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ABSTRACT 
Cache technology plays a fundamental role in modern computer 
systems as it serves the purpose of matching the speed gap 
between processor and memory. Trace-driven simulator has been 
widely adopted in the process of design and evaluation of cache 
architectures. However, as the cache design moves to more 
complicated architectures, size of the trace is becoming larger and 
larger. Traditional simulation methods, which can only execute 
simulation operations in sequence, are no longer practical due to 
their long simulation cycles. In this paper, we explore both set-
parallelism and search-parallelism in cache simulation process, 
and map our parallel algorithm to GPU-CPU platform. And we 
propose a trace-driven cache simulator on GPU using Compute 
Unified Device Architecture (CUDA). Our experimental result 
shows that the new algorithm gains 2.5x performance 
improvement compared to traditional CPU-based serial algorithm.   

Categories and Subject Descriptors 
B.3.2 [Memory Structure]: Design Styles– associative memories; 
cache memories; B.3.3 [Memory Structure]: Performance 
Analysis and Design Aids– simulation; C.4 [Computer Systems 
Organization]: Performance of Systems–Modeling– Techniques 

General Terms 
Algorithms, Design, Measurement, Documentation, Performance, 
Experimentation, 

Keywords 
Multi-core, GPGPU, Trace-driven, Cache Simulator, CUDA 

1. INTRODUCTION 
Trace-driven Cache simulator  [1] is a vital tool in the 
performance analysis and design space exploration in the area of 
computer architecture research. Compared to execution-driven 
cache simulator  [2] and model analysis  [3], trace-driven simulator 
has the advantage of yielding better accuracy and being of more 
flexibility . However, traditional trace-driven cache simulators 
only analyze trace in sequence, and lack the ability of utilizing 
multi-core processing power by exploiting inherent parallelism of 

modern platforms. As the cache architecture grows in complicity , 
exponentially increased trace size makes traditional simulation 
methods not applicable due to their extremely long simulation 
cycles. The need for more effective simulation method is 
therefore raised and brings much research attention. In this paper, 
we introduce a novel parallel method to accelerate the simulation 
of single-level cache, which utilizes the computation ability of 
GPU. Extension of our proposed method can be applied to GPU 
based multi-level and multi-core cache simulator. 

For implementation, we map our parallel trace-driven simulation 
algorithm to the SIMD computation model in GPU. We 
developed trace-driven simulator for single-level cache on a 
Geforce 8800GTX with Compute Unified Device Architecture 
(CUDA). With different parallel granularities, we implemented 
five parallel algorithms for our experiment. The most efficient 
algorithm shows 2.5x speedup compared to traditional CPU-based 
serial algorithm. 

Parallel trace-driven cache simulation has been a research hot 
spot, and there have been many excellent researches in this area. 
For example, one single pass simulation  [4], trace reduction  [5], 
time-parallel simulation  [6] and SIMD massive parallel 
simulation  [7]. One single pass simulation is able to compute 
statistics for different sizes of cache within a single pass. But it is 
confined to certain range of parameters and may create large 
overhead as flexibility increases. Trace reduction technique can 
greatly reduce trace length but cannot guarantee the accuracy of 
performance metrics. Compared to the time-parallel simulation, 
the method proposed in this paper exploits both set-parallelism 
and search-parallelism in the trace-driven cache simulation. Our 
method can simulate the behavior of the cache accurately without 
extra processing for simulation result correction. Furthermore, our 
algorithm is of more flexibility as it is not limited to LRU 
simulation or other acceleration condition. 

The remainder of the paper is organized as follows: concepts of 
Graphics Processing Unit and parallel simulation algorithms are 
introduced in next section; Section 3 presents our CUDA based 
parallel algorithm as well as related techniques; implementation 
of simulation algorithms is explained in detail in section 4; and 
Section 5 elaborate the results of experiments. In the end, we 
summarize and conclude the paper. 
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2. BACKGROUND 
2.1 Trace-driven Cache Simulator 
Sequential simulation algorithm in traditional trace-driven cache 
simulator can be described as follows: 

For each memory reference address, the cache simulator 
computes its set number and tag information according to cache 
parameters such as the block size and associativity. Then 
simulator checks corresponding set to find out whether there is a 
cache line has the same tag as current memory reference. And 
finally set status and metrics will be updated accordingly. 

2.2 General-Purpose Computation on GPUs 
In the last decade, GPU performance has been increasing so fast 
that even out paces the speed of integrated circuit predicted by 
Moore’s Law. This rapid increase in GPU performance takes 
advantage of the highly parallel nature of visual computing. State 
of the art graphic architectures provide tremendous memory 
bandwidth and computational power. Besides performance 
improvement of the hardware, the programmability  also has been 
significantly increased. These improvements make GPU a 
compelling platform for general-purpose computing as well as 
visual computing. 

Advanced GPU architecture offers significant level of parallelism 
with relatively low cost. The operations executed in GPU are 
similar to the well known vector processing model, which is also 
known from Flynn’s taxonomy as Sing Instruction Multiple Data 
or SIMD. Therefore it can be predicted that many applications use 
to be hosted on verctor superconputers in the past can be deployed 
on GPU platform. With the ever increasing programmability , 
specific powerful programming tools (e.g. CUDA  [8] and CTM 
 [9]) can be used for implementation of algorithms. For example, 
GPU has been utilized as a math co-processor in special games 
and physics simulations in  [10];  [11] introduces a GPU based 
implementation of Reyes-style adaptive surface subdivision;  [12] 
presents fast algorithms for scan and segmented scan on GPUs; 
 [13] develops a programming framework on the graphics 
architectures and applies it to a variety of problems (e.g. matrix 
multiplication);  [14] introduces a framework for the 
implementation of linear algebra operators on GPUs; And in  [15], 
Fast Fourier Transform is implemented on NVIDIA graphics 
architecture. 

Among the various applications of GPU programming, the major 
challenge is how to map the algorithm to units of graphics 
architecture. As shown in the GPGPU technique, applications 
need be partitioned into independent parallel sections. And each 
section needs to be implemented as a kernel executes on a 
processing unit. While input and output of a kernel are stored in 
the memory of GPU.  

2.3 Parallel Simulation Algorithm 
It has been observed that the simulation process of each memory 
reference shows a weakly partial order. Whether current reference 
is a cache hit is dependent on cache status, which is modified by 
the memory references that have been simulated. This observation 
implies that memory references belonging to the same cache set 
should be simulated jointly while simulation of different sets need 
to be carried separately. 

During cache simulation, the following operations are performed 
on an address: (1) fetch address from the trace; (2) break address 
into tag, block number, block offset; (3) calculate set number; (4) 
search blocks in corresponding set; (5) update the set status and 
metrics. Among all five steps, step 4 and step 5 are the two most 
time-consuming steps, which can be performed independently on 
different sets. This observation leads to exploit of set-parallelism 
(i.e. trace-driven cache simulation can be performed in parallel on 
a set base). Parallel simulation algorithm first classifies trace by 
set numbers, and then implements simulation kernel. In addition 
to set-parallelism, searching in the step 4 can also work in 
parallel. 

In a coarse granularity, multi-configuration can be parallelized 
using the computational resource on GPU. Once trace file is read 
into memory, the simulator can generate metrics for cache with 
different parameters within a single pass. Together with set-
parallelism and search-parallelism in the process of cache 
simulation are explored, the cache simulator acceleration utilizing 
GPU is feasible. 

3. PARALLEL ALGORITHM BASED ON 
CUDA AND KEY TECHNIQUES 
3.1 CUDA 
CUDA issues and manages computations on GPU as a data-
parallel computing device without the need of mapping 
computation to a graphics API. When programming CUDA, 
programmers take GPU as a processing device capable of 
executing a large number of threads in parallel. In this case, GPU 
behaves as a coprocessor to the main CPU (host), and hosts 
parallel portions of applications’ workload. These portions are 
independent when they process different data set, and can be 
isolated and partitioned into several functions (kernels). Well 
established functions can be built with CUDA instruction set and 
downloaded to the device for execution. 
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Figure 1 CUDA Programming Model [8] 

 

As shown in figure 1, host can request services of the device via 
specific programming interfaces. Each kernel is executed as a 
batch of threads which are organized as a grid of thread blocks. A 
thread block is a cluster of threads that communicate with each 
other efficiently via fast shared memory and synchronize their 
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execution for memory access competition. Synchronization points 
are specified in the kernel. Once such a point exists, threads in a 
block will be suspended until they all reach the synchronization 
point. There is a limitation on the maximum number of threads 
that a block can host. However, blocks of same dimensionality 
and size that execute the same kernel can be clustered into a grid 
of blocks. Therefore the total number of threads that can be 
launched in a single kernel invocation is much larger than single 
block limitation. But threads in different thread blocks from the 
same grid cannot communicate and synchronize with each other. 
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Figure 2 Hardware Model in CUDA [8] 

 

The device is implemented as a set of multiprocessors is shown in 
figure 2. Each processor has one set of 32-bit local registers. 
Shared memory is shared among processing cores of a 
multiprocessor. A read-only constant/texture cache is shared by 
all the processors and serves the purpose of speeding up reads 
from the constant/texture memory. The local and global memory 
spaces are implemented as read-write regions of device memory 
and are not cached. 

3.2 Parallel Simulation Algorism based on 
CUDA 
As analyzed in section 2.3, we can utilize the GPU parallel 
architecture to optimize the following computations: 

1. The simulation processes on different cache sets are 
independent. And the computations on different thread 
blocks are also independent. Therefore the parallel 
simulation on different cache set can be implemented by 
distributing the simulation process of each cache set to a 
separate thread block in GPU. 

2. Searching process is time-consuming when large 
associativity presents. As this process is inherently parallel, 
given that threads in one block can communicate with each 
other in the same block, the search-parallelism can be 
exploited by distributing the search operations to several 
threads. 

3.3 Key Techniques  

3.3.1 Bucket Sort 
The sort process classifies the trace data according to the cache 
set, and holds the original sequence of the same cache set. It also 
sets up several buckets which numbers are in accordance to the 
set numbers. And ultimately, the sort process matches memory 
references to buckets according to the sequence in cache sets.  

3.3.2 Ping-pong Buffer 
In general, as cache lines are stored in static arrays in memory, 
they need to be reordered after searching process is over. Ping-
pong buffer is therefore adopted to parallelize the reordering 
process. 

1. The information about one cache set is stored in two 
buffers: Buf0 and Buf1. Assume initial input is Buf0; 

2. After each searching process, all information stored in Buf0 
is copied to Buf1 according to the replacement policy and 
updating policy, then set the input as Buf1 and output as 
Buf0; 

3. After each memory reference is simulated, exchange the 
position of input and output buffer until the whole trace file 
is simulated. And the input buffer at the time is the final 
status. 

3.3.3 Memory Model on the GPU 
Different memories on GPU varies greatly in terms of bandwidth, 
which has a significant impact on the performance of the 
simulator. The memory model adopted here is: 

1. Since the trace data is large, it can be only stored in the 
global memory; 

2. The information about the cache set, such as the cache lines, 
tag, status and metrics, which needs high memory access 
speed, is stored in the shared memory. 

3.3.4 Stream Management 
In order to improve performance, we use two streams to 
parallelize cache simulation process and bucket sort process. As 
trace data can be divided into multiple segments, one stream 
prepares the bucket sort for next phase, while the other stream 
executes the simulation process on the sorted stream. Parallelizing 
the two streams, we can achieve approximate 2x speed-up 
compared to one stream implementation. 

There are specific limitations about the feature of supporting 
overlapped memory copy concurrently with kernel execution 
using new stream management interface. Overlapping is only 
allowed on 1.1 architectures (g84/g86/g92),  and it will revert to 
serial operation on 1.0 architectures (g80). 

4. ALGORITHM IMPLEMENTATION 
When programming CUDA, users need to allocate device 
memory first, then transfer data from host to device, and finally 
get results back from device when computation is finished. The 
five parallel algorithms we implemented are decribed as follows:  
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Parallel simulation algorithm 1: trace data is not sorted, but 
simply stored in an array. The simulation is parallelized at both 
set-parallelism level and search-parallelism level.  

For each memory reference { 

If ( the memory reference is mapped to this cache set ) 

 Handle it; 

Else 

 Discard it; } 

In this algorithm, one thread block is dedicated to the simulation 
of one cache set, and each thread in the block is in charge of 
searching in one cache line. For every memory reference, each 
thread block needs to compute whether this data belongs to the 
cache set it is simulating, and simulates the cache function in case 
the memory reference does. Since there are multiple threads 
executing the search process and they work independently, 
synchronization is needed to find out if the memory reference is 
hit, and then to update status and metrics. 

Parallel simulation algorithm 2: perform bucket sort on trace 
data. One thread block is dedicated to the simulation of one cache 
set. And each thread in the block is in charge of searching in one 
cache line. 

Parallel simulation algorithm 3: perform bucket sort on trace 
data. One thread block is dedicated to the simulation of one cache 
set. Only one thread in each thread block is in charge of 
searching. 

The difference between algorithm 2 and 3 is the searching 
process. While algorithm 2 does searching in parallel, algorithm 3 
does it in sequencial. This improvement to algorithm 3 is based on 
the consideration that the thread synchronization comsumes lots 
of computation cycles. 

Parallel simulation algorithm 4: similar to algorithm 2, but 
using the ping-pong buffer to accelerate the update process. 

Parallel simulation algorithm 5: the simulation of multi-
configuration is implemented in a single pass. Since the bucket 
sort process takes lots of cycles, sorted trace data is used to 
simulate caches with different degrees of associativity. In this 
algorithm, several thread blocks are dedicated to the simulation of 
one cache configuration, and each thread block only has one 
thread to execute the simulation on one cache set. 

Another consideration is to use a thread block to simulate one 
configuration, and all threads in it to implement the simulation on 
one cache set. The problem is that the shared memory for one 
thread block is only 16KB, but information such as cache line and 
tag for each configuration is larger than 16KB. Therefore it is 
necessary to store some information in the uncached local 
memory. As the simulation for each memory reference needs to 
access local memory in this case, the experimental results show 
that the small bandwidth of local memory has a negative impact 
on parallel computation performance. 

5. PERFORMANCE 
We use DineroIV sequential uniprocessor cache simulator for our 
evaluation. The experiments were conducted on a testbed 

equipped with an Intel core 2 E6550 and GeForce 8800 GTX 
graphics card. 

Our experiments consist of the simulation on various input traces 
which are obtained from the NMSU Trace Base facility. The 
traces are collections of memory references from programs in the 
SPEC 92 benchmark suite. 

5.1 Measurement of Time 
The CPU simulation time does not include the time that read trace 
file from disk to memory. While the GPU simulation time 
includes the bucket sort time, the time of data transfer from CPU 
to GPU, GPU simulation time, and the time of results feed back 
from GPU to CPU. 

5.2 Single Configuration Simulation 
We simulate one trace file of 10MBytes to get the GPU 
simulation time distribution as shown in table 1. The cache is 
configured with: 64 sets, cache block size is 16 and associativity 
is 4, using LRU and write back policy. 

Table 1 GPU Simulation Time Distributions 

Process Average Time (ms) Percentage 

Bucket sort 40.09 36.609% 

Data download 7.05 6.438% 

Kernel 

executing 

62.35 56.935% 

Data upload 0.02 0.018% 

It can be observed from the results that: bucket sort process 
occupies a great amount of time in simulation; Data download 
time is bounded to the memory bandwidth between CPU and 
GPU; And data upload is very fast and not significant compared 
to the others. 

As we discussed in section 3.3.4, bucket sort process and kernel 
simulation process are executed in sequential due to the limitation 
of the GeForce 8800 GTX hardware. Although bucket sort 
process has an large impact on the overall performance, single 
pass multi-configuration can reduce the impact of bucket sort 
process by increasing computation task on GPU. 

The rest experiments and analysis adopt alvinn.din as an example. 

5.2.1 Increasing the Associativity 
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Figure 3 Simulation Time Curve with Increasing Associativity 
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As shown in figure 3, A2-A4 represent parallel algorithm 2-4 
respectively. And we choose LRU as replacement policy, write-
back as updating policy in this experiment. X-axis represents 
cache configuration in following format: number of sets (64), 
block size (16) and associativity (4\16\64\128). 

We found that the time using by A1 is several dozen times longer 
than others so we do not show it in this figure. The reason behind 
this is that the unsorted trace data is large and stored in the global 
memory. Thus A1 experiences long memory access latency. 

As the degree of associativity increase: 

1. Serial simulation time increased slowly. It benefits from the 
principle of locality. Hit rate is high since the memory 
reference is located centralized in an address range. When 
associativity is increased, hit rate would not increase 
dramatically, and thus the simulation time is not improved 
significantly. 

2. A2 and A4 simulation time increased. Since the thread 
number is increased when associativity is increased in A1, 
this results in much more time spending on synchronization.  

3. A1’s simulation time increased evidently. Since each thread 
block needs to access all memory references, 
synchronization time is increased. 

4. A3 simulation time increased slowly. As each thread block 
has only one thread, the sequential searching time is 
increased as the associativity increase. When hit rate 
increased, searching time increment is negligible.   

5.2.2 Increasing Set Number 
Figure 4 shows simulation time curves with increasing set number 
when the cache block size and associativity are fixed. 
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Figure 4 Simulation Time Curve with Increasing Set Number 

 

As set number increase: 

1. Sequencial simulation time reduces slowly. Hit rate 
increases as the set number increased. Since the degree of 
associativity is 4, the replacement and update execution on 
CPU is fast. 

2. A1, A2, A3 and A4 simulation time first reduces fast and 
then slows down. Hit rates are low when there are few sets. 
And hit rate increases as set number increases. 

5.2.3 Single Configuration Simulation Summary 
Results have shown that A1-A4 algorithms cannot speed up the 
simulation of single cache configuration: 

1. Too much time is spent on bucket sort process; 

2. Fetching data from the global memory of GPU suffers from 
long latency and the computation density on the GPU is 
small. 

3. The computation capability of CPU is much larger than that 
of the single processor in the GPU. 

5.3 Multi-configuration Simulation in Single 
Pass 
Figure 5 shows time curves of multi-configuration simulation in 
single pass with increasing set number. Cache block size is set to 
16KB and the number of simulated configurations is 128. Hit rate 
improves when the set number increases, which result in less 
replacement, thus the CPU sequential simulation time is reduced. 
However, both the number of the thread blocks and the number of 
threads in each thread block affect simulation time on GPU. 
When the number of set increases to a certain number, the thread 
synchronizations become the major portion of simulation time.  
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Figure 5 Simulation Time of Multi-configuration in Single 
Pass Curve with Increasing Set Number 

 

Figure 6 shows the speedup of A5 algorithm with increasing 
number of set. And it can be observed that the average speedup 
comes to 2.5. X-axis represents the configurations in the 
following format: number of sets, block size and number of the 
simulated configurations.  
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Figure 6 Speedup of A5 Algorithm Curve with Increasing Set 
Number 

6. CONCLUSIONS and FUTURE WORK 
In this paper, we suggest that the trace-driven cache simulator can 
be accelerated on the GPU. Our experiments show that this 
method is fast, low-cost and easy to use. Performance is analyzed 
according to the GPU architecture and CUDA programming 
model. 

The functionality and performance of our GPU based simulator 
could be easily improved by incorporating the following changes: 
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1. When simulate multi-level cache, it needs to dispatch more 
thread block to simulate the extra cache levels, and to 
parallelize the simulation of different levels of cache; 

2. When simulate cache coherency in multi-core system, it 
needs to execute cache simulation of different cores on 
different threads within one thread block and use shared 
memory to simulate the coherency; 

3. Use two streams to parallelize cache simulation process and 
bucket sort process on 1.1 graphics hardware; 

4. Use Pin to generate the trace, pipelined the trace generation 
process and simulation process. 
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