Cache Simulator based on GPU Acceleration

Wan Han, Gao Xiaopeng, Wang Zhigiang
School of Computer Science and Engineering
Beijing University of Aeronautics & Astronautics
+86-010-82338059

wanhan@cse.buaa.edu.cn, {gxp, wangzhigiang}@buaa.edu.cn

ABSTRACT

Cache technologplays a fundamental rolen moderncomputer
systems as it serves the purpose nohtching the speedgap
between procesr and nemory. Trace-driven isulator hasbeen
widely adopted in the process of design @waluationof cache
architectures However, as the cache dégn noves to nore
conplicated architecturesize of the trace ibeconing largerand
larger. Traditional simulation methods, whichn only execute

simulation operations in sequence, are no longer practical due t

their long simulation ogles. In tis paper, we explore both set-
parallelisn and ®arch-parallelis in cache snulation proces,
and map our parallel algorithm ®PU-CPU platformAnd we
proposea trace-drivencache simlator on GPU using Copute
Unified Device Architecture (ODA). Our experimental result
shows that the new algorithm gains 2.5x performance
improvement compared to traditidr@PU-based serial algorithm.

Categories and Subject Descriptors

B.3.2 [Memory Sructure]: Design Stjes—associative memories,

cache memories;, B.3.3 [Memory Sructure]: Performance
Analysis and Design Aids-simulation; C.4 [Compute Systems

Organization]: Performance of Sstems—ModelingFechniques

General Terms
Algorithms, Desgn, Measirenent, Docunentation, Performance,
Experimentation,

Keywords
Multi-core, GPGPU, Trace-driven, Cache Simulator, CUDA

1. INTRODUCTION

Trace-driven Cache iraulator [1] is a vital tool in the
performance analsis and degn gace exploration in thareaof
computer architecture researcompared to execution-driven
cache snulator[2] and model anafys [3], trace-driven isnulator
hasthe advantage ofiglding better accuracgnd being of more
flexibility . However, traditional trace-driven cache slators
only analye trace in sequence, and lable ability of utilizing
multi-core processing power bgkploiting inherent parallelisnof

Pemission to mée digital orhad copies of all orpat of this work for
personalor classoomuse is gantedwithout fee provided that copiesear
not mede or distibuted for profit or commercial advantage and that
copies beathis notice and the full citation on thesfirpage.To copy
othemwise, or republish, to post on semrs or to redistribute to lists,
requires piior specific pemission and/or fee.

SIMUTools 2009, March 26, 2009,Rone, Italy

Copyright 2009 ICST, | SBN 978-963-9799-45-5

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5562
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5562

modern platforms. As the cache architecture growsconwplicity,
exponentiallyincreased trace sizeakes traditional simlation
methods not applicable due tbeir extremelylong simulation
cycles. The need for more effective simulation method is
thereforeraised and bringsnuch research attention. In this paper,
we introduce a novel parallelathod to accelerateéhe simulation

of single-level cache, which utilizes the qoutation ability of
GPU. Extension of our proposed method can be applied to GPU
Jrased milti-level and multi-core cache simiator.

For implementation, we ap our parallel trace-driversimulation
algorithm to the SIMD conputation nodel in GPU. Ve
developedtrace-driven smulator for sngle-level cache on a
Geforce 8800GTX with Comput&nified Device Architecture
(CUDA). With different parallelgranularities, we implemented
five parallel algorithms for ouexperiment. The nost efficient
algorithmshows2.5x speedup copared to traditional CPU-based
serial algorithm

Perallel trace-drivencache gnulation hasbeen a re=arch hot
spot, and there have beeramy excellent resarchesn this area.
For example, one single pass simulatidf, trace reductior5],
time-parallel sirolation [6] and SIMD massive parallel
simulation [7]. One single pass simulation is able to compute
statisticsfor differentsizesof cache within aisgle pas. But it is
confined to certain range of pareters and nay create large
overhead as flexibilitincreases Trace reduction technique can
greatly reduce trace length but cannot guaranteeatiwairacyof
performance netrics. Conpared to the tira-parallel siralation,
the methodproposed in this papeexploits both set-parallelism
and arch-parallelis in the trace-driven cachenaulation. Our
method cansimulate the behavior of the cache accurateljthout
extra processing for simulation rdtscorrection. Furthermore, our
algorithm is of nore flexibility as it is not linted to LRU
simulation or other acceleration condition.

The remainder of the paper asganized adollows: conceptsof
Graphics Processing Unit and parallel giation algorithns are
introduced in next section; Section 3 presents our CUDA based
parallel algorithm as well as related techniques;piementation

of simulation algorithms igxplaned in detail in section 4; and
Section 5 elaborate the refts of experiments. In the end, we
summarize and conclude the paper.

During cache ismulation, the following operationare perforned

2. BACKGROUND on anaddres: (1) fetchaddres from the trace; (2) break addees
2.1 Trace-driven Cache Simulator into tag, block number, block off (3) calculate set number; (4)
Sequential gmulation algorithmin traditional trace-drivewache ~ Search blocks in corresponding set; (5) updateséstatusand
simulator can be described as follows: metrics. Among all five steps, stdpand step @rethe twomost
time-consumingsteps, which can be performed independeotly
For each nemory reference addres the cache imulator different sets. This observatioedds to exploit of set-parallelism
computesits set nuber and tag infor@tion accordingo cache (j e. trace-driven cachdmulation can be perfored in parallel on
paraneters such as the block &e and asociativity. Then a =t ba®). Parallel Smulation algorithmfirst classifies traceby
simulatorcheckscorrespondingset to find out whether there is a setnumbers, and then implements simulation kernel. In addition
cache line hashe sme tag ascurrent nemory reference And to set-parallelism searching in the step 4 can also work in
finally set status and etrics will be updated accordingly parallel.
2.2 General-Purpose Computation on GPUs In a coarse granularitymulti-configuration canbe parallelized
In the lag decade, GB performance hadbeen incredsg < fagt udng the conputationalresource on GB. Once trace file isead
that even out pacethe peed ofintegrated circuit predictetly into memory, the smulator can generate efrics for cachewith

Moore’s Law. This rapid increasin GPU performance takes different parameters within aingle pass. Together with set-
advantagef the highlyparallel nature of visual computing. State parallelisn and earch-paralleli in the proces of cache
of the art graphic architectures provide tremendous memory Simulation are explored, the cache slator accelerationutilizing
bandwidth and computatiohapower. Besides performance GPU is feasible.

improverrent of the hardware, the programbility also has been

significantly increagd. Thee improvenents make GRJ a 3. PARALLEL ALGORITHM BASED ON
compelling platform for genekpurposecomputing as well as CUDA AND KEY TECHNIQUES

visual computing. 31 CUDA

CUDA issues and manages qmmations on GPU as data-
parallel computing device without the need of mapping
computation to a graphics APWhen programmingCUDA,
programmerstake GPU as a processing device capable of
executing a large nuper of thread#n parallel.In this case, GPU

.) . = behavesas a coprocessorto the main CPU (host), and hosts
on GPU platiorm. With the ever increasing prograability parallel portions of applications’ workload. Tleegortions are

specific powerful programming tools ¢e.CUDA [8] and CTM independent when theprocess dferent data set, and can be
[9]) canbe used for inplementation of algorithm For exanple, isolated and partitioned into seral functions (kernels). Wl

GPU has been utilized as zatim co-processor in special gesn establishedunctionscan be built with CUDA instruction set and
and phywics simulationan [10]; [11] introduces a GPU based downloaded to the device for execution.

implementation of Regs-stye adaptive surfacsubdivision;[12]

AdvancedGPU architectureoffers significant level of parallelism
with relatively low cost. The operations executed @GPU are
similar to the wellknown vector processing model, which is also
known fromFlynn’s taxonory asSing Instruction MultipleData
or SIMD. Therefore it can be predéd that manypplications use
to be hosted on verctor superconputers in the past cdeptmed

preentsfag algorithrs for scan and egmentedscan on GPUS, Host Device

[13] develops a programming framework on the graphics Grid 1

architecturesand appliest to a varietyof problens (e.g. natrix Kernel 1 LS L e
multiplication); [14] introduces a framework for the ‘ Block H Blodk [‘ Siook ‘
implementation of linear algedoperators on GPUs; And [ib5], on - @h [l @b
Fast Fourier Transform is implemented on NVIDIA graphics 2 s Y
architecture. |7 | Grid2 L

Among the various applicatioreds GPU programming, the major Kernel 2 s “ H ‘ ‘ H ‘
challengeis how to map the algorithm to units of graphics A | | 1] J
architecture. Asshown in the GPGPU technique, applications .~ Block(1,1) |

needbe partitioned into independent parallel sections. And each| ¥ ngf;d T(hlr%id T(hzr%‘f Tg‘g’;d T(T‘S;"d | j
section needsto be inplemented as a kernel executes a Thread | Thread | Thread | Threal | Thread |
processing unit. While input and output of a keraue storedin Tﬁé)d T(hlrggd T(ﬁr;;d T%l; T(ﬁ}lld \,\

the memory of GPU. 102 12) 22 32) @2) :"\

2.3 Parallel Simulation Algorithm Figure 1 CUDA Programming Modd

It hasbeen obsrved that theisulation proces of each namory

reference lsows a weaklypartialorder.Whether current reference

is a cache hit islependent on cactsmtus which is modified by As shown in figure 1, host cangquest services of the device via
the memoryreferences that haveen simulated. This observation specific progranming interfaces Each kernel isexecuted as
implies that nemory references belonging to the sagache set batchof threadswhich are organized as a grid of thread blocks. A
should be simulated jointlywhile smulation of different setseed threadblock is a cluger of threadghat conmunicate with each

to be carried separately other efficiently via fag shared nemory and synchronizetheir

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5562
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5562

execution for remory access copetition. S/nchronizationpoints
are pecified in the kernel. Onceaush a point exids, threadsin a
block will be suspended until they a#achthe synchronization
point. There is a limitation on the maximum numbérthreads
that a block carhost. However,blocks of sara dimensionality
andsize thatexecutethe sme kernel can be clisred into a grid
of blocks. Therefore the totalumber of threads thatan be
launched in a single kernel invocation is mu&fgerthan single
block limitation. But threads in different thread blodksm the
sarme grid cannot communicate and synchronize with each other.

Device

MultiprocessorN

Multiprocessr 2

Multiprocessorl

\ Shared Merary |

A A A
Registe's ‘ v Regisers ‘ v Regisers ‘ v
Processor i Processor e Processor
A A? A Af A n?
' Constan
Cache| ||
A
‘ Texture‘ L
Cache
A
Y 4 \

Device Memory

Figure 2 Hardware Model in CUDA @

Thedeviceis implemented as a $@f multiprocessors is shown in
figure 2. Each processor has oset of 32-bit local registers.
Shared memory is shared among processing cores of a
multiprocessor. A read-onlgonstant/texture cachs sharedby

all the processors and serves the purposspeé&dingup reads
from the constant/texture emory. The local and global emory
spacesare implemented agead-write region®f device nemory
and are not cached.

3.2 Parallel Simulation Algorism based on
CUDA

As analyzed in section 2.3, we can utilize the GPU parallel
architecture to optimize the following cpuotations

1. The smulation proceses on different cachesets are
independent. And the computations on different thread
blocks are also independent. Therefothke parallel
simulation on different cachees can be implemnted by
distributing the simulation proces of each cacheesto a
separate thread block in GPU.

2. Searching proces is time-consuming when large
associativitypresents. As thiprocess is inherently parallel,
giventhatthreadsin one block can comunicate with each
other in the ame block, the search-paralleli;i can be
exploited by distributing the search operations geveral
threads

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5562
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5562

3.3 Key Techniques

3.3.1 Bucket Sort

The sort proces classfies the trace data according to the cache
set, and holdghe original squence of theane cache &t. It al
sets up ®veral bucketswhich nunbersare in accordance to the
set nunmbers. And ultinately, the sort process atthes nemory
referenceso buckets according to thegaence in cachests.

3.3.2 Ping-pong Buffer

In general,as cachelines are $ored in $atic array in memory,

they need to be reordered after searching process is over. Ping-
pong buffer is therefore adopted parallelize the reordering
process.

1. The information about one cache set is stored in two
buffers: BufO and Bufl. Assuginitial input is BufO;

2. After each sarching proces all information gored in BufO
is copiedto Bufl according to the replacemt policy and
updating policy then set the input as Bufl and output as
BufO;

3. After each memory reference issmulated, exchangé¢he
position of input and output buffemtil the whole tracefile
is simulated. And the input Har at the time is thdinal
staus.

3.3.3 Memory Model on the GPU

Different memories oiGPU variesgreatlyin terms of bandwidth,
which has a dignificant impact on the perforance of the
simulator. The memorgnodel adopted here is:

1. Since the trace data igrge, it can be onlgored inthe
global memory

n

The information about the caclset,such as the cache lines,
tag, statusand netrics, which needshigh nemory acces
speed, isstored in the kared nemory.

3.3.4 Sream Management

In order to improve performaer, we us two d$reans to
parallelize cacheimulation proces and bucket art proces. As
trace data can be divided intoultiple segnents, one stream
preparesthe bucket sort for next phase, while the other stream
executes the siafation process othe sortedstream Parallelizing

the two streams, we can achieve approximate 2x speed-up
conpared to onetseamimplementation.

There are specific limitationsbaut the feature of supporting
overlapped memorycopy concurrently with kernel execution
usng new dream managenent interface. Overlapping i®nly
allowedon 1.1 architectures (g84/g86/g92), and it will revert to
serial operation on 1.0 architectures (g80).

4. ALGORITHM IMPLEMENTATION

When programming CUDA, users nedd allocate device
memory first, then transfer data frommost to device, and finally
get results back from device wheomputationis finished. The
five parallel algorithra we implemented are decribed &sllows:

Parallel ssimulation algorithm 1: trace data imot ©rted, but
simply stored in an arrayThe sinulation is parallelized at both
set-parallelismevel and search-parallelisievel.

For each memory reference {
If (the memory reference is mapped to this cache set)
Handleit;
Else
Discard it; }
In this algorithm one thread block is dedicated to the dation
of one cacheet, and each thread ithe block is in chargeof
searching in one cache lineoFevery memory referencegeach
thread block needs to compuisether this data belongs to the
cacheset it is amulating, and Bnulatesthe cache function in cas
the memory reference does. Since there areltiple threads
executing the search process and thegrk independently

synchronizationis neededo find out if the memoryreference is
hit, and then to update status and metrics.

Paralld simulation algorithm 2: perform bucket @t on trace
data. One thread block déedicated tahe simulation of onecache
set. And each thread in the block is in charge of searchirpnén
cache line.

Paralle simulation algorithm 3: perform bucket @t on trace
data. One thread block éedicated tahe simulation of onecache
set. Only one thread in each thread block iis charge of
searching.

The difference between algorith® and 3 isthe ®arching
process. While algorithm 2 doesasching in parallelalgorithm3
does it in sequencial. This provanent to algorithm 3 is based on
the consderationthat the threadysmchronization comsumes lots
of conputation cygles

Parallel simulation algorithm 4: similar to algorithm 2, but
using the ping-pong buffer to accelerate the update process.

Parallel simulation algorithm 5: the sinulation of rmulti-
configurationis implemented ira single pass. Since the bucket
sort proces takeslots of cycles sorted trace data imsed to
simulate cacheswith different degree®f asociativity. In this
algorithm,severalthreadblocksare dedicated to the simulation of
one cache configuration,and each thread block onlyas one
thread to execute th@mulation on one cachests

equipped with an Intel core 2 E6550 and GeF@860 GTX
graphics card.

Our experinents consist of theimulation on various input traces
which are obtained fronthe NMSJ Trace Base facility. The
tracesare collectionof memory referencedrom prograns in the
SPEC 92 benchmark suite.

5.1 Measurement of Time

The CPU simulationtime doesot include the tira that read trace
file from disk to nemory. While the GPU simulation time
includes the bucket sort time, the @rof data transfer fro@PU
to GPU, GPU simlation time, and the tira of results feed back
from GPU to CPU.

5.2 Single Configuration Simulation

We dmulate one trace file of 10BWtes to get the GPU
simulation time distribution asshown in table 1. The cache is
configured with:64 sets, cache blockige is16 and asociativity

is 4, using LRU and write back policy

Table1 GPU Simulation Time Distributions

Proces Average Tine (ms) Percentage
Bucket sort 40.09 36.609%
Data download 7.05 6.438%
Kernel 62.35 56.935%
executing
Data upload 0.02 0.018%

It can be observed from the resuttgat: bucket sort process
occupies a great amounf time in simulation; Data download
time is bounded to the memofyandwidth betweerCPU and

GPU; And data upload is velfag and not ginificant compared

to the others.

As we discussed in section 3.3BYcket sort process and kernel
simulation process are executed in sequential due to tlitiom

of the GeForce 8800 GTX hardware. Although bucket sort
proces hasan large impact on the overall perf@nte,single
pass mlti-configuration can reduce the pact of bucket sort
process byncreasing computation task on GPU.

Another consideration is to use a thread block to simulate oneThe rest experiments and argdyadopt alvinn.din as an example.

configuration, and all threads in it implement thesimulation on
one cacheset. The problemis that the kared nemory for one
thread block ionly 16KB, but information sich ascache line and
tag for eachconfigurationis larger than 16KB. Therefore it is
necesary to sbre ®me information in the uncachedlocal
memory. As the smulation for eachmemory referenceneedsto
acces local nemory in this ca®, theexperinental realts show
that thesmall bandwidth of local remory has a negative ipact
on parallel computation performance.

5. PERFORMANCE

We use DinerolV sequential uniprocesr cache gnulator for our
evaluation. The experiments wereonducted on a testbed

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5562
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5562

5.2.1 Increasing the Associativity

160

140
120 W

——CPU
—-—A2
——A3
-7l

Time (ms)

[N =]
S S S35 S

=

64 16 4 6416 16 g4 16 32

Cache Configuration

64 16 64 g4 16 128

Figure 3 Simulation Time Curve with Increasing Associativity

As shown in figure 3, A2-Adepresentparallel algorithm 2-4
respectively And we choose LRU as replacent policy, write-
back as updating policyn this experiment. X-axis represents
cache configurationin following format: nunber of ®ts (64),
block size (16) and associativif#\16\64\128).

We foundthatthe time using byAl is several dozen times longer
than others so we do not showinitthis figure. The reasadpehind
this is that the unsrted trace data iargeandstoredin the global
memory. Thus Al experiences longemory access latency

As the degree of asciativity increag:

1. Serialsimulation time increased slowlylt benefits fromthe
principle of locality Hit rate is high since the emory
reference idocated centralized in an addsesnge.When
asociativity is increagd, hit rate wouldnot increag
dramatically and thus the siulation time is not improved
significantly.

2. A2 and A4 smulation time increagd. Since the thread
nunber isincreagd when aciativity is increagd in Al,

this results in much more time spending on synchronization.

3. Al's simulationtime increasd evidently Snce each thread
block needs to acces all memory references
synchronization tine isincreagd.

4. A3 smulation time increasd dowly. As each thread block

has only one thread, the sequential searching time is

increagd as the asociativity increag. When hit rate
increagd, searching timincrenent isnegligible.

5.2.2 Increasing Set Number
Figure4 shows simulation time cuesg with increasing set number
when the cache blockze and asociativity are fixed.

1000 r

Cache Configuration

l\
800
_\ —e—CPU
2 600 =l
E ——A2
= 400 35355555\ —a—A3
—>— M
200 < »
- - - g —
0
4164 16164 32164 64164 198 164

Figure 4 Simulation Time Curve with Increasing Set Number

As set number increas:

1. Sequencial simlation time

reduces slowly Hit

rate

increags asthe &t number increaed. Since the degreeof

associativityis 4, the replacemnt and update execution on

CPU is fad.

2. Al, A2, A3 and A4 simulation time first reduces fastd
then $ows down. Hit ratesare low when therare fewsets.

And hit rate increassasset nunber increass

5.2.3 Single Configuration Smulation Summary
Results have shown that A1-A4 algorithms cannot spgethe

simulation of $sngle cache configuration:

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5562
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5562

1. Too much time is spent on bucket sort process;
Fetching data from the globalemoryof GPU suffers from
long latency and the computation density the GPU is
small.

3. The conputation capabilityof CPU is nuch larger than that

of the single processor in the GPU.

5.3 Multi-configuration Simulation in Single

Pass

Figure 5 shows tim curves of milti-configuration sinulation in
single pass with increasing set number. Cache blockssgstto
16KB and the numbenf simulatedconfigurations is 128. Hit rate
improves when the set nurber increases, which result in less
replacenent, thusthe CRJ sequential gmulation time is reduced.
However, both the number of the thread blogkdthe numberof
threadsin each thread block affedmulation time on GPU.
When the nurher of &t increagsto a certaimumber, thethread
synchronizations become the major portion of simulation time.

10000 -

8000 \
6000
4000 \
2000

0

416 128 16 16 128 39 16 128 @4 16 128 195 16 128
Configuration

——CPU
—m— A5

Time (ms)

Figure 5 Simulation Time of Multi-configuration in Single
Pass Curve with Increasing Set Number

Figure 6 shows the speedup of Afgorithm with increasing
number of set. And it can be obsentbdt theaveragespeedup
comes to 2.5. X-axis repreerns the configurations in the
following format: numberof sets block size and number of the
simulated configurations.

©

-

o

Speedup

< =
e SO = oo w o

16 128 16 16 128 32 16 128 64 16 128

Configuration

128 16 128

Figure 6 Speedup of A5 Algorithm Curvewith Increasing Set
Number

6. CONCLUSIONS and FUTURE WORK

In this paper, we suggetstatthe trace-driven cache sitator can
be acceleratedon the GR. Our experirents show that this
method is fast, low-cost and easyuse. Performance is anadd
according to the GPU architectuend CUDA programming
model.

The functionality and perforamce of our GPU based sitator
could be easilymproved byincorporating the following changes:

1. When similate multi-level cache, it needs to dispatcloma
thread block to imulate the extra cache leveland to
parallelize theisnulation of different level®f cache;

2. When simulate cache coherenciyn multi-core system it
needsto execute cacheinsulation of different cores on
different threads within one thredslock and use shared
memory to sirulate the coherengy

3. Use two dreans to parallelize cacheémulation proces and
bucket sort process on 1.1 graphics hardware;

Proceedings of the 2004iWer Simulation Conference.
2002.

[7] T.Kiesling and S. Pohl. TieParallel Sinulation with
Approximate Sate Matching. In Roceeding®f the 18th
Workshop on Parallel and Digiuted Simulation, 2004.

[8] NVIDIA CUDA Programming Guide,
http://developer.nvidia.cofouda

[9] ATI CTM Guide,
http://ati.de/comparigfo/researcher/docuemts.htnh

4. Use An to generate the trace, pipelined the trace generation[10] Marcelo P M. Zanith, Edeban W G. Clua, Aura

process and simulation process.

7. ACKNOWLEDGMENTS

Our thanks to the support provided byhe National High
Technology Research and Development
(2007AA017183).

8. REFERENCES

[1] R. A. Uhlig. and T.N.Mudge.Trace-driven Merary
Simulation: A survey[J]. ACM Computing survey,
Vol.29, 1997.

[2] Matton, R. L., Gcei, J, Sutz, D. R. and Traiger, I. L.
Evaluation techniques for storage hierarchies.

[3] Puzak, T. Analwis of cache replaceemt algorithns. Ph.D.
dissertation, Universitpf Massachusetts, 1985.

[4] Yuguang Wu and Richard Muntz, Stack evaluation of
arbitrary set-associative uitiprocessor caches, IEEE Tram
on Parallel and Distribure8lystems, 6(9), pp. 930-942,
Sep.1995.

[5] Milenkovi'c A. and Milenkovic, M. An efficient single-
pass trace copnession technique utilizing instruction
streams. ACM Transationson Modeling and Computer
Simulation, Vol. 17, No. 1, Article 2, Publication date:
January2007.

[6] R. G. Ingalls, M. D. Rossetti, 3. Snith, and B. A. Peters,
eds.Approxinate Time-parallel Cache siodation.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5562
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5562

Program

Conci, Anselmo Montenegro, Regina C. P. Leal-
Toledo, Paulo A. Pagliosa, Luis Valente, Bruno Feijo. A
game loop architecture for the GPU used as a math
coprocesor in real-time applicationsConputersin
Entertainment (CIE), 2008, 1-19.

[11] Anjul Patney John D. Owens. Real-time Resystyle
adaptive surface subdivision. ACM SIGGRAPH Asia 2008
papers, 1-8.

[12] Yuri Dotsenko, Naga K. Govindaraju, Peter-Pike
Sloan, Charles Bai; John Manferdelli. Fast scan algorithm
on graphics processors. Proceedings of the 22nd annual
international conference @upercomputing, 2008, 205-213.

[13] Chris J. Thompson, Sahngy Hahn and Mark Oskin. Using
Modern Graphics Architectures for General-Purpose
Conmputing: A Framework and Analgis[A] . In Proceedings
of International Sgnposium orMicroarchitecture, Istanbul,
2002. 306-317.

[14] PJens Kruger, PRudiger Westann. Linear algebra
operators for GPU impleamtation of numerical
algorithms. ACM SIGGRAPH 2005 Courses. Jul. 2005.
234-es.

[15] Sergio Roraro, Maria A. Trenas, Eladio Gutierrez, Hm
L. Zapata. Localityimproved FFT inplementation on a
graphicsprocesor. Proceeding®f the 7th WBEAS
International Conference on Signal Processing,
Computational Geometry & Alficial Vision. Aug. 2007. 58-
63.

