
Atarraya: A Simulation Tool to Teach and Research
Topology Control Algorithms for Wireless Sensor

Networks

Pedro M. Wightman1

University of South Florida
4202 E. Fowler Ave.
Tampa, FL 33620

pedrow@cse.usf.edu

Miguel A. Labrador
University of South Florida

4202 E. Fowler Ave.
Tampa, FL 33620

labrador@cse.usf.edu

ABSTRACT

Topology Control is a well-known technique for saving en-
ergy in wireless sensor networks. Despite the fact that topol-
ogy control algorithms and protocols have been extensively
studied, they are currently unavailable in most, if not all,
simulation tools. In this work we introduce Atarraya, a
discrete-event simulation tool specifically designed for test-
ing and implementing topology control protocols for wireless
sensor networks. The simulation tool includes structures for
designing both topology construction and topology main-
tenance protocols. In addition, Atarraya includes several
key algorithms and applications that along with its graphi-
cal user interface can be used to support teaching activities.
The correctness of the tool is validated using well-known
results available in the literature.

Categories and Subject Descriptors

I.6 [Simulation and Modeling]; I.6.8 [Types of Simu-

lation]: Discrete event; C.2 [Computer-Communication

Networks]; C.2.2 [Network Protocols]: Protocol Verifi-
cation.

Keywords

Topology construction; topology maintenance.

1. INTRODUCTION
In the last years, the topic of Topology Control (TC)

has received a lot of attention by the wireless ad hoc and
sensor networks research community, as it is a very well-
known technique for saving energy in Wireless Sensor Net-
works (WSNs). TC’s main objective is to build a topology
with a reduced number of active nodes and links that also

1Professor on leave from Universidad del Norte, Barran-
quilla, Colombia. http://www.uninorte.edu.co

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2009, Rome, Italy
Copyright 2009 ICST, ISBN 978-963-9799-45-5.

preserves some important network characteristics, such as
network connectivity and area coverage.

In the literature of topology control, many protocols have
been presented to create this reduced topology on a wireless
network. Most of these protocols were evaluated using sim-
ulation tools in order to deal with cost, experimental, and
scalability problems derived from an appropriate evaluation,
which involves a large number of nodes given that the effect
of TC can be better appreciated in large and dense networks.

Nonetheless, despite the fact that topology control algo-
rithms and protocols have been extensively studied, using
both mathematical and proprietary simulation tools, they
are currently unavailable in most, if not all, well-known and
accepted simulation tools currently used by the networking
research community.

The unavailability of such a simulation tool has impor-
tant implications. From the research point of view, there is
no trusted available tool where to implement new topology
control algorithms and test them under the same assump-
tions and conditions. Therefore, fairness in results compar-
ing different schemes is always an issue. Also, having no
common tool consumes a lot of precious time implementing
well-known algorithms for comparison. Finally, and more
importantly, more and new research in the area is not en-
couraged.

Atarraya supports the new definition of topology control
that considers topology control as two independent processes
that work in an iterative manner. First, there is the process
that builds the initial (reduced) topology, called Topology
Construction. Then, there is the process that maintains (re-
stores, rotates, or recreates) the reduced topology during the
lifetime of the network, called Topology Maintenance. As of
today, this is the first simulator that works based on this
paradigm. This characteristic allows the seamless combina-
tion and integration of both protocols, which is very useful
for determining the optimal pair that extends the lifetime of
the network, which is the main goal of topology control pro-
tocols and many other protocols and algorithms for wireless
sensor networks. From the teaching viewpoint, it is well-
known that the visualization capabilities of simulation tools
are a powerful method to explain complex concepts in an
easy manner. Here, also, the unavailability of such a simu-
lation tool does not allow professors, not researchers working
on topology control, to teach and encourage experimentation
in topology control further.

In this work we introduce Atarraya, a new simulation tool

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5565
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5565

for teaching and researching topology control algorithms
and protocols for wireless sensor networks. Atarraya is a
Java-based, event-driven modular simulator for designing
and comparing protocols for topology construction, topol-
ogy maintenance, sensor-data management, and routing in
wireless sensor networks.

In its current state, Atarraya is an excellent tool not only
for research to develop and test new topology control algo-
rithms, but also for teaching. Atarraya’s graphical user in-
terface shows how topology control protocols work, showing
how the protocols shape the network topology during their
execution. In addition, Atarraya includes necessary mecha-
nisms to experiment with classical theoretical results related
to topology control and wireless sensor networks, such as the
giant component experiment and the critical transmission
range (CTR) [3], the calculation of the Minimum Spanning
Tree of a graph, and others, which are excellent examples for
teaching fundamental concepts. Moreover, it can be used to
illustrate common procedures found in most communication
protocols, like a hello-reply protocol, or flooding schemes,
and evaluate them in the context of the metrics that the
simulator offers, like energy consumption and message over-
head.

The rest of the paper is organized as follows. The next
section discusses the related work. Section 3 discusses the
scope of the simulator. In Section 4 the Atarraya simulation
tool is described in detail, including its internal structure,
the design of protocols, its features, etc. Section 5 describes
the most important options included in the tool as well as the
main assumptions and models utilized. Section 6 presents
examples that illustrate some of the experiments that can
be run. Finally, Section 7 concludes the paper.

2. RELATED WORK
Although there are many commercial and open source

simulation tools available for networking research, the avail-
ability of reusable topology control simulation models is very
limited. First, commercial tools, like Qualnet or Opnet, and
open source tools, like ns-2, Omnet++, JiST/SWANS, and
several others, are full blown network simulators, which in-
clude all major communication protocols in the OSI and
TCP/IP communication protocol stacks at the Physical, Data
Link, Network, and Transport, and Application layers. How-
ever, given that topology control is not clearly defined as a
layer in any of the classical stacks, it is usually not included
in the pool of available protocols. Second, and reinforcing
the last aspect, topology control, contrary to MAC, routing,
and transport layer protocols, is not a main stream area of
research and the protocols do not necessarily need to be used
in many other simulation scenarios.

The other important reason that explains the lack of re-
lated work on simulation and topology control is that these
commercial and open source simulators are very complex
tools, which require a steep learning curve in order to modify
existing code or include new code to implement new algo-
rithms. More importantly, this learning curve is associated
with the fact that these tools offer many protocols and many
features, that are, in most cases, not needed to evaluate the
performance of topology control algorithms and protocols.
To the best of our knowledge, only the work of [2], which de-
scribes the implementation of a very simple topology control
protocol in Opnet, and the work of [9], which presents the
implementation of a centralized topology control algorithm

in ns-2, are publicly available. Although other tools have
been implemented in Matlab, C, or Java, they are propri-
etary, and were developed to test a particular algorithm of
interest.

In this work we present Atarraya, a discrete, event-driven
simulation tool designed for researching and teaching topol-
ogy control in wireless sensor networks. It offers a simple
platform that allow researchers to develop and test topol-
ogy control algorithms, in a very simplified communication
stack, in order to offer a simpler and faster implementation
of their algorithm. Atarraya comes with several well-known
algorithms for rapid comparison analysis. In addition, it of-
fers a complete tool for topology generation, statistics with
relevant metrics for topology control, a visualization module,
and some tools that can be used for reproduce or validate
analytical work on topology control. These last aspects are
of important teaching value.

3. TOPOLOGY CONTROL AND VIRTUAL

NETWORK INFRASTRUCTURES - VNI
Atarraya includes new concepts and features not available

thus far. For example, the literature on topology control
usually refers to those algorithms in charge of reducing the
initial topology, and ignores the fact that once the reduced
topology has worked for some time, it has to be changed
again; otherwise having topology control will be worse than
not having topology control at all. Although some proposed
topology control algorithms have also includes some sort of
procedure to change the reduced topology, a formal defi-
nition about this important aspect in topology control has
been missing.

In our recent work [5,6], we have extended the scope and
proposed a new definition of topology control, including a
complete taxonomy. Under this new definition, topology
control now consists of two processes. The first process con-
sists of those algorithms in charge of reducing the initial
topology, a process that we now call Topology Construction.
The second process consists of those algorithms that will
change the reduced topology for a new one when the cur-
rent topology can no longer offer the service it was called to
provide. We call this process Topology Maintenance. There-
fore, topology control is now a continuous process that it-
erates from topology construction to topology maintenance
until the network has no more resources to provide the ser-
vice it was designed for. Atarraya includes complete support
of topology control having separate modules for topology
construction and topology maintenance algorithms, so any
topology maintenance mechanism could actually make use
of any topology construction algorithm and vice versa.

One of the most common assumptions in topology control
algorithms is that they generate only one reduced topology.
In our proposed taxonomy, these algorithms are classified as
dynamic techniques, as they generate one reduced topology
on the fly. However, we have found that another plausible
way to perform topology control is to have several reduced
topologies and rotate them as needed. These algorithms
were classified as static, as all the reduced topologies were
calculated at the beginning and stored in memory. This is
similar to the lights of a Christmas tree, in which one subset
of lights among various subsets (topologies) is active at any
given point in time, and rotated over time. This rotation dis-
tributes the energy consumption between the subsets, while

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5565
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5565

keeping the network covered and connected. Each one of
this subsets is what we call a Virtual Network Infrastructure
(VNI). Atarraya, also includes support for multiple trees to
implement static topology maintenance techniques. In order
to implement this feature, the simulator includes data struc-
tures to support multiple VNIs in every node, plus the pos-
sibility to differentiate events that belong to different VNIs
in the queue of events.

4. ATARRAYA’S INTERNAL STRUCTURE
This section describes the internal structure of Atarraya.

First, its main functional components. Then, the structure
of the protocols is described in more detail, including how
they communicate with the main class and with other proto-
cols, how to initialize the nodes, and how to handle protocol
events.

4.1 Functional Components
This section describes Atarraya’s main functional compo-

nents and how they interact with each other. The functional
components offer the “big picture” necessary to understand
the critical components of Atarraya. Figure 1 presents a
global view of the internal structure of the simulator, which
consists of the main simulator thread, the node handler, the
batch executor, and the display manager. These elements
are described next.

4.1.1 The main simulation thread

This is the core of the system. The simulator thread,
defined in the class the sim, is in charge of fetching the
next event from the simulation event queue, and sending the
event to the node handler for execution. An instance of this
class is created by the method StartSimulation() whenever a
simulation is executed. This class contains the event queue,
the simulation clock, the display manager, the database with
the data about the nodes, and the simulation agent, which
is in charge of storing the simulation results for the reports
in the respective logs.

When an instance of the the sim class is created, it is nec-
essary to add the initial events to the queue before the thread
is started. The first thing the thread will do once started is
to check if there are any events in the Event Queue. If the
thread is started without any events, it will consider that an
error has occurred, and the simulation will be suspended.

Once the first events have been loaded into the queue, the
simulator thread can get started. The thread starts a loop
that will execute until one of the three termination condi-
tions is true: there are no events in the queue, all the nodes
have reached the final state in the topology control protocol,
or the protocols have called for the end of the simulation (for
example, the TM protocol has found that the sink has no
more neighbors, so the network is dead). If the first con-
dition occurs and the simulator has not been notified that
the protocols finished execution, it means that there was an
error during the simulation, and it will be notified on the
simulation report.

In the loop, the first thing the thread does is to verify
if the event is valid. If so, the event will be registered (if
this option was selected by the user), the simulation clock
will be updated, and the event will be sent to the NodeHan-
dler. There, the event will be delivered to the appropriate
EventHandler according to the protocol. Once the event is
executed, the simulator will go back to the loop and start

again the process. The simulator updates the clock with the
execution time of the events based on the fact that all the
events in the queue are sorted by their projected execution
time, so there is no such thing like a trip to the past.

Once the simulator breaks the loop by any of the final-
ization conditions mentioned above, the thread goes to the
report construction section, saving all the events and statis-
tics, as selected by the user. This section also takes into
account whether or not the simulation is part of a batch ex-
ecution, in which case all the data from all previous execu-
tions is kept until the last one finishes. All this information
is stored in data structures that are stored in the report files
after the simulation is finished. Reading this section of the
code will provide the user with information about all the
options for each configuration of report in both single and
batch simulation cases. Once the simulation and the report
building section finish, the thread ends too.

In the current version of the simulator, just one simula-
tor thread can run at a time because there is only one data
structure to store the topology, which is localized in the atar-
raya frame class. Individual instances of the data structure
running several simulations in parallel will consume all the
resources of the Java virtual machine, especially if the net-
work topologies are big.

4.1.2 The node handler

This class is in charge of defining the protocols to be
used in the simulation and routing the event to the appro-
priate protocol once received from the simulation thread.
The NodeHandler class defines four possible protocols that
a node can have running during a simulation: Topology con-
trol, topology maintenance, sensor-data management, and
communication-routing protocols. Given that there are dif-
ferent algorithms for each type of protocol, the main purpose
of this class is to make that selection transparent to the rest
of the simulator, so that no details about the selection are
required in order to execute the simulation. When a simula-
tion is started, this class creates the instances of the selected
protocols in each of the four different categories. The sim-
ulation thread sends the next event from the event queue
to the NodeHandler class. Once the event is received, it
is routed to the appropriate protocol based on the protocol
identifier included in the event.

4.1.3 The batch executor

The main purpose of the BatchExecutor thread is to per-
form operations that require multiple executions, such as
creating a set of topologies, performing a large number of
simulations, and the Giant Component test. Since these
operations are run on a thread independent from the main
one, the graphical user interface does not freeze while these
operations are being executed, which allows for the interac-
tion between the user and the simulator even while some of
these operations are running in the background. This class
is instantiated whenever one of the mentioned operations is
started.

4.1.4 The display manager

The display manager, or newpanel class, is the one in
charge of the graphical representation of the topologies. The
heart of this class is the override of the Paint method of this
class that extends a Panel class. All the painting options for
the topology are defined in this method. The other methods

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5565
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5565

Event Queue
Simulation Agent

the_sim class

NodeHandler class

Event Handler for
Topology

Construction

Event Handler for
Topology

Maintenance

Event Handler for
Sensor and Data

Management

Node Class
Nodes Data

Other System
Variables

Newpanel class
Display Manager

BatchExecutor class
Batch Agent

Topologies in
files

Simulation Reports

Event Handler for
Communication

and Routing

Kind of
Protocol

Atarraya_frame class

Figure 1: Atarraya’s functional components.

perform minor but necessary actions like obtaining informa-
tion about the options, providing coordinates from the de-
ployment area, etc. This class was defined as a private class
of the atarraya frame class so it can have direct access to
the topology data structure.

Atarraya provides several options for topology visualiza-
tion, which can be seen in more detail in the visualization
options in the main window of the simulator. The most
relevant visualization options are the following:

• MaxPower Topology: This is the original view of the
topology with all nodes transmitting at full power, and
all the links that their unit disks provide.

• Single selected network configuration or tree: In this
view the user defines which of the Virtual Network
Infrastructures he or she wants to see. More on VNI
later in Section 5.4. The default configuration is Black
in most protocols.

• All network configurations: If several configurations
are defined in a certain topology, this view allows the
user to see all of them and appreciate the differences
between them.

• Active network configuration: Each node is assumed
to be able to maintain several VNIs, but use only one

at a time. This view allows the user to see in real-
time in which network configurations the nodes of the
topology are.

4.2 Protocol Structure and Design
This section introduces the design and structure of the

protocols in Atarraya. The next subsections describe the
types of events that a protocol in Atarraya can model, how
states are labeled, how each protocol communicates with the
atarraya frame class, how protocols interact with each other,
how nodes are initialized, and how the simulator handles
events.

4.2.1 Simulation Events and the EventHandler

Given that Atarraya is an event-driven simulator, every-
thing that happens during a simulation is an event, so pro-
tocols must be defined in terms of cause-effect when certain
event occurs. Each of these types of events triggers some
internal actions in the node that might modify its status,
data structures, etc., and could also cause the generation of
new events in the future. The EventHandler class is the one
that model the structure of a protocol in Atarraya and han-
dles all the events. Common examples of events in Atarraya
are sending and receiving messages. Also, Atarraya includes
provisions to program an event in the future and invalidate
a programmed event.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5565
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5565

The HandleEvent method is the core of the protocol, as
it defines the actions taken by the protocol when an event
occurs. The unique parameter that this method receives is
the event taken from the event queue.

The events are classified based on an event label. Each
protocol defines a set of labels for all the events that it uses.
These labels are defined in the constants interface. The first
action taken by the HandleEvent method is to recover all the
fields from the event and store them in temporary variables.
Depending on the nature of the protocol, the classification of
the events can be done in different ways: Label-then-State
or State-then-Label. In the first case, the most important
information is the label of the event, which becomes the
main classification factor. Once the label is found, the code
inside determines if the state of the node is important or not
for the execution of the actions associated with the event.
In the second case, the most important information is the
state of the node. This methodology is useful when there
are not many types of events but each type is interpreted
differently based on the state of the node.

4.2.2 Node state labels

In general, a good number of topology construction pro-
tocols use node states to represent the evolution of the pro-
tocol. In Atarraya, nodes can be in any of the following four
states: Initial, Active, Inactive, and Sleeping states. These
states are assigned to the protocols on the Node Handler
class. The values defined as the parameters are usually de-
fined in the constants interface, and they are all positive
integer values. For example: tc protocol handler.setLabels(
S INITIAL STATE, S ACTIVE, S SLEEP, S SLEEP);

Given that most topology control protocols implemented
in Atarraya are completely distributed, the sink cannot call
the end of the protocol because it has no information about
the state of all the nodes. That is the reason why Atar-
raya knows that a protocol has finished when all the nodes
have reached the final state. Each topology control proto-
col can define which states are selected as the final states.
This is done in the method CheckIfDesiredFinalState(int s)
that is defined in every EventHadler, which is invoked in the
atarraya frame class when the simulation agent is trying to
verify if the topology control algorithm is finished. In the
following example, the protocol is selecting the active and
the inactive states as the final states of the nodes.

public boolean CheckIfDesiredFinalState(int s){
if(s==active || s==inactive)

return true;
return false; }

Atarraya stops whenever the nodes of the topology are in
any of the selected states, no matter if there are still events
in the queue.

4.2.3 Communication with the atarraya_frame class

Each protocol receives a reference to the instance of Atar-
raya’s main frame, as defined on the NodeHandler. This
reference allows the protocol to have access to variables
from the main class. In order to access the variables from
the simulator, the protocol needs to use the method fa-
ther.getVariable(int code), where the parameter code is a de-
fined label for the sets of variables that can be accessed. This
list can be found in the constants interface, and in the atar-
raya frame class where the getVariable() method is defined.

For example, if we need to know how many nodes are in the
topology (including the sink nodes), the following line re-
turns this value: tam = father.getVariable(NUMPOINTS).

When the protocol needs to get information about a node
or modify it, the method to use is getNode(int id), where id
is the unique id of the node. In order to set node i in the
initial state of the protocol in the VNI vniID, the following
line can be used: getNode(i).setState(initial,vniID).

4.2.4 Interaction with other protocols

There will always be some level of communication between
protocols. For example, inter-protocol communication is
needed to avoid situations like one node wanting to send
a data message without having a route to the sink. Given
that in Atarraya every event in the simulation goes to the
same queue, it is necessary to determine to which protocol
it must send the event to. Each type of protocol has its
own identifier label, which is included in the event defini-
tion. This allows the Node Handler to send the event to the
appropriate protocol.

One of the premises of Atarraya is to create modular pro-
tocols that can be used in as many combinations as possible
with the other protocols. Accordingly, protocols in Atar-
raya can only generate events in other protocols. For ex-
ample, once a node reaches the final state of its topology
construction algorithm, it can notify the topology mainte-
nance protocol to start the maintenance procedure. Most
of the times these inter-protocol events are meant to ini-
tiate or stop certain activity, so the protocol and how it
works internally are completely independent, but the other
protocols can decide the starting points. The following ex-
ample illustrates a topology construction protocol when it
invokes the topology maintenance protocol: pushEvent(new
event sim(temp clock+DELTA TIME, temp clock, receiver,
receiver, INIT EVENT, ””, temp tree,TM PROTOCOL)).

4.2.5 Initialization of nodes and the initial events

The init nodes(int vni) method is used to set the nodes
ready to start the execution of the simulation. Nodes are
set to their initial states, and any previously defined events
regarding other protocols and all necessary variables are set
to their default values. This method is invoked in the Start-
Simulation method in the atarraya frame class, for all nodes,
including the sink. The following code is an example of a
init nodes routine, in which every node is set to its initial
state, every state label is defined, any existent programmed
event in the queue is cancelled, and the execution of the
topology maintenance and sensor and data management pro-
tocols are reset.

The initial event(int id, int vniID) method is used to
define the first events to be included in the queue, before the
simulation agent is started. Remember that if the simulation
agent finds an empty queue it considers that the simulation
has finished in an incorrect way. This method needs two
parameters: the ID of the node that will perform the first
event, and the VNI ID. This method is also invoked in the
StartSimulation() method in the atarraya frame class, but
only for the sink nodes. If no sink nodes are defined in your
topology, make sure that events are included in the queue
using the init nodes(vniID) method.

5. HOW TO USE ATARRAYA

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5565
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5565

Atarraya offers a variety of options for designing and ex-
perimenting with topology control algorithms. This section
provides an brief user guide on how to use the simulation
tool and all its available options.

The first step is to have a clear understanding of the sim-
ulation scenarios to be run. Here, the user needs to know
in advance which protocols he or she wants to use; whether
the experiment is just a preliminary test or an exhaustive
performance evaluation, what is the nature of the topolo-
gies that she is planning to use, what type of statistics are
needed, and so forth. In this section, these questions are
answered in order that a user may create and run successful
simulations with Atarraya.

5.1 Selection of the protocols
Atarraya includes four types of protocols: Topology con-

struction, topology maintenance, sensor-data, and commu-
nication protocols. Atarraya can be set to work in either of
the following two modes related to topology control: Topol-
ogy construction only, or All protocols. The first mode is
designed to test a specific topology construction algorithm
and measure the initial reduced topology that the algorithm
produces. In order to select this mode, the user only needs
to select a topology construction protocol.

The second mode is intented to test not only the reduced
topology but the lifetime of the network, based on the com-
bination of all the protocols, i.e. topology construction and
topology maintenance. In order to select the second mode
the user needs to select a protocol in each of the protocol
categories, i.e. select a topology construction and a topology
maintenance protocol, otherwise Atarraya will not allow the
user to run the experiment.

The topology construction protocols included in Atarraya
are based on algorithms presented in published papers. Cur-
rently, Atarraya includes the A3 [4], EECDS [10], and CDS-
Rule-K [7, 8] algorithms. Although all types of topology
construction protocols might be implemented, such as those
based on changing the transmission range of the nodes, hier-
archical protocols, cluster-based protocols, etc., the current
version of Atarraya includes only those based on the Con-
nected Dominating Set concept. In addition, and for the
sake of comparison with a wireless sensor network without
topology control, Atarraya offers a protocol that does not
reduce the topology at all, called JustTree. The only service
that this protocol provides is the creation of a forwarding
tree to implement the constant gateway forwarding proto-
col.

Atarraya also includes all the topology maintenance tech-
niques included in [5], i.e., static, dynamic and hybrid topol-
ogy maintenance techniques. They are generic algorithms
that work with any of the topology construction protocols.
The simplest topology maintenance protocol included in Atar-
raya is the No Topology Maintenance protocol, which does
nothing to maintain the initial topology, but monitors it un-
til it dies. The protocol is in charge of informing Atarraya
when this event happens. In Atarraya, the termination pol-
icy is defined as the moment at which the sink stops receiving
information from the nodes.

The sensor-data management protocol models the
behavior of the sensors, regarding variables like data trans-
mission frequency, data aggregation policies, etc. Atarraya
provides a simple protocol for sending and receiving mes-
sages without data aggregation. Nodes transmit data pack-

ets at predefined times, and forward every received data
packet based on the forwarding policy explained in the fol-
lowing paragraph.

Although communication or routing protocols are not the
focus of this simulator, some kind of routing procedure is
necessary so packets can reach the sink. Given that the
topology control protocols implemented in Atarraya are de-
signed to produce a tree-like reduced topology, the tool pro-
vides a very simple forwarding algorithm that allows pack-
ets to reach the sink node: The constant gateway for-

warding protocol. In this protocol, packets are always
forwarded to a default gateway unless the destination of the
packet is a direct neighbor, in which case it will be sent di-
rectly to that node. In a tree-like topology, the gateway of
a node is simply its parent node. In this fashion, the packet
will finally reach the sink node, since it is the root of the
tree.

Atarraya does not include any routing protocol, but de-
fines a data structure that models a routing table. This data
structure allows users to develop more advanced routing pro-
tocols than the one currently implemented. In addition, the
routing table can store a limited amount of packet sequence
numbers (events have a field for this purpose) that allow the
implementation of other forwarding algorithms like flooding-
based protocols, or save the last versions of the routing pro-
tocol information packets, like routing tables on a Distance
Vector protocol, or the last neighborhood information in a
Link-State protocol.

In Atarraya’s graphical user interface, the panel named
Atarraya presents the available protocols. In addition, this
panel contains the controls for the simulation agent, the re-
port configuration options, simulation events and statistics
panels, and the batch simulations controls.

5.1.1 Other protocols

Atarraya has been used to validate analytically derived
equations and show special effects or behaviors of topology
control algorithms. This section describes five tools included
in Atarraya that are very well suited for educational pur-
poses, as they allow users to:

• Calculate the Critical Transmission Range (CTR) based
on the formulas of Penrose-Santi and Santi-Blough [3].

• Reproduce the experiment to obtain the Giant Com-
ponent figures: Greatest Connected Component and
Ratio of Connected Topologies.

• Reproduce the experiment that proves connectivity of
the CTR formula of Santi-Blough for 2 dimensional
deployments.

• Calculate the Minimal Spanning Tree on a given graph
and provide the sum of the selected edges.

• Save the neighborhoods of a graph in a file.

The Minimal Spanning Tree of a graph is a classical tool
for graph analysis - Prim’s algorithm was implemented. Re-
garding the last tool, the information provided by it can be
used to define and solve linear programming optimization
problems on graphs, like finding a minimal set cover of the
graph.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5565
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5565

5.2 Energy and communications model
In the design of Atarraya simplicity and focus on reaching

a better understanding of the behavior of the topology con-
trol algorithms was embraced. As such, several assumptions
were made to make the simulator simpler while still good
enough for achieving its main objective. These assumptions
are related to the energy and the communication models
utilized in the tool.

The energy model included in Atarraya is based on the
following formulas, taken from [1]:

ETXbit = Eelect +
(

Eamp ·
(

πr
2
))

ERXbit = Eelect

In addition, Atarraya also makes the following assump-
tions:

• During the idle time, a node does not spend energy.
Even though this assumption has been proven untrue
because being idle might be as costly as receiving data,
this is still an assumption that can be done in some
experiments, for example, the delay time for a topology
construction protocol is very short compared to the
total amount of time the network is going to be active,
so the energy spent on idle listening is negligible. This
function is being implemented for the next version of
the simulator.

• The nodes are assumed to have one radio for general
messages and a second radio for control messages: The
main radio is used in all operations when the node is in
active mode, and the second one (low power cheaper
radio) is used to send and receive control packets to
“wake up” the main radio. Only the main radio can be
turned off, which means no messages will be received
and no energy will be used. The secondary radio is
assumed to use half the energy of the main radio.

• The sink node has a infinite source of energy. In gen-
eral, the sink node is assumed to be powered from an
external source of energy.

The communication model used in Atarraya is based on
the following assumptions:

• The communication range of the nodes is a perfect
symmetric unit disk. If dx,y ≤ rx → x and y can see
each other.

• A constant bit error rate (BER) is defined for the whole
network. This is a simple implementation of an error
model. Whenever a packet is going to be sent, a ran-
dom number is generated and compared to the message
error rate (that depends on the size of the message).
If the random number is greater, the message is re-
ceived, otherwise it is lost. The default value for the
BER is 0, which means there is no packet loss. No
sum of partially received packets will build a complete
packet.

• Atarraya assumes that there exists a Data Link Layer
that deals with packet losses and retransmissions, but
it does not model this. In order to model some of the
consequences of the operations of the MAC layer, the
packets are delayed a random amount of time in order

to model delays occurring due to retransmissions, con-
tention, etc. The variable that defines the maximum
delay value can be found in the constants interface,
by the name of MAX TX DELAY RANDOM. The de-
fault value for this variable is 0.2 time units.

5.3 Type of experiments
Atarraya offers two types of experiments: single topology

based, that uses the visual representation of the topology,
and the batch execution mode that simulates a large set
of topologies. The single topology based type is good for
protocol design and debugging. The batch type is made for
full scale evaluation and analysis.

During the protocol design phase, it is very important
to have the capability to run a small number of controlled
topologies one at a time to be able to compare the results
of several runs on a known scenario. This is a debugging
phase where many changes are introduced in the protocol
until it behaves as intended. During this process, a visual
representation of the topology and the performance of the
topology control algorithm is very helpful.

Once the protocol has reached a stable version that has
worked well in several single topologies, the protocol needs
a more exhaustive test with a larger number of topologies in
order to analyze its average behavior. The batch execution
mode allows the researcher to run simulations with hundreds
of random topologies. In this case, the visual representation
of the topologies is not necessary; actually, it would slow
down the simulation process.

5.4 Structure of a topology
A topology in Atarraya is composed of four basic elements:

Deployment area, regular nodes, sink nodes, and virtual net-
work infrastructures or VNI. The deployment area is an ab-
stract concept, which is useful for visualization purposes. It
is a rectangle in which the user deploys the nodes of the
network. In order to define the deployment area, the user
needs to define its width and height.

The set of regular nodes is usually the biggest set of el-
ements in the topology. They are in charge of monitoring
the environmental variable or variable of interest, sending
this information to the sink and routing packets. As with
any wireless sensor devices, regular nodes are very limited
in terms of resources.

The sink nodes are special nodes that, in most scenarios,
are included to receive the information from all active nodes
in the network. They serve as bridges between the wireless
sensor network and any type of external network used to
transport the sensed data to its final destination somewhere
else in the Internet. In some cases they are also in charge of
initiating, executing, and/or controlling the topology con-
struction and maintenance protocols, routing protocols, etc.

Despite the fact that in real life the hardware configu-
ration of the sink nodes is different compared to a regular
wireless sensor device, Atarraya uses the same data struc-
ture to model both nodes, with the main difference that sink
nodes are considered to have an unlimited amount of energy.

Atarraya also support several topologies at the same time
through the VNI feature. It identifies the different VNIs
with numbers from 0 to 6, and visually with colors: Black,
Red, Blue, Green, Orange, Pink, and Yellow. Each node is
assumed to have a separated data structure for each VNI,
so the information of each one is independent from each

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5565
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5565

Table 1: Parameters for deployment creation

Parameter Description

Number of Nodes Integer value
Communication Radius rcomm is an integer value
Sensing Radius rsens is an integer value

Position
Distribution

- Uniform in a square area of size h and w, centered in (x, y)
- Normal with x′ ∈ N(µx, σ) and y′ ∈ N(µy, σ)
- Grid H-V: Distribute nodes in the deployment area with a distance of rcomm between nodes,
so nodes are adjacent with their vertical and horizontal neighbors

- Grid H-V-D: Distribute nodes in the deployment area with a distance of rcomm ·
√

2
between nodes, so nodes are adjacent with their vertical, horizontal and diagonal neighbors
- Constant position: (x, y) for all nodes in the creation word
- Center: (x, y) is the center of the deployment area
- Manual: Use the mouse to select the position in the deployment area

Energy
Distribution

- Constant position: e ∈ < for all nodes in the creation word
- Uniform with maximum energy emax

- Normal with e′ ∈ N(µe, σ)
- Poisson with λe

Sink? This parameter determines if the nodes in the creation word are sink nodes
VNI Selection This parameter associates sink nodes to the selected VNI
Inter-query time Frequency of querying the sensor for readings. Only used by sensor-data protocols
Inter-reset time Time period between the execution of time-triggered topology maintenance protocols

Energy
threshold

Energy percentage differential used to invoke energy-triggered topology maintenance protocols.
Every time the energy of a node changes this energy threshold value, since the last invocation of
the topology maintenance protocol, the node will invoke the protocol again. For example, if the node
has all its energy and the value is 0.10, the node will invoke the protocol at 90%, 80%, 70%, etc.

other. Regular nodes have no affiliation with a particular
VNI, while each sink node is associated with a VNI to which
it serves as a sink node. All sink nodes are assumed to be
regular nodes by the VNI, that are not associated with them,
keeping their characteristic of unlimited energy.

The following list contains all the available options to de-
fine the network topology:

• Sink or No Sink: Even though most wireless sensor net-
works contain one or more sink nodes, Atarraya allows
the user to define a wireless sensor network without
sinks.

• One or multiple sinks in a single VNI: Atarraya allows
to define a single network with a single sink or multiple
sinks.

• One VNI or multiple VNIs: Having multiple VNIs is
the way in which the static global topology mainte-
nance techniques were implemented, where there are
several subsets of topologies and one sink.

5.5 Structure of the nodes
In terms of the nodes, Atarraya can manage homogeneous

networks, in which all nodes have the same characteristics,
and heterogeneous networks, where there is at least one node
that is different from the others.

When creating a topology, the simulator works based on
subsets of homogeneous nodes. Each set defines a family of
nodes that share the same characteristics. For example, the
user can define a set of “weak” nodes with low transmission
range and low energy, and a set of “powerful” nodes with
high transmission range and higher energy. Atarraya also
allows for different random distributions for the location and
energy of each group of nodes, that will allow the user to

create denser zones in the topology, or zones with nodes
that have less energy.

The data structure that models these families of nodes
is called Creation Words. These creation words are cre-
ated based on the values defined on the Deployment Op-
tions panel in the simulator. The user can create as many
creation words as desired: these families can model from
a single node to the complete set of regular nodes. In the
panel there are two list boxes where the creation words are
stored until the topology is created: The regular nodes list
(top) and the sink creation words (bottom). There are three
buttons for adding a new creation word, removing a selected
creation word, and clearing both list boxes.

Table 1 summarizes the parameters that can be defined
for a homogeneous family of nodes, as well as some other
parameters that are related to the execution of the topol-
ogy maintenance and the sensor-data protocols. All these
options can be found in the Deployment Options tab, under
the tabs named Main Parameters and Other Parameters.

5.6 Topology control performance metrics
Topology control protocols are compared based on a spe-

cific set of metrics that most of the available tools for sim-
ulating wireless networks do not include. The following list
enumerates the most important metrics to measure the per-
formance of the topology control algorithms.

For the evaluation of topology construction algorithms,
Atarraya includes as performance metrics the number of ac-
tive nodes per VNI, the overhead in terms of number of
packets, and the area of coverage.

For the evaluation of topology maintenance algorithms,
the metrics include the number of active nodes reachable
from the sink during execution, the lifetime of the network,
the number of data messages received by the sink, and the

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5565
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5565

network coverage during execution.

5.7 Simulation results
Atarraya offers three types of result logs that can be ob-

tained from a set of experiments: General statistics, network
lifetime, and the simulation event logs. The general statis-

tics log can register the state of several variables in a peri-
odical manner, or provide just one snapshot of the network
at the end of the simulation. The most usually consulted
variables are the simulation clock, number of nodes, num-
ber of sink nodes, number of active nodes, number of dead
nodes, average node degree, average level of nodes (if level is
used by the protocol), number of messages sent and received,
number of data messages received by the sink, energy on the
tree, energy spent, and area of communication coverage.

These values are stored in a text file where each individual
row contains a snapshot of the variables of the network in
the moment at which data was collected. If a experiment
includes more than one topology, the user can decide if the
data is going be stored individually per execution, or if all
the results are going to be summarized in a single file. The
usual format in which data is presented is in comma sepa-
rated values (.csv), which is readable by most data analysis
programs, like Excel, Matlab, etc. However, if the user does
not want them to be saved in files, the Report panel has a
text area that holds the statistics generated by the experi-
ments in csv format. If just one topology is simulated, the
user can use the Stats text area in the Atarraya panel, which
presents the results in plain text format.

The network lifetime log registers the status of the
active topology. This log stores information every time the
topology maintenance protocol is invoked, or when a node
dies. This specific log cannot be stored in individual files
per execution; it is stored in a summarized format in csv
format.

The information stored in the network lifetime log by a
single topology is represented in four rows. The first row reg-
isters the moment in which the information of the network
was calculated. The second row represents the number of ac-
tive nodes that can still reach the sink node - those that still
can provide information to the sink. This value is important
because if the sink gets isolated, no matter how many active
nodes remain, all of them are useless because the informa-
tion they produce gets lost. In the case of having more that
one VNIs, the program works with the active VNI in the
nodes. The third row shows the ratio between the number
of active nodes that can reach the sink (value found on the
second row) and the maximum number of active nodes. This
value is the percentage of active nodes that are still alive and
connected to the sink. Finally, the fourth row contains the
percentage of covered area by the active nodes in the sec-
ond row. This information can be very useful in order to
compare efficiency between protocols, in terms of number of
active nodes and real covered area.

The simulation event log registers all the events gener-
ated by the simulator during the execution of a single topol-
ogy. The complete set of events allows the user to debug the
protocol by seeing the sequence of operations executed. This
information is only available in individual files per topology.

Atarraya not only offers statistics from the complete sim-
ulation point of view, but from the individual node perspec-
tive. It is always very useful to know the status of the nodes
at any given point in time to check if the algorithms are

working as desired. This information can be found in the
Node Stats panel. In order to get the information of a node,
the user can do it in two ways: dragging the mouse pointer
to the desired node and clicking over it, or typing the id
number of the node in the text field and press the button
Generate Stats. Once the node is selected, the point in the
topology turns orange and increases in size.

Atarraya also allows for the visual representation of the
reduced topology. The main window of Atarraya is divided
in two environments: The deployment visualization area
and the control area. One of the panels in the control
area contains the visualization options: changing view from
MaxPower graph to the reduced topology (Atarraya mode);
showing the active nodes (Parent mode), communication
and sensing coverage areas, and node id’s; drawing a grid
over the deployment the area, etc.

6. SIMULATION EXAMPLES
In this section we show some experiments run with Atar-

raya. The first example shows the classic experiment of the
Giant Component [3], the second experiment compares sev-
eral topology constructions algorithms, and the final one
shows a sensitivity analysis using one topology maintenance
protocol.

The giant component is a classical experiment to show the
behavior of connectivity when the communication radius of
the nodes is increased. Figure 2 shows the size of great-
est connected component (GC), in percentage against the
total size of the network, and the percentage of connected
topologies versus the communication radius. The experi-
ment was performed with 3 different network sizes: 10, 100
and 1000 nodes, over 1000 randomly generated topologies
where the nodes wer uniformly distributed in a square area
of 100x100 meters. Figure 2 shows the results produced by
Atarraya, which are similar to the ones presented by Santi
in his book [3].

Figure 2: The giant component experiment.

The following example compares the performance of three
topology construction algorithms, A3, EECDS, and CDS-
Rule-K [4]. The performance metric is the average number of
active nodes produced by the topology construction protocol
on the initial topology. Figure 3 shows these results. In
these tests other metrics can be used, like the number of sent

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5565
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5565

messages, energy spent, area or coverage, and essentially all
the variables found in the experiment’s report.

Figure 3: Active nodes vs. network density.

The final example shows a sensitivity analysis performed
on a topology maintenance scheme, which tests the influ-
ence of the energy threshold in the lifetime of the network.
Figure 4 shows the number of active nodes over time of the
topology maintenance protocol called Dynamic Global En-
ergy Topology Recreation (DGETRec), using 4 different en-
ergy thresholds, when the thresholds are set to 5%, 10%,
25%, and 50% of nodes’ remaining capacity. Using this
topology maintenance scheme, a new topology construction
takes place using the A3 algorithm every time a node reaches
the energy threshold set, i.e., when it has consumed 95%,
90%, 75% and 50% of its total energy. This kind of exper-
iments are very useful when the designer is trying to de-
termine the best maintenance policy for a given topology
construction protocol.

Figure 4: Example of a test of sensitivity of topology

maintenance protocols in Atarraya

7. CONCLUSIONS
In this work we present a simulation tool for teaching and

researching topology control algorithms and protocols for

wireless sensor networks. The tool, called Atarraya, is de-
scribed from the point of view of the developer and the user.
First, the internals of the tool are described. Then, a brief
user guide with the main options and features available is
included. Finally, some examples are presented, which illus-
trate the potential of the tool for both teaching and research.
Teaching experiments for educational purposes that can be
used in the classroom include the replication of the giant
component, or the calculation of the critical transmission
range. Examples of research experiments are also included
showing the performance of three diffrent topology construc-
tion algorithms and one topology maintenance scheme.

This simulation tool is still far from its full potential; for
example, work is needed in important areas like the energy
and communication models, in the implementation of more
protocols, and in mobility models, extending its capabili-
ties to wireless mobile ad hoc networks. It is hoped that
by making the tool publicly available, it will trigger more
research in the topic of topology control and the tool will
get expanded. The application and the code of Atarraya is
available at: http://www.csee.usf.edu/˜labrador/Atarraya.

8. REFERENCES
[1] W. B. Heinzelman, A. P. Chandrakasan, and

H. Balakrishnan. An application-specific protocol
architecture for wireless microsensor networks. IEEE
Transactions on Wireless Communications, 1:660–670,
2002.

[2] N. Krishnamurthi, S. J. Yang, and M. Seidman.
Modular topology control and energy model for
wirless ad hoc sensor networks. Online Proceedings of
OPNETWORK Š04, 0, 2004.

[3] P. Santi. Topology Control in Wireless Ad Hoc and
Sensor Networks. John Wiley & Sons, September 2005.

[4] P. M. Wightman and M. A. Labrador. A3: a topology
construction algorithm for wireless sensor networks.
Proc. of IEEE Globecom 2008, 2008.

[5] P. M. Wightman and M. A. Labrador. Topology
Control in Wireless Sensor Networks. Springer, 2009.

[6] P. M. Wightman and M. A. Labrador. Topology
maintenance: Extending the lifetime of wireless sensor
networks. Proc. of WWASN 2009 (submitted), 2009.

[7] J. Wu and F. Dai. An extended localized algorithm for
connected dominating set formation in ad hoc wireless
networks. IEEE Transactions on Parallel and
Distributed Systems, 15(10):908–920, 2004.

[8] J. Wu and H. Li. On calculating connected dominating
set for efficient routing in ad hoc wireless networks. In
Proceedings of the 3rd ACM international Workshop
on Discrete Algorithms and Methods for Mobile
Computing and Communications, pages 7–14, 1999.

[9] L. Xu, H. Bo, L. Haixia, Y. Mingqiang, S. Mei, and
G. Wei. Research and analysis of topology control in
ns-2 for ad-hoc wireless network. Complex, Intelligent
and Software Intensive Systems, International
Conference, 0:461–465, 2008.

[10] Z. Yuanyuan, X. Jia, and H. Yanxiang. Energy
efficient distributed connected dominating sets
construction in wireless sensor networks. In Proceeding
of the 2006 ACM International Conference on
Communications and Mobile Computing, pages
797–802, 2006.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5565
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5565

