for use by students. The
BehaviourComposer had a web browser component for browsing
web sites of code fragments called micro-behaviours. These are
bits of code that were carefully designed to be easily understood,
composed, and parameterised. The BehaviourComposer user
attached these micro-behaviours to prototype agents. In order to
create models containing many instances of a prototype agent, a
micro-behaviour for making copies was added to the prototype.
When the user wished to run the current model, the

BehaviourComposer assembled a complete program and launched
it. The program assembled NetLogo [3] programs, but the
framework could be adapted for other modelling systems such as
Repast [4].

The Modelling4All Project has constructed the
BehaviourComposer 2.0 which is a complete redesign and re-
implementation of BehaviourComposer in order to run in web
browsers. There are many advantages to providing applications
via web browsers. In many organisations, universities, and
schools computer systems are “locked down” and only
administrators can install or upgrade software.
BehaviourComposer 2.0 allows users to save their work on
servers, facilitating sharing and mobile use. Web browsers exist in
nearly every operating system and on many mobile devices. The
system is easy to use because the user interface builds upon the
familiar web browser interface.

The Modelling4All Project has another reason for choosing a
web-based approach. We are striving to build a web site
(http://modelling4all.org) to support an online community as they
design, build, analyse, validate, and verify models. We see great
potential in using the Web 2.0 concepts that have been so
successful in sites such as Wikipedia, flickr, YouTube, del.icio.us,
and FaceBook. We have designed BehaviourComposer 2.0 to
facilitate embedding it and the models users create in other web-
based tools. In this way a community of modellers can share,
discuss, review, rate, and categorise the models, micro-
behaviours, and supporting materials. Users can embed their
models in their blogs, wikis, web sites, discussion forums, and
email.

2. CREATING MODELS BY COMPOSING

MICRO-BEHAVIOURS
BehaviourComposer 2.0 provides libraries of generic micro-
behaviours organized into categories for specifying the initial state
of agents, movement, appearance, attribute maintenance,
reproduction, death, and social networks. In addition there are
micro-behaviours for creating graphs, histograms, sliders, buttons,
and event logs. Specialised libraries of micro-behaviours have
been created for modelling epidemics, collective decision making,
network formation, predator/prey ecologies, artificial economies,
and low carbon ICT.

These libraries of micro-behaviours have been created by the
Modelling4All team, but BehaviourComposer 2.0 can use micro-
behaviours hosted on any web site. A micro-behaviour can be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTools 2009, Rome, Italy.
Copyright 2009 ICST, ISBN 978-963-9799-45-5…$5.00.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5576
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5576

authored by any web page creation software (including wikis).
The BehaviourComposer 2.0 processes the HTML micro-
behaviour web pages to add buttons to facilitate using or editing
the micro-behaviour.

A major technical challenge is to design and build micro-
behaviours so that they can be combined without concern for their
order of execution. Each micro-behaviour is modelled as an
autonomous process. A fish in a school, for example, may be
concurrently running processes for avoiding fish that are too
close, for aligning its orientation with neighbouring fish, for
staying close to neighbouring fish, and for heading in a desired
direction, as well as processes for modelling noise. These
processes combine to generate the desired agent behaviour.
Conflicts between these processes are avoided by careful use of
scheduling routines and support for simultaneous updating of
attributes (we added both to NetLogo).

Users construct models in BehaviourComposer 2.0 by adding
micro-behaviours to prototypical agents. They can focus initially
on getting a single individual of each “type” to behave correctly.
Then they can add a micro-behaviour to create the desired number
of copies of the prototype. The fresh copies can easily be given
additional behaviours to produce a heterogeneous population.

Micro-behaviours should not be confused with the software
engineering concept of modules, components, or other
programming language abstractions such as packages, classes,
methods, or procedures. These modular constructs have interfaces
that must be carefully matched in order to combine them. They
represent program fragments that run only if another fragment
invokes them. In contrast, micro-behaviours run as independent
processes, threads or repeatedly scheduled events. They are
designed to run simultaneously with a minimum (and in most
cases zero) need to coordinate their execution order and
interactions. Micro-behaviours resemble the structured processes
in the LO programming language [5].

Figure 1. Screen shot while constructing a model

An illustrative example of a micro-behaviour is identified by the
URL http://modelling4all.nsms.ox.ac.uk/Resources/Composer/en/

MB/RANDOM-ENCOUNTER.html. It contains the following
code fragment:

do-every 1

 [do-if my-state = "infected"

 [do-for-n

 the-encounter-rate

 all-individuals with

 [my-state != "dead"]

 [set my-last-encounter the-other

 add-behaviour

 POSSIBLE-INFECTION]]]

Our NetLogo extension do-every is critical for composing

micro-behaviours. It repeatedly schedules an action that
conditionally adds the POSSIBLE-INFECTION micro-behaviour.
The reliance upon a scheduler associated with each agent greatly
facilitates the composition of micro-behaviours without concern
for component interfaces. This code fragment references another
micro-behaviour POSSIBLE-INFECTION by providing a link to
the URL hosting the micro-behaviour. One source of name
conflicts resulting from composing components is avoided by
using the World Wide Web’s global name space of URLs.

3. A WEB-BASED MODELLING TOOL
BehaviourComposer 2.0 is built upon the Google Web Toolkit
(GWT) [6] and NetLogo. BehaviourComposer 2.0 is a rich
internet application (a web application with features comparable
to desktop applications) using AJAX [7]. GWT supports interface
elements such as tabs, panels, buttons, and editors as well as
facilitating communication with servers. Users interactively
assemble micro-behaviours into collections that represent
prototypical agents. When the user clicks the run button, the
server assembles a complete NetLogo program. The user can then
run the program in their browser as a Java applet or download the
program into NetLogo.

BehaviourComposer 2.0 supports micro-behaviours that use
NetLogo’s facilities for animating simulations, providing sliders
for interactively exploring the parameter space, producing
dynamical graphs, and interactively running experiments. Other
NetLogo tools such as the BehaviorSpace for automating the
exploration of the parameter space and gathering statistics are
only available after launching NetLogo as an application rather
than an applet.

Each micro-behaviour is presented as a web page which can be
accessed via links, tags, or a search engine just like any other web
page. Browsing for micro-behaviours uses the same tools and
skills as web browsing for any other kind of information. New
tools and skills do not have to be mastered.

A section of the web page is the program fragment itself. A button
is automatically generated when the page is loaded into
BehaviourComposer 2.0. When the button is pushed the code
fragment is added to the desired prototype agent. By convention,
the rest of the page includes sections that

• describe the behaviour

• describe how to edit the micro-behaviour to produce
variants

• provide links to related micro-behaviours

• describe how the program fragment implements the
desired behaviour

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5576
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5576

• a history of edits to the micro-behaviour

Some pages also have references to published papers and links to
sample models using the behaviour. The addition of formal
specifications of micro-behaviours is a topic of future research.

Figure 2. Screen shot of a micro-behaviour

The identity of a micro-behaviour is its URL. A micro-behaviour
that references other micro-behaviours (e.g. adding new micro-
behaviours to other agents) does so by providing web links to the
referenced micro-behaviours. The “owner” of the URL can then
update the contents to upgrade the micro-behaviour. Model
makers, who instead want a snapshot of the current micro-
behaviour, need to copy the contents of the page to another URL.
The Modelling4All web site supports this copying (or editing) of
micro-behaviours and produces new URLs with unique
identifiers.

Every change made to the model (adding or removing micro-
behaviours, adding or removing prototypes, renaming, or loading
sub-models) is communicated to the server. The server maintains
a session history that is identified with a globally unique
identifier. A user can resume a session either by relying upon their
browser’s cookie mechanism or by bookmarking a session URL.
Small teams can share a session ID to facilitate collaboration.
They can choose a real-time collaboration option so that changes
made to the model are seen within a few seconds by all sharing
the session.

Sessions are integrated with the browser’s history facility. Any
changes to a model can be undone by using the browser’s back
button. They can then be restored using the browser’s forward
button. BehaviourComposer 2.0 has a history tab that lists
descriptions of every model change. By clicking on entries users
can restore the model to any point in its history.

When a user runs a model they are presented with new tabs that
enable the user to execute it, embedded it in various ways in other

web pages, or to export their model as XML. Models can be
shared with others in several ways:

• as a snapshot that enables others to create a copy of the
model at the time it was created and make changes to
their copy

• as a locked model that enables others to create a copy of
the latest version of the model and make changes to
their copy

• as an unlocked model that enables users to access and
make public updates of the latest version of the model
(users of an unlocked model can roll back to earlier
versions)

One advantage of providing a web-based model authoring tool is
that the user is relieved of file and version management. Users
need not concern themselves with transferring files in order to
continue working on a different computer. Files are backed up
automatically. Unlike desktop applications, users need not think
about different versions of file formats since the server can
automatically update internal files. Giving others the opportunity
to run, copy, or modify one’s models is accomplished by sending
them the appropriate URLs.

Another advantage of running our modelling tool within a
browser is that it enables a tighter integration of associated
resources. Libraries of micro-behaviours, tutorials, construction
guides, lesson plans, and documentation can be HTML pages.
BehaviourComposer 2.0 can integrate these resources as tabs
within the application. These pages can easily have “live” entities
such as buttons for micro-behaviours or adding models and sub-
models. It is particularly convenient to simultaneously read and
access resources and build a model when BehaviourComposer 2.0
is run in split screen mode. See Figure 1.

A web-based tool benefits from the tremendous world-wide
efforts to improve the web and browsers. One example of this is
cascading style sheets (CSS). CSS is used for all the user interface
elements of BehaviourComposer 2.0. The styles can not only be
changed to suit different tastes but also used to improve usability
in special contexts such as mobile devices with small screens or
visually impaired users.

4. AS A WEB 2.0 COMPONENT
Rather than build a large monolithic model authoring web
application that also supports tagging, discussions, rating, usage
summaries, and custom collections of creations we designed
BehaviourComposer 2.0 to be focused upon model authoring and
to integrate well with Web 2.0 services provided by third parties.

The Modelling4All web site does not publish models. Instead
models are always available via URLs containing unique global
unguessable identifiers. These URLs provide privacy which is
often desired for work-in-progress. No models are accessible
unless their URLs have been published elsewhere. They become
public only after a user references their model’s URL in a blog,
wiki, web site, email forum, or any other place where search
engine spiders can find them.

The Modelling4All web site does not require a user to register and
log in. Anyone can use it including spammers, vandals, and other
troublemakers. However, since the site only produces unique
URLs and does not publish anything created on the site, there is

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5576
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5576

little harm they can cause and little that they can gain from doing
so. This relieves us of much of the need to police user generated
content for porn, copyrighted material, and other illegal material.

While we don’t require login we still support a kind of
authorisation that relies instead upon having unforgeable unique
URLs. Only someone holding a session URL, for example, can
access or change that session. At the Modelling4All site
permission to use resources is not based upon identity but upon
having obtained unique URLs. This approach builds upon the
concepts of capability-based security. [8]

There is added value in supporting a minimal notion of identity. If
the site can connect the identity of different authoring sessions
then users could search for any of their past work. Collaborations
are be easier to manage if all parties agree to use the team’s user
identity. The Modelling4All site supports this weak sense of user
identity. We rely upon unique unforgeable identifers to represent
users. The site does not know the identity of its users but can
determine if the same user (or team sharing an identity)
contributed to different sessions. The identity mechanism could be
enhanced to give teachers access to the work of their students
while the students only have access to their own work.

We believe that by hosting models, sessions, and micro-behaviour
edits in a private anonymous manner facilitates the integration of
our services with third party services. The Modelling4All site
hosts resources but does not make those resources accessible to
those lacking the appropriate unique identifiers. Only if the
holders of those identifiers make them publicly available on other
web sites do the resources become available to the public. One of
the problems with combining different Web 2.0 services is that
each service typically has its own notions of identity and
authorisation. The Modelling4All site does not contribute to this
problem since it treats users and resources as anonymous.

We considered directly supporting discussion threads associated
with saved models and instead have demonstrated how such
threads can be hosted elsewhere (e.g. GoogleGroups). They can
be embedded on the same web page as a Modelling4All model.
The authors of the micro-behaviours and models hence decide
where their creations will be discussed. We provide exemplars
that point to the recommended practice for providing a discussion
forum for micro-behaviours and models.

Social tagging has proved to be a useful way of categorising and
organising large collections in a bottom-up fashion. The
Modelling4All software provides buttons to add material to
popular tagging sites such as del.icio.us. We are exploring
stronger integrations with tagging sites using the site’s APIs that
would simplify the adding tags or using them for navigation.
Because the tags are added to social bookmarking sites a
folksonomy should emerge.

Users of Web 2.0 sites are guided by the ratings that earlier users
have given to their pages. A rating facility will be added to the
Modelling4All site so that users can find the highly rated models,
micro-behaviours, and supporting materials.

In addition to ratings, users find it valuable to know the relative
popularity of resources. We plan to add feeds that can be turned
into user-friendly configurable gadgets (e.g. iGoogle gadgets) that
can display lists such as models most frequently run, micro-
behaviours most heavily used, and models most frequently copied

and extended. These statistics will be produced in such a way that
private models are not revealed.

We are investigating the possibilities of integrating forms for
collecting data with model building guides. We constructed a
guide which refers to a form that feeds data into a Google
spreadsheet. This could facilitate, for example, a teacher who
wanted to collect the results each student obtained from running
their model. The data collection, construction guide, and model
authoring can all be integrated together.

5. AS A TEACHING TOOL
We have used the Modelling4All web site and tools in classrooms
at Oxford University. We worked with instructors in producing
micro-behaviour libraries tuned for modelling the desired subject
matter and associated construction guides.

About 30 third year biology students constructed and ran a series
of models exploring the dynamics of an epidemic spreading over a
social network. In a single session they were able to build models
with different kinds of networks and interventions. During the
session they ran several variant models and each student
contributed to a spreadsheet that automatically collected the
reported results from a series of simulation runs.

A group of MBA and MSc students at the Oxford University Said
Business School constructed and ran a series of Sugarscape
models [9]. In a two-hour session most were able to build the
models described in chapter two of the book Growing Artificial

Societies: Social Science from the Bottom Up.

We have scheduled a session with economics students where they
will use the site to build a series of models exploring network
formation.

Very few of the biology or business school students had any
computer programming experience, and yet they were able to
build serious models in their field of study. They learned about
the behaviour of a complex system in their subject as well as
acquiring some understanding of the general process of model
construction. They acquired what one of the faculty members we
worked with calls modelling literacy – an understanding of how
simulations work and the ways in which they are designed and
constructed.

The students who built models of epidemics had an earlier session
where they built a simple mathematical model of epidemics using
other software. This modelled the dynamics of entire populations.
When using the Modelling4All site they began with an agent-
based model that mirrored this aggregate model. They then went
on to explore the consequences of modelling a heterogeneous
population. Agent-based models produce different dynamics of
epidemics and outcomes for interventions than aggregate models
do.

Another learning outcome is an appreciation for the differences
between emergent phenomena and top-down control. The
business school students, for example, saw how even very simple
bottom-up models produced uneven wealth distributions that
increased over time.

The micro-behaviours were designed to be engaging at different
depths. A shallow understanding of a micro-behaviour is purely
functional – what does it do and how can it be used. Some
students were also concerned with how the micro-behaviours
work and how they could be modified. The micro-behaviours by

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5576
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5576

convention have a section explaining how they work. Additionally
a good deal of effort went into making the source code readable
by non-experts. In this way, the Modelling4All classroom session
could be a first step towards learning to computer programming
for building models.

6. POTENTIAL PROBLEMS
One problem with providing a tool as a service is that users rely
upon the service provider to maintain a robust stable service. This
is a relatively minor problem when a large corporation such as
Google or Microsoft provides the service but when it is provided
by a small team in university project there is a greater concern.
The problem is alleviated somewhat by providing a way to export
one’s data and by releasing the source code for the system.

Another problem is that the system is currently impossible to use
without an Internet connection. Serious users can run a
Modelling4All server locally to overcome this. A promising
alternative we are considering is to integrate Google Gears [10]
with BehaviourComposer 2.0. Google Gears is a browser plug-in
that provides local storage. Using Google Gears the software
could continue to work in some cases without a network
connection, and then models will be uploaded when the
connection is established.

We may discover difficulties with version management, especially
for micro-behaviours. Software developers typically rely upon
version control systems so that each build relies upon the
appropriate version of components. In the BehaviourComposer

2.0 references to micro-behaviours are by fixed URLs. The parties
hosting those micro-behaviours can change the contents of the
web pages, perhaps breaking models that relied upon the old
contents. In contrast, Modelling4All models can be shared as a
frozen version, as a read-only copy of the latest version, and as
read-write access to the latest version. Perhaps we will discover
that micro-behaviours need similar version control. It is possible
to build web sites for micro-behaviours where the URLs specify
the desired version policy.

Some are concerned about the public nature of HTTP traffic
between the model maker and the servers. This could be alleviated
by using a secure connection (https). Passwords could be
automatically provided since here we are only trying to encrypt
communications with the site for privacy reasons.

Models can be created and edited without the use of browser
plug-ins. Many potential users with browsers lacking a plug-in
will not, or are not allowed to, install a plug-in. Because
BehaviourComposer 2.0 currently only supports NetLogo,
running models requires either a plug-in to run Java applets or the
prior installation of NetLogo (free for educational and research
purposes). While the plug-in for Java applets is installed in the
majority of browsers this remains a problem for a large minority
of users. A sister project to Modelling4All is developing MoPiX
[11] where the execution and animation of models is performed
by the browser without the need for any plug-ins.
BehaviourComposer 2.0 is, however, much more expressive than
the equational programming supported by MoPiX.

There is concern that by giving users the freedom to choose the
Web 2.0 tools that they integrate with their use the Modelling4All
web site that the community will be much more fragmented than if
a monolithic Web 2.0 site were provided instead. By providing

guidance and exemplars we hope to guide community members
towards shared tools.

The general issue underlying web applications is loss of control
[12]. Students in a university or school have typically already lost
control of the computers and software they use. This is more of an
issue for long-term research projects using our services. Since
Modelling4All is an open-source project, full control can be
obtained by running the server locally. This would, however,
probably fragment the community.

7. POTENTIAL USES AND FURTHER

DEVELOPMENTS
The Modelling4All software currently only supports micro-
behaviours constructed in NetLogo. The idea of browsing for
program fragments that can be combined using a web browser can
be applied to other modelling tools. If the language supports the
expression of modular micro-behaviours then the server can
generate complete source files that can be compiled and executed.

We plan to explore this to produce scripts that can run the multi-
user virtual environment Second Life. Models can be produced in
BehaviourComposer 2.0 and then imported into Second Life. In
this way model executions can be experienced in a social
immersive manner. We expect that parallel micro-behaviours can
be built in both NetLogo and a Second Life scripting language so
that one can build and test models in NetLogo and then export the
parallel versions to Second Life.

As users construct and run models, our servers accumulate data
about how the site is being used. This data could be mined to
focus further development efforts on those aspects that are most
crucial. For example, analysis of the usage data may discover a
common stumbling block where a significant fraction of users get
stuck. We can then work to address this problem. Or we may
discover that a very useful and powerful facility is being
overlooked and we can then promote its use.

Data mining could also be useful to the Modelling4All
community to acquire a crude level of self-awareness. Community
members could learn what others are doing. Teachers could obtain
summaries of what their students have built on the site.

To date we have focussed upon the educational uses of the
Modelling4All site. We believe that researchers, journalists, and,
policy makers could profitably use the site. It could also be
valuable to the general public attempting to understand more
deeply topical subjects such as causes of global warming or the
spread of HIV. Some visitors to the site may only run a few
highlighted models while some may follow the tutorials and
construction guides to obtain a much deeper understanding of the
underlying processes and mechanisms.

8. ACKNOWLEDGEMENTS
We are grateful to the Eduserv Foundation who has funded and
supported this research. We want to thank the Oxford University
Computing Services for their continued support. The JISC funded
the Constructing2Learn Project that this work builds upon.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5576
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5576

9. REFERENCES

[1] Kahn, K., Comparing Multi-Agent Models Composed from
Micro-Behaviours, Third International Model-to-Model

Workshop, Marseille, France, March 2007

[2] Kahn, K. Building Computer Models from Small Pieces,
2007 Summer Computer Simulation Conference, San Diego,
CA, July 2007.

[3] Wilensky, U., NetLogo, Center for Connected Learning and
Computer-Based Modeling, Northwestern University,
http://ccl.northwestern.edu/NetLogo/

[4] North, M.J., Collier, N.T. and Vos, J. R., Experiences
Creating Three Implementations of the Repast Agent
Modeling Toolkit” ACM Transactions on Modeling and

Computer Simulation, Vol. 16, Issue 1, pp. 1-25, ACM, New
York.

[5] Andreoli, J. and Pareschi, R., LO and behold! Concurrent
structured processes, Proceedings of the European

Conference on Object-Oriented Programming on Object-

Oriented Programming Systems, Languages, and

Applications, OOPSLA/ECOOP '90, Ottawa, Canada, ACM
Press. Also published in ACM SIGPLAN Notices, Volume
25, Issue 10, Oct. 1990.

[6] Google Web Toolkit, http://code.google.com/webtoolkit/

[7] AJAX, http://en.wikipedia.org/wiki/AJAX

[8] Capability-based security,
http://en.wikipedia.org/wiki/Capabilities

[9] Epstein, J. and Axtell, R., Growing Artificial Societies:

Social Science from the Bottom Up, Brookings Institution
Press and MIT Press, 1996

[10] Google Gears, http://gears.google.com/

[11] MoPiX, http://www.lkl.ac.uk/mopix/

[12] Johnson, B. Cloud computing is a trap, warns GNU founder
Richard Stallman,
http://www.guardian.co.uk/technology/2008/sep/29/cloud.co
mputing.richard.stallman, Monday September 29 2008 14.11
BST

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5576
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5576

