
Modeling Networking Issues of Network-on-Chip: a
Coloured Petri Nets Approach

Hamid Hajabdolali Bazzaz1, Marjan Sirjani1,2, Ramtin Khosravi1, Shamim Taheri1

1 School of Electrical and Computer Engineering
University of Tehran

Kargar Ave., Tehran, Iran
{h.hajabdolali, rkhosravi, s.taheri}@ece.ut.ac.ir

2 School of Computer Science
Reykjavik University

Kringlan 1, 103, Reykjavik, Iceland
msirjani@ut.ac.ir

ABSTRACT

Network-on-Chip (NoC) is proposed as a new scalable archi-
tecture to address the future design challenges of system-on-
a-chip (SoC). As current verification techniques for on-chip
communication algorithms are typically complicated tasks
including many hardware modules and software routines,
verifying the algorithms themselves is almost impossible.
Having the incentive for simplifying verification of these
on-chip algorithms, in this paper, we propose a detailed
NoC CPN model in which key NoC networking challenges,
namely network topology, switching method, and routing
algorithm are considered. By this model, any desired NoC
topologies, including but not limited to, mesh and k-ary n-
cube can be constructed. As for switching techniques, dom-
inant on-chip switching methods, namely, packet switching,
circuit switching, and wormhole switching, are modeled. Be-
sides, as model of a NoC switch element is highly dependent
on its switch fabric type, different sorts of switching fabrics,
i.e., crossbar and shared bus, are modeled in this contribu-
tion. For routing the packets between cores, a CPN version
of dimension-ordered routing, dominant routing algorithm
for NoC, is implemented in the switches.

Categories and Subject Descriptors

D.2.2 [Design Tools and Techniques]: Petri nets; B.4.4
[Input/Output And Data Communications]: Perfor-
mance Analysis and Design Aids—Formal models, Simula-
tion, Verification

General Terms

Design, Verification

Keywords

Modeling, Network-on-Chip, Coloured Petri Nets

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2009, Rome, Italy.
Copyright 2009 ICST, ISBN 978-963-9799-45-5.

Network-on-Chip is a new architecture designed to im-
prove the scalability of the future system-on-chips (SoC).
In this architecture, instead of using a shared-medium bus,
Intellectual Property (IP) cores communicate utilizing an
on-chip network, i.e., network switches, placed on the chip
in a structured topology. For providing an on-chip network
communication, already solved computer networks network-
ing challenges should be solved again specifically for this on-
chip architecture. The most networking challenging issues
include network topology, switching method and routing al-
gorithm. Different sorts of network topologies are already
proposed for NoC, among which mesh and k-ary n-cube are
the most popular ones according to their regularity, sym-
metry and low diameter. The switching technique deter-
mines when and how switches are set to connect their input
ports to output ones and the time at which message compo-
nents may be transferred along these paths. [1] Most of the
switching methods used in traditional computer networks
are also implemented on-chip, and especially a switching
method named wormhole switching is the most popular one
for on-chip communication according to the small buffer re-
quirement in network switches. The routing algorithm picks
the path for each packet to reach its destination. Among
different routing algorithms proposed for on-chip routing,
dimension-ordered routing algorithm is the most famous one
according to its best use of regularity of the topology and
simplicity of implementation.

As the process of on-chip communication algorithm imple-
mentation and verification is currently a complicated task in-
cluding many hardware modules and software routines, ver-
ifying the algorithm itself by implementation is almost im-
possible. In fact, many phases in hardware design and syn-
thesis require a golden model in order to verify just the hard-
ware implementation to be equivalent to the model. There-
fore, applying modeling and verification techniques may be
an appropriate alternative. On the other hand, an appro-
priate NoC model needs to cover three key issues discussed
earlier; namely, network topology, switching method, and
routing algorithm. The network topology model is simply a
matter of the way switches and cores are connected to each
other. Therefore if the model of switches and cores are in-
dependent of the topology type, then there is nothing to be
modeled about the topology but the communication links.
These links connect the NoC elements (switches and cores)
to each other. On the other hands, Switching methods and
routing algorithms are implemented in NoC switches and
the switch model is highly affected by its switch fabric type;
therefore for a true NoC modeling, the switch fabric model

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5574
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5574

should be considered, as well.
Recently, it has been proved that employing deterministic

and stochastic Petri nets to model on-chip communication
is an attractive method to evaluate and explore different
communication aspects. In [2], it is shown that by applying
these modeling techniques, it is possible to efficiently trade
off modeling effort against modeling accuracy. Based on
the stochastic behavior of generalized stochastic Petri nets
(GSPN) [3] and coupled with the coloured Petri nets (CPN)
[4], in [5][6], a new high-level net named S-net, for mod-
eling multistage interconnection networks is proposed. In
[2][7][8][9], Blume et al. have modeled basic NoC communi-
cation scenarios featuring different processor cores, network
topologies and communication schemes. All these papers
on modeling NoC by means of Petri Net and its variants,
mainly aimed at performance evaluation. Therefore, mostly
the stochastic Petri nets (SPN), which major usage is perfor-
mance evaluation [10], is applied for modeling [2][7][9][11].
By incorporating the concept of time into SPN models these
works have evaluated different performance metrics such as
bus usage percentage [2], average establishing time for NoC
[7], etc. These papers propose a high level model for on-
chip communication and aim at modeling hardware related
aspects of NoC [2][5][6][7][8][9].

In this contribution, we propose a detailed model for NoC
networking concepts utilizing CPN. This model makes the
verification and analysis of the algorithms and methods them-
selves (rather than their performance) much easier than the
current techniques available for on-chip networks. The pre-
sented model considers all the aforementioned required el-
ements for an appropriate NoC model. Specifically, by our
link model, any desired NoC topology, including but not
limited to, mesh and k-ary n-cube may be constructed. All
the popular existing switching counterparts, namely packet
switching, circuit switching, and wormhole switching are
modeled too. As the switch model is highly dependent on
the switch fabric type, crossbar and shared bus models are
considered as the fabric types choices. Finally, the dominant
on-chip routing discipline, dimension-ordered, is modeled in
our switches. Recently, Blume et al in [8] proposed a simi-
lar but high-level model for NoC communication using CPN
in which they have not considered several important issues
such as link and switch fabric models. Also in their work,
circuit switching (called line switching in their paper) is the
only switching method modeled and even wormhole switch-
ing, the dominant on-chip switching method, is not modeled
at all.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the basic concepts of CPN. Section 3 reveals
the different networking concepts of NoC and our related
models in CPN. Analysis and results of our simulations are
presented in section 4 and section 5 concludes the paper.

2. BRIEF REVIEW OF COLOURED PETRI

NETS
Coloured Petri nets (CPN) has been developed in 1980 by

K. Jensen in his PhD thesis to expand the modeling possi-
bilities of classical Petri nets. A complete overview of the
modeling possibilities with CPN is not in the scope of this
paper. However, here we briefly bring up the basic features
of the CPN used in our work. For a thorough overview, see
e.g., [11].

Petri nets consist of so-called places, arcs and transitions.
Places, depicted as ellipses in the graphical representation,
model the states of system components while transitions
shown as rectangles are used to change the state of the sys-
tem. Places can be marked by tokens which are shown by
circles (Fig. 1). The high level data types of programming
languages are called colorset in CPN and tokens represent
high level data structures (variables), and their values (the
data stored in them) are shown in a rectangle attached to
the token’s circle. Tokens, as well as places, are always asso-
ciated with a colorset and a place may only contain tokens
of the same colorset as its own. The colorset of a place
is attached below the place in the graphical representation.
Transitions and places are connected via arcs. A transition
is enabled for being fired, once all the input places connected
to it are marked and its guard condition is satisfied. Guard
conditions are encased in brackets and written above the
transition. When a transition is fired, one token from its
every input place is deleted and a token is added to all of
its output places. Transitions can access the data stored in
tokens by mapping tokens to variables. A Transition may
also have a transfer function, which is a code segment that
can access the mapped variables of the transition and mod-
ify them. Transfer function consists of the definition of the
input and output variables and also the commands which
should be carried out (action). The transfer function is at-
tached below the transition in the graphical representation.
If more than one transition is enabled, one of them is ran-
domly chosen to be fired.

Currently, many tools are available for Petri Net modeling
[12]. In this paper, we have used CPNtools software for
modeling, simulating and analyzing the NoC architecture
[13]. This tool is available for free for academic purposes.
CPNtools has a simulator and a rich graphical user interface
for composition of CPN models. One of the most useful
features of CPNtools is its support for hierarchical designs,
which facilitates the reuse of some parts of the design and
simplifies handling of large models.

3. MODELING NOC
Our NoC model is divided into different parts; namely,

communication link, switch fabric, and different switching
methods models. As the dimension ordered routing is lo-
cally performed in the switches and is highly closed to the
switching method, the related CPN model is presented with
the switching method model together. The presented mod-
els may be applied to any sorts of topology in which every
switch can be addressed by a pair of X and Y coordination.
Now, before presenting our CPN NoC model, we are to state
the related data structure.

3.1 Data Structure Model
The CPN data structures (colorsets) and variables which

are used in this paper are explained in this section. Table 1
shows the related data structure. AddressX, AddressY, and
Address are used to describe the address of the cores which
is used in AddressHeader declaration. The PORT is defined
as an enumeration, which is used in the FWTableEntry.

FWTableEntry is an entry in the switch forwarding ta-
ble for circuit switching method, which is an input port to
output port mapping. PSPacket, CSPacket, and WSPacket
define the packet switching, circuit switching and wormhole
switching packet data structures, respectively. CSPacket-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5574
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5574

Figure 1: The communication link model in CPN

Table 1: The datatypes used to model NoC

val TopSize = 4

val BUFFERSIZE = 3

val LINKCAPACITY = 1

colset AddressX = int with 0..TopSize;

colset AddressY = int with 0..TopSize;

colset Address = record x: AddressX * y: AddressY;

colset AddressHeader = record src: Address * dst: Address;

colset Payload = STRING;

colset Port = with LEFT | RIGHT | UP | DOWN | CORE | NULL;

colset FWTableEntry = record inport: Port * outport: Port;

colset ForwardingTable = FWTableEntry;

colset PSPacket = record header: AddressHeader * data: Payload;

colset CSPacketType = record head: BOOL * tail: BOOL * ack: BOOL;

colset CSPacket = record ptype: CSPacketType * address: AddressHeader * data: Payload;

colset LabeledCSPacket = product CSPacket * Port * Port;

colset WSPacket = CSPacket;

Type is used to recognize different packets in the circuit and
wormhole switching.

TopSize defines the size of mesh topology, that is the num-
ber of switches in X and Y dimensions. The BUFFERSIZE
and LINKCAPACITY are used to define the capacity of
the switch buffers and the number of in-flight packets of the
links, respectively. Also note that the buffers in the model
are of the Buffer colorset, which is a list of PSPacket in
the case of packet switching, CSPacket in the case of circuit
switching and WSPacket in the case of wormhole switch-
ing (This selection is to avoid using union structure of CPN,
which makes the arc inspirations and transition guards much
more complex). Table 2 shows the variables declared for our
models.

3.2 Communication Link Model
The on-chip physical link provides the physical communi-

cation medium to connect neighbor switches to each other.
The related model in CPN is depicted in Figure 1 Note that
the link is full-duplex and only the side related to the right-
to-left communication is shown in the Figure for the sake
of simpilicity (the left-to-right model is similar). The model
consists of three buffer places. One of them is related to the
left side output buffer of the link (OutBufL). The right side
input buffer of the link (InBufR) is also considered. LinkL
place is to hold the in-flight packets between the left side
output buffer and the right side input one. Receive Packet
L transition is to transmit packets from output buffer of
the left side to the link and the Transmit Packet L transi-
tion is to receive and buffer packets at the right side of the

Table 2: The variables declared to model NoC

var p: PSPacket;

var csp: CSPacket;

var packets, linkp, inpackets, packetstream,

inflightpackets: Buffer;

var lcsp: LabeledCSPacket;

var switchaddr: Address;

var outport: Port;

var destx: AddressX;

var desty: AddressY;

var fwe, fwer, fwed, fwel, fwec,

fweu: FWTableEntry;

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5574
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5574

link. Although in computer networks packets are sent over
links regardless of the buffer capacity at the other side, the
on-chip communication requires explicit buffer availability
at the other side to send a packet. This property is indeed
related to the link layer reliability of the on-chip communica-
tions, which is due to lack of higher reliable communication
layers (something like the transport layer in the computer
networks communication protocol stack). This fact explains
the reason behind specific guard [size(packets) ≤ BUFFER-
SIZE] provided for the left transition. The guard provided
for the other transition is for the fact that in-flight packets
number in the link is actually physically limited.

When the InBufR place contains some packets, the tran-
sition Transmit Packet L is enabled for firing. After this
transition is fired, the first packet in the buffer is transmit-
ted to the link and is added to the end of the packet list in
the LinkL place. When Receive Packet L transition is fired,
the first packet in the link is arrived at the other side and is
added to the end of the packet list in the OutBufL place.

The port-type tags of the buffer places (such as OutBufL
and InBufR) are for the hierarchical design. This indicates
that the token flow direction from/into these places in the
link model is bi-directional.

3.3 Switch Fabric Model
The switching fabric is the hardware logic by which the

switch input ports are connected to the output ports for
forwarding packets to their respective destinations. In the
shared bus schema, every packet arriving at one of the switch
input ports have to lock the shared bus and being transfered
to it in order to be forwarded to the appropriate output
port. If the bus is already locked, the packet is buffered
in the input buffer, waiting to acquire the shared bus some
time later. It is clear that in this schema, the shared bus
is the bottleneck of switching speed performance. On the
other hand, in the crossbar schema, every single input port
has a distinctive wiring path to every output port; hence
several packets may be forwarded from different input ports
to different output ports at the same time.

Figure 2 shows the shared bus fabric model. The switch
has input and output interfaces (places in Petri nets) in
right, down, left, and up directions. There is also an in-
put and output place related to the core connected directly
to the switch. This is due to the selected mesh topology
for the NoC structure, in which every switch is directly con-
nected to a core. The Address place contains the switch
address in the topology which is used in the routing algo-
rithm. The SharedBus and BusLock places are to model the
bus fabric. There is a dedicated transition for forwarding a
packet from every input port to the shared bus and also from
the shared bus to every output port. Assume that a packet
arrives from the up input port which should be forwarded
to the left output interface. To acquire the shared bus, the
transition From Up has to get the bus lock token which is
in the BusLock place. This fact guaranties that only one of
the input places has the shared bus at a time. After the To
Left transition is fired, lock token of this bus is put back
and the bus is free for acquiring. The guard written on the
To Left transition is to indicate that the packet should be
forwarded to this output interface, and is related to the rout-
ing algorithm which is explained later. This also checks that
the output buffer has the capacity for holding a new packet.
To make the model less complicated, among the arcs be-

Table 3: The dimension-ordered routing algorithm
pseudo code

if dest.x > switch.x

then forward the packet to the right interface

else if dest.x < switch.x

then forward the packet to the left interface

else if dest.x = switch.x and dest.y < switch.y

then forward the packet to the up interface

else if dest.x = switch.x and dest.y > switch.y

then forward the packet to the down interface

else if dest.x = switch.x and dest.y = switch.y

then forward the packet to the core interface

tween Address and BusLock places and the transitions, only
the one related to the explained up to left path is shown in
this Figure. Indeed, there should be a bidirectional arc be-
tween every transition related to output forwarding (i.e., To
Left, To Up, ...) and also there is an arc to BusLock place
from these transitions and the transitions related to input
forwarding (i.e., From Left, From Up, Ě) requires an input
arc from BusLock place. Pay attention that every transi-
tion related to output forwarding requires a guard, and in
the Figure only the one related to the To Left transition
is shown. Figure 3 shows the crossbar switch fabric model.
In the crossbar model, there is a single transition for every
possible forwarding path, i.e., for every input to output com-
bination. To simplify understanding of the Figure, only the
transitions related to forwarding packets to the left interface
is shown. There are four similar transitions for every other
input pair. The transition guards are to assure appropriate
output interface selection and also buffer availability at the
output port.

3.4 Routing Algorithm and Switching Method
Models

The switching methods proposed for on-chip communi-
cation are inspired by those in computer networks and are
customized for it. In this work, we have modeled packet
switching, circuit switching and wormhole switching. As the
switching method and routing algorithm work very closely
together to forward packets to their destinations, we explain
them together in this part.

The dimension-ordered routing algorithm, which is the
most well-known routing algorithm, is used in our models.
In this algorithm, each packet is routed to its destination in
the X coordinate first and then to the Y coordinate. The
related pseudo code is depicted in Table 3. As the conditions
are independent of each other, the if-clause conditions can
simply be used for the transition guards similar to the left
forwarding guard shown in Table 3.

In the packet switching method, every packet contains the
destination address header to be routed independently to its
destination. This makes the modeling and implementation
much easier than other methods. Indeed, in Figures 2 and
3, this switching method is considered and that is why the
packet type is not examined and all the packets are behaved
in the same way.

In circuit switching, a virtual circuit is set up for every flow
on the chip. Hence, before sending data packets, the sender

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5574
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5574

Figure 2: The shared bus switch fabric model in CPN

Figure 3: The crossbar bus switch fabric model in CPN

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5574
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5574

transmits a special packet which is called routing probe. This
special packet, which we call head packet, is to set up the
circuit in every switch and update their forwarding tables
prior to data sending phase. This situation speeds up the
forwarding of data packets as there is no need to run the
routing function and decide the appropriate output inter-
face. Once the source sent the head packet, it waits for the
arrival of the ack packet which is sent by the destination
after receiving the head packet. When the source does not
have any more data to send, it tears down the virtual circuit
by sending a tail packet. All the forwarding table entries re-
lated to this flow are deleted once the tail packet traverses
the path from the source to the destination. Figure 4 de-
picts the circuit switching model related to the switching
behavior for a header packet arrived from the left input in-
terface of the switch which should be forwarded to the down
output port. The SwitchForwardingTable place contains the
forwarding table entries related to each input port. Initially,
as no circuit exists, all the output ports of the forwarding
table entries are set to NULL. When the Head Packet L tran-
sition is fired, the code segment related to this action makes
a LabeledCSPacket from the corresponding CSPacket and
places the packet to the WaitForOutputPort place. This
labeled packet contains the input and output port related
to this packet, and is used to forward the packet and also
update the forwarding table.

The LabelPacket transition reads all the forwarding table
entries of the switch and its guard, checkoutputAvailability,
checks that no input port is already mapped to the out-
put port to which this packet should be forwarded. So, the
packet waits in the WaitForOutputPort place until the re-
lated output port is free. When the packet is sent to the
Forward place, the output port is available for forwarding
the flow packets. The guard on ToDown transition selects
only the packets which are labeled to be forwarded to the
down output interface. Once this transition is fired, the
forwarding entry related to the left input port (which was
omitted from the table in Head Packet L transition) is added
to the table for the other packets of the flow. As the Forward
place and ToDown transition is used for every kind of pack-
ets, the arc inscription depends on the type of the packet. In
the case of a head packet and data packets, the forwarding
entry related to the input port is added (inport=LEFT, out-
port=DOWN in this case). In the case of a tail packet the
output port is set to NULL in the related entry, and in the
case of an ack packet, there is no need to put anything in the
table. Note that the forwarding table is omitted whenever
a packet arrives and is put back when the packet leaves, so
that the packets behind it in the input buffer can not enter
before it is forwarded, i.e., the forwarding entry is also used
as a lock to gain in-order delivery.

Figure 5 shows the similar scenario for data, tail, and
ack packets. The Circuit Exist L transition is for the case
of a data packet (that is a non-head, non-tail and non-ack
packet). The guard provided for the transition is to check
that the output port is already set for the input port. The
input packet is labeled using the forwarding entry found in
the forwarding table and is put in the Forward place to be
sent to the related output port exactly in the same way as
the head packet. Notice that there is no need for the switch
address, as the output port is found only using forwarding
table. The Tail Packet L transition is for the tail packet,
which is similar to the data packets case (indeed, these tran-

sitions can be joined, but here, we preferred to separate them
to make the concept simpler). Besides, note that in the case
of a tail packet, the forwarding table entry should be deleted
which is done using the inscription provided on the ToDown
to SwithForwardingTable arc. An ack packet should be tra-
versed in the reverse path of the head packet. This explains
the guard expression in the ACK Packet L transition.

It is important to notice that in the circuit switching
method, there is a need to model the sender and receiver
sides of the communication, i.e., cores. The sender should
send a head packet and then wait for the ack packet from
the receiver. Once the ack packet is received, it sends the
data packets and at last closes the connection using the tail
packet. Our sender and receiver models related to the sim-
ulations are explained in the next section.

In the wormhole switching schema, the sender divides ev-
ery packet to small units named flits. As only a few numbers
of flits (one to three) are buffered in every switch, the buffer
requirement per switch is reduced. This is an important
gain for an on-chip communication. Also, the sender does
not wait for the ack arrival to start sending the data pack-
ets. Instead, the data packets are immediately sent after the
head packet, which helps to reduce the total delay for deliv-
ering packets of a flow. The switching method is almost the
same as the circuit switching case; there is no need for the
ack packet support for the switches in this case and also the
sender and receiver side of the communication are different
from the circuit switching case.

4. SIMULATION RESULTS
The Simulations are performed on a 4x4 mesh topology

topology setup shown partially in Figure 6. A bi-directional
communication link connects each pair of neighboring switches
and corresponding input/output port buffers of each switch
are connected to the associated links as shown in the Figure.
Each switch is directly connected to an IP core via the link
of its associated core ports. Different sender-receiver CPN
models (core models) are considered in the experiments. A
simple sample core implementation for circuit switching dis-
ciple is shown in Figure 7. The upper half of the model rep-
resents the sender side while the lower half one corresponds
to the receiver side. After Sending a packet to a destination
(core 2-2 in this case), the sender waits for arrival of an ack
in WaitForACK place. Once the ack is received, the sender
generates the data packets and the tail packet and buffers
them in its output buffer. The packets are then forwarded
through the on-chip intermediate switches to the receiver.
The receiver side, on the other hand, initially waits for ar-
rival of a header packet (in WaitForHead place). Once the
head packet is received, the receiver sends an ack packet back
to the sender, acknowledging the possibility of receiving a
bunch of data packets, and then changes its status to Wait-
ForData. The receiver is informed about the end of data
stream packets by receiving the tail packet; it then switches
back to WaitForHead by firing the ReceiveTail transition. It
is worth noting that after the sender receives the ack packet,
it doesn’t work in parallel with the receiver. The sender
sends his data by his own rate and ends it by the tail packet.
While on the other side, the receiver buffers and processes
the data packets independently of the sender rate as soon as
they arrive and tears down the connection (i.e., releases its
allocated buffers and variables) as the tail packet is received.
One may note that this separation of sender-receiver rates

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5574
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5574

Figure 4: The circuit switching method model for a header packet in CPN

Figure 5: The circuit switching method model for data, tail, and ack packets in CPN

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5574
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5574

is solely a result of wormhole switching.
Different communication scenarios are considered in the

experiments. In one scenario, a subset of cores send pack-
ets to different predetermined set of other cores; while in
another case every sender transmits a stream of packets to
every other core in the topology. Tokens (packets) are gen-
erated using the transfer function feature of the transitions
in CPN.

By the help of the Monitoring and State Space tool boxes
of CPNtools, verification of correctness of different aspects of
the on-chip networking algorithm is possible. Specifically, by
simulating diverse scenarios and varying simulation settings
such as communicating pairs, communication patterns and
switches and links buffer size, it is observed that correspond-
ing on-chip switching methods and routing algorithms are
dead-lock free. Quantitative measures of the system, such as
average delay for receiving a packet (number of transitions),
average queue size or switches load distribution during the
simulation are also of interest. Due to space constraints,
here we only present the results for switches load distribu-
tion measure. The switch load percentage is defined as the
ratio of the sum of the number of tokens in its places out
of the total number of tokens in all of the places during the
simulation. Figure 8 shows the topology switches load dis-
tribution for the case of uniform traffic generation between
every two cores of the topology. The x and y dimensions
of the graph corresponds to the location of the switches on
the board and the z dimension shows the related switch load
percentage. The simulation results show that the obtained
graph is a regular hotspot with its maximum centered at its
middle. The reason behind this is that the mesh topology
is symmetric to its center; hence, most of the packets are
routed through central switches on the path to their desti-
nation.

Another interesting scenario to study is comparison of dif-
ferent switching techniques and switch fabric types. More-
over with the help of the proposed CPN model, it is even
possible to have switches of different fabric and switching
model together on a single topology. By this setup more
complicated scenarios are examined and interaction of dif-
ferent switching techniques together is studied. The results
of these studies will be presented in our future works accord-
ing to the lack of space in this paper.

5. CONCLUSIONS
The interest in Network-on-Chip (NoC) as a new scal-

able architecture for future system-on-a-chip (SoC) designs
is increasing rapidly. Hence, the need to provide more cus-
tomizable and easier verification techniques in an early stage
of design process is a critical issue. In this paper, applying
the CPN, the networking issues of NoC are modeled, simu-
lated, and analyzed. As the modeling is done in a high level
parallel schema, the details of the underlying algorithms can
be verified by different simulation scenarios. In addition, by
applying the proposed CPN model of NoC, one may vary the
simulation scenarios and customize them much more easily
than current existing techniques for NoC simulations.

6. REFERENCES

[1] Jose Duato, Sudhakar Yalamanchili, and Lionel Ni.
Interconnection Networks: An Engineering Approach.
IEEE Computer Society Press, 1997.

Figure 8: Switch load distribution for the case of
uniform traffic generation between cores. The x and
y dimensions of the graph corresponds to the loca-
tion of the switches on the board.

[2] Holger Blume, Thorsten von Sydow, and Tobias G.
Noll. Performance Analysis of SoC Communication by
Application of Deterministic and Stochastic Petri
Nets, pages 484–493. Springer Berlin / Heidelberg,
2004.

[3] G. Chiola, M. A. Marsan, G. Balbo, and G. Conte.
Generalized stochastic petri nets: A definition at the
net level and its implications. IEEE Trans. Softw.
Eng., 19(2):89–107, 1993.

[4] Kurt Jensen. Coloured petri nets and the
invariant-method. Theoreiical Computer Science 14,
pages 317–336, 1981.

[5] N. Chaki and S. Bhattacharya. Performance analysis
of multistage interconnection networks with a new
high-level net model. J. Syst. Archit., 52(1):56–70,
2006.

[6] S. Bhattacharya N. Chaki. Modeling and analysis of
interconnection networks using high level net. In 15th
IASTED International Conference on Modelling and
Simulation, Innsbruck, Austria, February 1996.

[7] H. Blume, T. von Sydow, D. Becker, and T. G. Noll.
Application of deterministic and stochastic Petri-Nets
for performance modeling of NoC architectures. J.
Syst. Archit., 53(8):466–476, 2007.

[8] J. Schleifer H. Blume, T. von Sydow and T.G. Noll.
Petri net based moding of communication in systems
on chip. Book chapter in Vedran Kordic (ed.) Petri
Net, Theory and Application. I-Tech Education and
Publishing, Vienna, Austria, February 2008.

[9] H. Blume, T. von Sydow, D. Becker, and T.G. Noll.
Modeling NoC Architectures by Means of
Deterministic and Stochastic Petri Nets, pages
374–383. Springer, Berlin, 2005.

[10] G. Ciardo, R. German, and C. Lindemann. A
characterization of the stochastic process underlying a
stochastic petri net. IEEE Trans. Softw. Eng.,
20(7):506–515, 1994.

[11] Christoph Lindemann. Performance Modelling with

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5574
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5574

Figure 6: A part of the 4x4 mesh topology of simulations

Figure 7: A simple sender-receiver (core) model

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5574
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5574

Deterministic and Stochostic Petri Nets. John Wiley;
Sons, Inc., 1998.

[12] Petri nets world. http://www.informatik.uni-
hamburg.de/TGI/PetriNets/.

[13] A. Vinter Ratzer et al. CPN tools for editing,
simulating, and analysing coloured petri nets. In
Proceedings of the 24th International Conference on
Applications and Theory of Petri Nets (ICATPN
2003), pages 450–462, Eindhoven, The Netherlands,
June 2003. Springer-Verlag.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5574
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5574

