
Cache Simulator based on GPU Acceleration
Wan Han, Gao Xiaopeng, Wang Zhiqiang

School of Computer Science and Engineering
Beijing University of Aeronautics & Astronautics

+86-010-82338059

wanhan@cse.buaa.edu.cn, {gxp, wangzhiqiang}@buaa.edu.cn

ABSTRACT
Cache technology plays a fundamental role in modern computer
systems as it serves the purpose of matching the speed gap
between processor and memory. Trace-driven simulator has been
widely adopted in the process of design and evaluation of cache
architectures. However, as the cache design moves to more
complicated architectures, size of the trace is becoming larger and
larger. Traditional simulation methods, which can only execute
simulation operations in sequence, are no longer practical due to
their long simulation cycles. In this paper, we explore both set-
parallelism and search-parallelism in cache simulation process,
and map our parallel algorithm to GPU-CPU platform. And we
propose a trace-driven cache simulator on GPU using Compute
Unified Device Architecture (CUDA). Our experimental result
shows that the new algorithm gains 2.5x performance
improvement compared to traditional CPU-based serial algorithm.

Categories and Subject Descriptors
B.3.2 [Memory Structure]: Design Styles– associative memories;
cache memories; B.3.3 [Memory Structure]: Performance
Analysis and Design Aids– simulation; C.4 [Computer Systems
Organization]: Performance of Systems–Modeling– Techniques

General Terms
Algorithms, Design, Measurement, Documentation, Performance,
Experimentation,

Keywords
Multi-core, GPGPU, Trace-driven, Cache Simulator, CUDA

1. INTRODUCTION
Trace-driven Cache simulator [1] is a vital tool in the
performance analysis and design space exploration in the area of
computer architecture research. Compared to execution-driven
cache simulator [2] and model analysis [3], trace-driven simulator
has the advantage of yielding better accuracy and being of more
flexibility . However, traditional trace-driven cache simulators
only analyze trace in sequence, and lack the ability of utilizing
multi-core processing power by exploiting inherent parallelism of

modern platforms. As the cache architecture grows in complicity ,
exponentially increased trace size makes traditional simulation
methods not applicable due to their extremely long simulation
cycles. The need for more effective simulation method is
therefore raised and brings much research attention. In this paper,
we introduce a novel parallel method to accelerate the simulation
of single-level cache, which utilizes the computation ability of
GPU. Extension of our proposed method can be applied to GPU
based multi-level and multi-core cache simulator.

For implementation, we map our parallel trace-driven simulation
algorithm to the SIMD computation model in GPU. We
developed trace-driven simulator for single-level cache on a
Geforce 8800GTX with Compute Unified Device Architecture
(CUDA). With different parallel granularities, we implemented
five parallel algorithms for our experiment. The most efficient
algorithm shows 2.5x speedup compared to traditional CPU-based
serial algorithm.

Parallel trace-driven cache simulation has been a research hot
spot, and there have been many excellent researches in this area.
For example, one single pass simulation [4], trace reduction [5],
time-parallel simulation [6] and SIMD massive parallel
simulation [7]. One single pass simulation is able to compute
statistics for different sizes of cache within a single pass. But it is
confined to certain range of parameters and may create large
overhead as flexibility increases. Trace reduction technique can
greatly reduce trace length but cannot guarantee the accuracy of
performance metrics. Compared to the time-parallel simulation,
the method proposed in this paper exploits both set-parallelism
and search-parallelism in the trace-driven cache simulation. Our
method can simulate the behavior of the cache accurately without
extra processing for simulation result correction. Furthermore, our
algorithm is of more flexibility as it is not limited to LRU
simulation or other acceleration condition.

The remainder of the paper is organized as follows: concepts of
Graphics Processing Unit and parallel simulation algorithms are
introduced in next section; Section 3 presents our CUDA based
parallel algorithm as well as related techniques; implementation
of simulation algorithms is explained in detail in section 4; and
Section 5 elaborate the results of experiments. In the end, we
summarize and conclude the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTools 2009, March 2-6, 2009, Rome, Italy
Copyright 2009 ICST, ISBN 978-963-9799-45-5

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5562
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5562

2. BACKGROUND
2.1 Trace-driven Cache Simulator
Sequential simulation algorithm in traditional trace-driven cache
simulator can be described as follows:

For each memory reference address, the cache simulator
computes its set number and tag information according to cache
parameters such as the block size and associativity. Then
simulator checks corresponding set to find out whether there is a
cache line has the same tag as current memory reference. And
finally set status and metrics will be updated accordingly.

2.2 General-Purpose Computation on GPUs
In the last decade, GPU performance has been increasing so fast
that even out paces the speed of integrated circuit predicted by
Moore’s Law. This rapid increase in GPU performance takes
advantage of the highly parallel nature of visual computing. State
of the art graphic architectures provide tremendous memory
bandwidth and computational power. Besides performance
improvement of the hardware, the programmability also has been
significantly increased. These improvements make GPU a
compelling platform for general-purpose computing as well as
visual computing.

Advanced GPU architecture offers significant level of parallelism
with relatively low cost. The operations executed in GPU are
similar to the well known vector processing model, which is also
known from Flynn’s taxonomy as Sing Instruction Multiple Data
or SIMD. Therefore it can be predicted that many applications use
to be hosted on verctor superconputers in the past can be deployed
on GPU platform. With the ever increasing programmability ,
specific powerful programming tools (e.g. CUDA [8] and CTM
 [9]) can be used for implementation of algorithms. For example,
GPU has been utilized as a math co-processor in special games
and physics simulations in [10]; [11] introduces a GPU based
implementation of Reyes-style adaptive surface subdivision; [12]
presents fast algorithms for scan and segmented scan on GPUs;
 [13] develops a programming framework on the graphics
architectures and applies it to a variety of problems (e.g. matrix
multiplication); [14] introduces a framework for the
implementation of linear algebra operators on GPUs; And in [15],
Fast Fourier Transform is implemented on NVIDIA graphics
architecture.

Among the various applications of GPU programming, the major
challenge is how to map the algorithm to units of graphics
architecture. As shown in the GPGPU technique, applications
need be partitioned into independent parallel sections. And each
section needs to be implemented as a kernel executes on a
processing unit. While input and output of a kernel are stored in
the memory of GPU.

2.3 Parallel Simulation Algorithm
It has been observed that the simulation process of each memory
reference shows a weakly partial order. Whether current reference
is a cache hit is dependent on cache status, which is modified by
the memory references that have been simulated. This observation
implies that memory references belonging to the same cache set
should be simulated jointly while simulation of different sets need
to be carried separately.

During cache simulation, the following operations are performed
on an address: (1) fetch address from the trace; (2) break address
into tag, block number, block offset; (3) calculate set number; (4)
search blocks in corresponding set; (5) update the set status and
metrics. Among all five steps, step 4 and step 5 are the two most
time-consuming steps, which can be performed independently on
different sets. This observation leads to exploit of set-parallelism
(i.e. trace-driven cache simulation can be performed in parallel on
a set base). Parallel simulation algorithm first classifies trace by
set numbers, and then implements simulation kernel. In addition
to set-parallelism, searching in the step 4 can also work in
parallel.

In a coarse granularity, multi-configuration can be parallelized
using the computational resource on GPU. Once trace file is read
into memory, the simulator can generate metrics for cache with
different parameters within a single pass. Together with set-
parallelism and search-parallelism in the process of cache
simulation are explored, the cache simulator acceleration utilizing
GPU is feasible.

3. PARALLEL ALGORITHM BASED ON
CUDA AND KEY TECHNIQUES
3.1 CUDA
CUDA issues and manages computations on GPU as a data-
parallel computing device without the need of mapping
computation to a graphics API. When programming CUDA,
programmers take GPU as a processing device capable of
executing a large number of threads in parallel. In this case, GPU
behaves as a coprocessor to the main CPU (host), and hosts
parallel portions of applications’ workload. These portions are
independent when they process different data set, and can be
isolated and partitioned into several functions (kernels). Well
established functions can be built with CUDA instruction set and
downloaded to the device for execution.

Kernel 1

Kernel 2

Host Device

Block
(0,0)

Block
(2,1)

Block
(1,1)

Block
(0,1)

Block
(2,0)

Block
(1,0)

Grid 2

Grid 1

Block(1,1)
Thread
(0,0)

Thread
(2,1)

Thread
(1,1)

Thread
(0,1)

Thread
(4,0)

Thread
(3,0)

Thread
(2,0)

Thread
(1,0)

Thread
(3,1)

Thread
(4,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(4,2)

Figure 1 CUDA Programming Model [8]

As shown in figure 1, host can request services of the device via
specific programming interfaces. Each kernel is executed as a
batch of threads which are organized as a grid of thread blocks. A
thread block is a cluster of threads that communicate with each
other efficiently via fast shared memory and synchronize their

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5562
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5562

execution for memory access competition. Synchronization points
are specified in the kernel. Once such a point exists, threads in a
block will be suspended until they all reach the synchronization
point. There is a limitation on the maximum number of threads
that a block can host. However, blocks of same dimensionality
and size that execute the same kernel can be clustered into a grid
of blocks. Therefore the total number of threads that can be
launched in a single kernel invocation is much larger than single
block limitation. But threads in different thread blocks from the
same grid cannot communicate and synchronize with each other.

Device Memory

Multiprocessor N

�

Multiprocessor 2

Device

Processor 1 Processor MProcessor 2
Instruction

Unit

Registers RegistersRegisters

Shared Memory

Multiprocessor 1

Constant
Cache

Texture
 Cache

...

Figure 2 Hardware Model in CUDA [8]

The device is implemented as a set of multiprocessors is shown in
figure 2. Each processor has one set of 32-bit local registers.
Shared memory is shared among processing cores of a
multiprocessor. A read-only constant/texture cache is shared by
all the processors and serves the purpose of speeding up reads
from the constant/texture memory. The local and global memory
spaces are implemented as read-write regions of device memory
and are not cached.

3.2 Parallel Simulation Algorism based on
CUDA
As analyzed in section 2.3, we can utilize the GPU parallel
architecture to optimize the following computations:

1. The simulation processes on different cache sets are
independent. And the computations on different thread
blocks are also independent. Therefore the parallel
simulation on different cache set can be implemented by
distributing the simulation process of each cache set to a
separate thread block in GPU.

2. Searching process is time-consuming when large
associativity presents. As this process is inherently parallel,
given that threads in one block can communicate with each
other in the same block, the search-parallelism can be
exploited by distributing the search operations to several
threads.

3.3 Key Techniques

3.3.1 Bucket Sort
The sort process classifies the trace data according to the cache
set, and holds the original sequence of the same cache set. It also
sets up several buckets which numbers are in accordance to the
set numbers. And ultimately, the sort process matches memory
references to buckets according to the sequence in cache sets.

3.3.2 Ping-pong Buffer
In general, as cache lines are stored in static arrays in memory,
they need to be reordered after searching process is over. Ping-
pong buffer is therefore adopted to parallelize the reordering
process.

1. The information about one cache set is stored in two
buffers: Buf0 and Buf1. Assume initial input is Buf0;

2. After each searching process, all information stored in Buf0
is copied to Buf1 according to the replacement policy and
updating policy, then set the input as Buf1 and output as
Buf0;

3. After each memory reference is simulated, exchange the
position of input and output buffer until the whole trace file
is simulated. And the input buffer at the time is the final
status.

3.3.3 Memory Model on the GPU
Different memories on GPU varies greatly in terms of bandwidth,
which has a significant impact on the performance of the
simulator. The memory model adopted here is:

1. Since the trace data is large, it can be only stored in the
global memory;

2. The information about the cache set, such as the cache lines,
tag, status and metrics, which needs high memory access
speed, is stored in the shared memory.

3.3.4 Stream Management
In order to improve performance, we use two streams to
parallelize cache simulation process and bucket sort process. As
trace data can be divided into multiple segments, one stream
prepares the bucket sort for next phase, while the other stream
executes the simulation process on the sorted stream. Parallelizing
the two streams, we can achieve approximate 2x speed-up
compared to one stream implementation.

There are specific limitations about the feature of supporting
overlapped memory copy concurrently with kernel execution
using new stream management interface. Overlapping is only
allowed on 1.1 architectures (g84/g86/g92), and it will revert to
serial operation on 1.0 architectures (g80).

4. ALGORITHM IMPLEMENTATION
When programming CUDA, users need to allocate device
memory first, then transfer data from host to device, and finally
get results back from device when computation is finished. The
five parallel algorithms we implemented are decribed as follows:

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5562
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5562

Parallel simulation algorithm 1: trace data is not sorted, but
simply stored in an array. The simulation is parallelized at both
set-parallelism level and search-parallelism level.

For each memory reference {

If (the memory reference is mapped to this cache set)

 Handle it;

Else

 Discard it; }

In this algorithm, one thread block is dedicated to the simulation
of one cache set, and each thread in the block is in charge of
searching in one cache line. For every memory reference, each
thread block needs to compute whether this data belongs to the
cache set it is simulating, and simulates the cache function in case
the memory reference does. Since there are multiple threads
executing the search process and they work independently,
synchronization is needed to find out if the memory reference is
hit, and then to update status and metrics.

Parallel simulation algorithm 2: perform bucket sort on trace
data. One thread block is dedicated to the simulation of one cache
set. And each thread in the block is in charge of searching in one
cache line.

Parallel simulation algorithm 3: perform bucket sort on trace
data. One thread block is dedicated to the simulation of one cache
set. Only one thread in each thread block is in charge of
searching.

The difference between algorithm 2 and 3 is the searching
process. While algorithm 2 does searching in parallel, algorithm 3
does it in sequencial. This improvement to algorithm 3 is based on
the consideration that the thread synchronization comsumes lots
of computation cycles.

Parallel simulation algorithm 4: similar to algorithm 2, but
using the ping-pong buffer to accelerate the update process.

Parallel simulation algorithm 5: the simulation of multi-
configuration is implemented in a single pass. Since the bucket
sort process takes lots of cycles, sorted trace data is used to
simulate caches with different degrees of associativity. In this
algorithm, several thread blocks are dedicated to the simulation of
one cache configuration, and each thread block only has one
thread to execute the simulation on one cache set.

Another consideration is to use a thread block to simulate one
configuration, and all threads in it to implement the simulation on
one cache set. The problem is that the shared memory for one
thread block is only 16KB, but information such as cache line and
tag for each configuration is larger than 16KB. Therefore it is
necessary to store some information in the uncached local
memory. As the simulation for each memory reference needs to
access local memory in this case, the experimental results show
that the small bandwidth of local memory has a negative impact
on parallel computation performance.

5. PERFORMANCE
We use DineroIV sequential uniprocessor cache simulator for our
evaluation. The experiments were conducted on a testbed

equipped with an Intel core 2 E6550 and GeForce 8800 GTX
graphics card.

Our experiments consist of the simulation on various input traces
which are obtained from the NMSU Trace Base facility. The
traces are collections of memory references from programs in the
SPEC 92 benchmark suite.

5.1 Measurement of Time
The CPU simulation time does not include the time that read trace
file from disk to memory. While the GPU simulation time
includes the bucket sort time, the time of data transfer from CPU
to GPU, GPU simulation time, and the time of results feed back
from GPU to CPU.

5.2 Single Configuration Simulation
We simulate one trace file of 10MBytes to get the GPU
simulation time distribution as shown in table 1. The cache is
configured with: 64 sets, cache block size is 16 and associativity
is 4, using LRU and write back policy.

Table 1 GPU Simulation Time Distributions

Process Average Time (ms) Percentage

Bucket sort 40.09 36.609%

Data download 7.05 6.438%

Kernel

executing

62.35 56.935%

Data upload 0.02 0.018%

It can be observed from the results that: bucket sort process
occupies a great amount of time in simulation; Data download
time is bounded to the memory bandwidth between CPU and
GPU; And data upload is very fast and not significant compared
to the others.

As we discussed in section 3.3.4, bucket sort process and kernel
simulation process are executed in sequential due to the limitation
of the GeForce 8800 GTX hardware. Although bucket sort
process has an large impact on the overall performance, single
pass multi-configuration can reduce the impact of bucket sort
process by increasing computation task on GPU.

The rest experiments and analysis adopt alvinn.din as an example.

5.2.1 Increasing the Associativity

�

��

��

��

��

���

���

���

���

������� �������� �������� �������� ���������

&DFKH�&RQILJXUDWLRQ

7
L
P
H
�
P
V
� &38

$�

$�

$�

Figure 3 Simulation Time Curve with Increasing Associativity

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5562
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5562

As shown in figure 3, A2-A4 represent parallel algorithm 2-4
respectively. And we choose LRU as replacement policy, write-
back as updating policy in this experiment. X-axis represents
cache configuration in following format: number of sets (64),
block size (16) and associativity (4\16\64\128).

We found that the time using by A1 is several dozen times longer
than others so we do not show it in this figure. The reason behind
this is that the unsorted trace data is large and stored in the global
memory. Thus A1 experiences long memory access latency.

As the degree of associativity increase:

1. Serial simulation time increased slowly. It benefits from the
principle of locality. Hit rate is high since the memory
reference is located centralized in an address range. When
associativity is increased, hit rate would not increase
dramatically, and thus the simulation time is not improved
significantly.

2. A2 and A4 simulation time increased. Since the thread
number is increased when associativity is increased in A1,
this results in much more time spending on synchronization.

3. A1’s simulation time increased evidently. Since each thread
block needs to access all memory references,
synchronization time is increased.

4. A3 simulation time increased slowly. As each thread block
has only one thread, the sequential searching time is
increased as the associativity increase. When hit rate
increased, searching time increment is negligible.

5.2.2 Increasing Set Number
Figure 4 shows simulation time curves with increasing set number
when the cache block size and associativity are fixed.

�

���

���

���

���

����

������ ������� ������� ������� ��������

&DFKH�&RQILJXUDWLRQ

7
L
P
H
�
P
V
�

&38

$�

$�

$�

$�

Figure 4 Simulation Time Curve with Increasing Set Number

As set number increase:

1. Sequencial simulation time reduces slowly. Hit rate
increases as the set number increased. Since the degree of
associativity is 4, the replacement and update execution on
CPU is fast.

2. A1, A2, A3 and A4 simulation time first reduces fast and
then slows down. Hit rates are low when there are few sets.
And hit rate increases as set number increases.

5.2.3 Single Configuration Simulation Summary
Results have shown that A1-A4 algorithms cannot speed up the
simulation of single cache configuration:

1. Too much time is spent on bucket sort process;

2. Fetching data from the global memory of GPU suffers from
long latency and the computation density on the GPU is
small.

3. The computation capability of CPU is much larger than that
of the single processor in the GPU.

5.3 Multi-configuration Simulation in Single
Pass
Figure 5 shows time curves of multi-configuration simulation in
single pass with increasing set number. Cache block size is set to
16KB and the number of simulated configurations is 128. Hit rate
improves when the set number increases, which result in less
replacement, thus the CPU sequential simulation time is reduced.
However, both the number of the thread blocks and the number of
threads in each thread block affect simulation time on GPU.
When the number of set increases to a certain number, the thread
synchronizations become the major portion of simulation time.

�

����

����

����

����

�����

�������� ��������� ��������� ��������� ����������
&RQILJXUDWLRQ

7
L
P
H
�
P
V
�

&38

$�

Figure 5 Simulation Time of Multi-configuration in Single
Pass Curve with Increasing Set Number

Figure 6 shows the speedup of A5 algorithm with increasing
number of set. And it can be observed that the average speedup
comes to 2.5. X-axis represents the configurations in the
following format: number of sets, block size and number of the
simulated configurations.

�

���

�

���

�

���

�

���

�������� ��������� ��������� ��������� ����������

&RQILJXUDWLRQ

6
S
H
H
G
X
S

Figure 6 Speedup of A5 Algorithm Curve with Increasing Set
Number

6. CONCLUSIONS and FUTURE WORK
In this paper, we suggest that the trace-driven cache simulator can
be accelerated on the GPU. Our experiments show that this
method is fast, low-cost and easy to use. Performance is analyzed
according to the GPU architecture and CUDA programming
model.

The functionality and performance of our GPU based simulator
could be easily improved by incorporating the following changes:

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5562
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5562

1. When simulate multi-level cache, it needs to dispatch more
thread block to simulate the extra cache levels, and to
parallelize the simulation of different levels of cache;

2. When simulate cache coherency in multi-core system, it
needs to execute cache simulation of different cores on
different threads within one thread block and use shared
memory to simulate the coherency;

3. Use two streams to parallelize cache simulation process and
bucket sort process on 1.1 graphics hardware;

4. Use Pin to generate the trace, pipelined the trace generation
process and simulation process.

7. ACKNOWLEDGMENTS
Our thanks to the support provided by the National High
Technology Research and Development Program
(2007AA01Z183).

8. REFERENCES
[1] R. A. Uhlig. and T.N.Mudge. “Trace-driven Memory

Simulation: A survey” [J]. ACM Computing surveys,
Vol.29, 1997.

[2] Mattson, R. L., Gecsei, J., Slutz, D. R. and Traiger, I. L.
Evaluation techniques for storage hierarchies.

[3] Puzak, T. Analysis of cache replacement algorithms. Ph.D.
dissertation, University of Massachusetts, 1985.

[4] Yuguang Wu and Richard Muntz, Stack evaluation of
arbitrary set-associative multiprocessor caches, IEEE Tram
on Parallel and Distribured Systems, 6(9), pp. 930-942,
Sep.1995.

[5] Milenkovi´c A. and Milenković, M. An efficient single-
pass trace compression technique utilizing instruction
streams. ACM Transactions on Modeling and Computer
Simulation, Vol. 17, No. 1, Article 2, Publication date:
January 2007.

[6] R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters,
eds.Approximate Time-parallel Cache simulation.

Proceedings of the 2004 Winter Simulation Conference.
2002.

[7] T. Kiesling and S. Pohl. Time-Parallel Simulation with
Approximate State Matching. In Proceedings of the 18th
Workshop on Parallel and Distributed Simulation, 2004.

[8] NVIDIA CUDA Programming Guide,
http://developer.nvidia.com/cuda

[9] ATI CTM GuideÈ
http://ati.de/companyinfo/researcher/documents.html

[10] Marcelo P. M. Zamith, Esteban W. G. Clua, Aura
Conci, Anselmo Montenegro, Regina C. P. Leal-
Toledo, Paulo A. Pagliosa, Luis Valente, Bruno Feijo. A
game loop architecture for the GPU used as a math
coprocessor in real-time applications. Computers in
Entertainment (CIE), 2008, 1-19.

[11] Anjul Patney, John D. Owens. Real-time Reyes-style
adaptive surface subdivision. ACM SIGGRAPH Asia 2008
papers, 1-8.

[12] Yuri Dotsenko, Naga K. Govindaraju, Peter-Pike
Sloan, Charles Boyd, John Manferdelli. Fast scan algorithms
on graphics processors. Proceedings of the 22nd annual
international conference on Supercomputing, 2008, 205-213.

[13] Chris J. Thompson, Sahngyun Hahn and Mark Oskin. Using
Modern Graphics Architectures for General-Purpose
Computing: A Framework and Analysis[A] . In Proceedings
of International Symposium on Microarchitecture, Istanbul,
2002. 306-317.

[14] PJens Kruger, PRudiger Westermann. Linear algebra
operators for GPU implementation of numerical
algorithms. ACM SIGGRAPH 2005 Courses. Jul. 2005.
234-es.

[15] Sergio Romero, Maria A. Trenas, Eladio Gutierrez, Emilio
L. Zapata. Locality-improved FFT implementation on a
graphics processor. Proceedings of the 7th WSEAS
International Conference on Signal Processing,
Computational Geometry & Artificial Vision. Aug. 2007. 58-
63.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5562
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5562

