
SimStudio:
a Next Generation Modeling and Simulation Framework

Mamadou K. Traoré
LIMOS CNRS UMR 6158, Université Blaise Pascal

Campus des Cézeaux
63177 Aubière Cedex

+33 473 405 046

traore@isima.fr

ABSTRACT
SimStudio is an operational framework that must serve to
capitalize theoretical advances in Modeling and Simulation
(M&S) as well as to gather M&S tools and make them accessible
through a web browser. From a software perspective, SimStudio
is a middleware for the federation of simulators and the
collaborative building of simulations. From a hardware
perspective, SimStudio is a mean to aggregate intensive
computing resources through the http protocol.

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation Support Systems –
Environments.

General Terms
Standardization, Design.

Keywords
Framework, Plug-in.

1. INTRODUCTION
Intensive efforts are done in North America to come up with a
simulation-based engineering science whose kernel is a
computation science made of a theory, an operational M&S
framework and supporting computing infrastructures [1][2].
Meanwhile, in France and across Europe, many questions are
raised about the integration of large scale hardware infrastructures
and high-level software architectures [3][4]. These preoccupations
make clear the fact that there is a mutual influence between: (1)
gaining technological overhangs, (2) understanding and mastering
M&S hardware and software architectures, and (3) achieving
mutual M&S knowledge and products. It’s this intertwining that
SimStudio tries to crystallize, not by a pragmatic approach nor by
exclusive and specific manipulations of existing or new codes, but
by erecting an environment in which theoretical operations can be
mapped onto practical ones and any manipulation can be
symbolically tracked.

Simulation is coming to such a maturity that an axiomatic theory
supported by an operational framework is very much needed to
break its complexity barriers. Current grand challenges (model
interoperability, reuse…) raise the need to treat simulation models
as algebraic entities which can be manipulated symbolically as
well as be easily translatable into operational objects.

2. REQUIREMENTS FOR A NEXT
GENERATION M&S FRAMEWORK
Any problem solving process is the fruit of the activity of a
decision making system. This latter makes use of model(s) and
data. Simulation is required to increase the capacities of such a
system, in particular when the problems to solve are so complex
that only computers can deal with them, i.e. they include various
objectives and often hide quantities of interactions between their
components. Models that are built to figure these problems and to
manipulate them through artifacts are inaccurate in essence, and
their quality has an impact on the accuracy of the decision made.
Therefore, model design is a crucial process. What are the
concepts required to drive such a process? What are the effective
methodologies? Which kind of software system must be built?
These are some major questions that the Simulation theory must
answer in a generic way (i.e. application context free). We see this
theory as an axiomatic mathematical and computational approach
which must be supported by a technological operational
framework that allows rapid prototyping and can be used for “in
silico” experimentations.

The main general issue that we deal with is the status of a model
as an approximation. From our point of view, this issue federates
all major M&S aspects and bringing an answer to each of the
questions it raises can drive to a complete Simulation theory.
These questions are various variants of the same global concern:
simulation model properties. From there a metrics base can be
built, including credibility (verification, validation and error
estimation), reuse (and by extension: substitutability, equivalence,
composability), space-time complexity (speed-up and memory
consumption, for sequential and parallel and distributed
simulations), interoperability (interface compatibility, compliance
to standardized communication protocols)... In the context of the
SimStudio project, all these concerns are split into four research
axes:

• An algebraic axis (specification) : here, we deal with the
formal semantics of simulation models, i.e. what are the
objects of the domain and what relationship do they
entertain? The increasing complexity of systems and the
existence of multiple perspectives (continuous/discrete flows,
deterministic/stochastic phenomena, variable scales,
evolutionary/combinatorial approaches…) make hard the
unification of M&S concepts and their universal
formalization. Moreover, the constant changes of modeling

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personalor classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post onservers or to redistribute to lists, requires prior specific permission and/or a fee.SIMUTOOLS 2008, March 03-07, Marseille, FranceCopyright © 2008 ICST 978-963-9799-20-2DOI 10.4108/ICST.SIMUTOOLS2008.3214

objectives for the same model makes it necessary to
formalize the context in which this model is used [5].

• A logical axis (analysis) : here, the matter is to identify
underlying logical semantics that allow to reason about the
structure and the behavior of simulation models. How can a
simulation model be amenable to formal analysis? The
classic post-simulation way to deal with such an issue can
face some operational qualities (speed-up, confrontation with
real data…), while an ante-simulation approach could allow
to cope with algebraic qualities (formal verification,
applicability of a model in a given context, model
composability, model equivalence…). This latter way is a
novel and very hard one [6][7].

• An executive axis (code generation) : here, we deal with
automatic code synthesis and automatic trajectory output.
How transparency can be brought in the specification-to-
code process? And in the reverse process? The clear
separation of modeling activities from simulation activities
(code synthesis, mapping to hardware, trajectory generation,
communication and interoperability of software
components…) is still a challenge in M&S, especially for
large scale problems (federation of huge codes, coupling of
non contemporary existing simulators…). The issue has to be
tackled both at algorithmic and technological level.

• An application axis (use) : how to support the scale crossing
of application codes? In one hand, it is necessary to define
generic simulation-based problem solving schemes, and in
the other hand, there is a need to integrate software
components in real-time environments.

A unique operational framework has to concretize all the
theoretical efforts presented above. This framework is named
SimStudio. To summarize, the SimStudio project aims at building
a next generation modeling and simulation (M&S) framework,
which must serve both as:

• A virtual lab for the experimentation and the study of
M&S advanced concepts.

• A collaborative and community-focused platform for the
mutualization of M&S resources.

Therefore, SimStudio would drive to the erection of standards in
simulation models design, implementation, analysis and
integration. Like similar projects in other domains (J2EE,
Apache…), it takes advantage of concurrent contributions from its
users communities, including:

• M&S research teams: the framework is a way for them
to experiment with their new M&S tools and to fix them
using the other tools available in the framework
(assuming that their tools comply to the plug-in
principle of SimStudio). Also, it becomes very easy for
them (especially for teams not really specialized in
M&S or scientific computing) to design, analyze and
experiment with simulation models without being
obliged to deal with long and costly prototyping phases.
A third interest of the framework is the potential to
access to large models libraries.

• M&S consuming business and public institutions : they
deal specifically with de facto standards, graphical user
interfaces, and computing performances.

• Education: the framework is a pedagogic tool for
establishments that involve M&S in their curricula. It
can gain from the feed-back provided by these
establishments through study cases and training courses.

The concept of M&S framework (in the meaning of Apache and
J2EE) drives to a concentration of knowledge, which is a factor
for the emergence of a widely accepted theory (for researchers and
users). Today, we’re far from this situation: groups are formed
apart according to the type of M&S approach they adopt, or real
system/problem they study (communities for DEVS, Multi-agents
and Artificial Intelligence, manufacturing systems, ecosystems…),
and they convey different views of the same activity, making it
hard to come up with a fundamental transversal scientific
recognition of M&S. We state that the building of such design,
implementation, experimentation, archiving and reuse frameworks
is inescapable in the very near future, as suggested in [8].

3. SIMSTUDIO
The framework is a multi-layer platform composed by the
following parts (figure 1):

• A Modeling layer to integrate and use graphical and
textual specification plug-ins, opening the way to the
building of large models and frames libraries.

• An Analysis layer to integrate and use formal analysis
plug-ins, allowing the evaluation of model algebraic and
simulator operational metrics (uncertainty vs. accuracy
of simulations, models properties within a frame…).

• A Simulation layer, a middleware for the unified
execution and the transparent deployment of simulation
codes over mutualized resources (grid, internet, specific
clusters…).

• A Visualization layer to integrate and use simulation
visualization and animation plug-ins, with the ability to
link together users, simulations and animations (for
training purposes, virtual reality…).

• APIs to offer managing services (user’s account,
authentication, workspace customization, collaborative
tools, models archiving and extraction, plug-in
installation and management). Any authorized user can
add his own plug-ins to the platform and make it
accessible or not to the community.

• An Automation layer for translation and interfacing,
allowing to map multi-perspective models into the
universal formal semantics of the platform, to generate
simulation codes and trajectories and, to allow analysis
and visualization plug-ins to operate on models,
simulators and simulation traces.

• Containers for the platform key entities. A generic
model component technology allows to build
standardized models and model libraries and to
aggregate existing models. In a similar way, there is a
technology for building standardized simulators
components and another one for building standardized
trajectories.

To be effective, the framework requires that interfaces be defined
to glue its different layers. In this paper, we show how a specific
modeling plug-in is interfaced with specific inner simulation

components, and how these latter are interfaced with a specific
visualization plug-in. The plug-ins and the simulation components

have been independently realized by separate teams.

Traces
librairies

Models
libraries

Deployment
manager

Modeling
plugin

Modeling
plugin

Modeling
plugin

Modeling
plugin

Visual
plugin

Visual
plugin

Visual
plugin

Visual
plugin

Visual
plugin

Analysis
plugin

Analysis
plugin

Analysis
plugin

Analysis
plugin

Modeling
plugin

Plugin
manager

File
manager

User
manager

MODELING LAYER

VISUALIZATION LAYER

APIs

MODEL TRANSFORMATION

Simultors
librairies

CODE GENERATION

TRAJECTORY GENERATION

INTERFACING

MODELS
CONTAINER

SIMULATORS
CONTAINER

TRACES
CONTAINER

ANALYSIS
LAYER Model component

technology

Simulator component
technology

Trace component
technology

Figure 1. SimStudio M&S Framework

3.1 Modeling Plug-in
This tool allows to get from an intuitive graphical and textual
specification, an XML document, ready for use by simulation and
visualization tools. It combines Flash and XML technologies and
uses the object-oriented programming paradigm. The application
was created with version 8 of Adobe Flash. It is entirely based on
the DEVS formalism [9]. Each specification element is a
graphical object on which it is possible to act using the mouse
(figure 2). To create a model, one must click on "File-> New..."
and then type in the name of the model. A first box appears for the
system to model. It may contain sub models that can be either
"coupled" (i.e., containing other sub models), or "atomic" (with

no sub models). To add a sub model, simply click on the icon
and choose the type of model as desired. Models have certain
characteristics in common: each model can be removed by

clicking on the icon, and each model can have one or more

input and/or output ports by clicking on the icon. An input

port is associated with a variable type accepted by the model at its
entrance. These ports can be either a simple type such as a string,
a Boolean... or a complex type (mixing simple and/or complex

types). Coupled models can be enlarged by clicking on the
icon. This allows to add sub models to them. For atomic models,
it is required to specify their state, internal and external transition
functions, and output and time advance functions. Sub models can
be connected through their input and output ports. Simply click
on one of the ports of a model, drag and drop to a port of another
model. The link creation fails if the ports types (simple or
complex) and their natures (Boolean, string...) don’t match.

Once the entire system is modeled, the user can save it by clicking
on "File" then "Save As...", which results in the creation of an
XML file format, according to the DTD presented in Figure 3. He
can also load an existing model by clicking on "File" and "Open"
and select the XML-formatted model.

Figure 2. Screenshot of the DEVS Modeling Plug-in

<?xml version="1.0" encoding="UTF8"?>

<!ELEMENT plugin (type, model)>

<!ELEMENT type (simple, complex)>

<!ELEMENT simple (item*)>

<!ELEMENT complex (item*)>

<!ELEMENT item EMPTY>

<!ATTLIST item id ID #REQUIRED

name CDATA #REQUIRED

naturePortType IDREF #IMPLIED

PortType (0|1) #IMPLIED >

<!ELEMENT model (ports, links?, models?)>

<!ATTLIST model id ID #REQUIRED

name CDATA #REQUIRED

type (atomic|coupled) #REQUIRED

posX CDATA #REQUIRED

posY CDATA #REQUIRED

state CDATA #IMPLIED

internalT CDATA #IMPLIED

externalT CDATA #IMPLIED

outputF CDATA #IMPLIED

timeA CDATA #IMPLIED>

<!ELEMENT ports (input,output)>

<!ELEMENT input (item*)>

<!ELEMENT output (item*)>

<!ELEMENT links (link*)>

<!ELEMENT link EMPTY>

<!ATTLIST link id ID #REQUIRED

name CDATA #REQUIRED

upPort IDREF #REQUIRED

upPortMain CDATA #REQUIRED

downPort IDREF #REQUIRED

downPortMain CDATA #REQUIRED>

<!ELEMENT models (model*)>

Figure 3. DTD for the XML Files Generated

3.2 Visualization Plug-in
A viewer has been realized, resulting in a graphical representation
of the traces of DEVS simulation models. It is inspired by the
work done by Hongyan Song during his Master of Science at
McGill University (under the direction of Professor Hans
Vangheluwe), who defined an XML format that can represent
simulation results. Our viewer is using a modified version of this
XML format. It is based on the combination of SVG (Scalable
Vector Graphics) and XSLT transformations. The fact that these
two languages use an XML syntax provides maximum
compatibility. The resulting DTD is given in Figure 4. The input
and output files for the viewer are both in XML format. Therefore
the XSLT transformation scheme can be applied to translate one
in another. This transformation is made using the XSL library and
the PHP language. The use of scripts ECMAScript provides
access to the DOM SVG document, and allows to animate the
image created. This solution has the good taste to work with all
browsers supporting the display of an SVG document. A tool tip
system has been put in place in order to give some information on
the key parts of the image, all with a simple click.

There is a hierarchy among the sub models of a global model, in
accordance with DEVS paradigm. Atomic sub models possess
state variables whose values evolve during the course of the
simulation, and coupled sub models are composed of other atomic
and/or coupled sub models. The selection menu is used to display
this hierarchy. If a model is atomic, its state variables are
displayed. For example in Figure 5, the atomic model FEU has
two variables COULEUR and VOITURE. A click on the name of
a variable displays in a new window the trajectory of this variable.

<?xml version="1.0" encoding="UTF8"?>

<!ELEMENT trace (modelfile,event+) >

<!ELEMENT modelfile EMPTY>

<!ATTLIST modelfile file CDATA #REQUIRED>

<!ELEMENT event (model ,eventtime ,port*,state)>

<!ELEMENT model (#PCDATA)>

<!ELEMENT eventtime (#PCDATA)>

<!ATTLIST event kind (IN | EX) #REQUIRED>

<!ELEMENT port (message)>

<!ELEMENT message (#PCDATA)>

<!ELEMENT state (variable+)>

<!ELEMENT variable (name,type,value+)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT type (#PCDATA)>

<!ELEMENT value (#PCDATA|variable)*>

<!ATTLIST port name CDATA #IMPLIED>

<!ATTLIST port category (I|O) #REQUIRED>

<!ATTLIST variable category (P|C|PC|CC) #REQUIRED>

Figure 4. DTD for the XML Trace Files

The display of the trace of a model is only available for atomic
models (the visualization of a coupled model is a set of visual
frames, each for one of the atomic models that compose the
coupled model). This is represented in two ways. The horizontal
axis gives the possible values of a variable (selected by the user),
the vertical axis representing time. On figure 5, we can see the
arrows representing the transitions that took place in the model.
The green arrows represent internal transitions, while red ones
represent external transitions.

An HTML page is generated with the help of PHP. It assembles
all the graphical elements. The scroll bar of the browser allows
moving along the axis of time to see the entire trajectory.

Figure 5. Screenshot of the Visualization Plug-in

3.3 Simulation Cement
The DEVS formalism is well established and much implemented
[10], and still a standard for its implementation is an opened
issue. A library of DEVS simulation components has been built in
SimStudio. For portability and easy integration reasons, this
library has been developed in Java.

The library is divided into 6 different packages which are: Model
(where are defined DEVS basic models, i.e. atomic and coupled
models, as well as all the elements that are closely related to them,
such as ports and state variables), Simulator (implementing the
executable components associated to atomic and coupled models),
Type (simple and complex predefined types), Exception
(predefined exception handlers), Message (initialization,
scheduling, input and output messages) and Util (various useful

classes). Each package has a particular role that we present
hereafter:

Automating the link between modeling and simulation is realized
by a script that gets as input the name of the XML file created by
the modeling plug-in, then generate the files containing the
definition of Java classes, and then compiles them, and finally
opens a window for simulation sessions. The output of the Java
classes is a set of XML file, one for each atomic sub model’s
trajectory. The user can decide whether or not he wants to
generate a record for a given sub model.

4. CONCLUSION
There is a tremendous number of M&S tools, a few of them takes
benefit of the Internet, which would allow to share their use in a
common platform. To meet this increasingly important need, the
concept of a framework composed of modeling, analysis,
simulation and visualization plug-ins has been considered. It aims
at combining several M&S tools and at making them accessible
through a Web browser. In addition, many management tools can
be added for the benefit of the users. At a software level, it
becomes possible to federate applications codes via a standardized
global middleware. At an hardware level, it becomes possible to
provide access to computing farms, via the http protocol.
Therefore, SimStudio is a vast lab for experimentation and
capitalization of scientific insights, whose content and
development are the work of the community (one could do
comparisons in terms of contribution and philosophy to concepts
such as the wiki web in the domain of collaborative platforms, the
J2EE and DOT NET frameworks in the domain of software
engineering…). We believe it belongs to the next generation
M&S tools.

One of the major technological locks lies in the plug-in based
solutions integration principle, because it raises both the issue of
standard (not yet resolved neither at specification level, nor at
middleware level) and separation of concerns (not yet fully
implemented for a better understanding of the field). These locks
are integral parts of the complexity barriers that M&S must face
today. As a matter of fact, SimStudio is an effort for convergence
towards M&S standards, through the consolidation of a complete

theory. Because it is a generic and ambitious infrastructure, it
could be a catalyst for further progress in M&S advanced aspects.

5. REFERENCES
[1] NSF. 2006. Simulation-based Engineering Science.

Revolutionizing Engineering Science Through Simulation,
NSF Report. May.

[2] President’s Information Technology Advisory Committee.
2005. Computational Science: Ensuring America’s
Competitiveness, Report to the President.

[3] Groupe Conseil Général des Technologies de l’Information.
2005. La Politique Française Dans le Domaine du Calcul
Scientifique, Rapport n° II.B.14.2004, Mars.

[4] Groupe Simulation – Académie des Technologies. 2005.
Enquête sur les Frontières de la Simulation Numérique en
France. La Situation en France et Dans le Monde. Diagnostic
et Propositions, Rapport de l’Académie des Technologies,
Mai.

[5] Traoré M.K. and Muzy A. 2006. Capturing The Dual
Relationship Between Simulation Models And Their
Context, Simulation Modelling Practice and Theory
(SIMPRA), 14(2), 126-142.

[6] Traoré M.K. 2006. Analyzing Static and Temporal Properties
of Simulation Models, Proceedings of the 38th Winter
Simulation Conference. Monterey, California, USA,
December 3-6, pp. 897-904.

[7] Traoré M.K. 2006. Making DEVS Models Amenable to
Formal Analysis, Proceedings of the Spring Simulation
Multiconference (SpringSim’06). Huntsville, Alabama, USA,
April 2-6, pp. 33-39.

[8] RNTL. 2001. Rapport du groupe de travail RNTL sur le
logiciel libre. 14 Novembre.

[9] Zeigler B.P., Praehofer H. and Kim T.G. 2000. Theory of
Modeling and Simulation. Integrating Discrete Event and
Continuous Complex Dynamic Systems, Academic Press.

[10] DEVS Standardization Group. 2008. DEVS Tools. Available
at < http://www.sce.carleton.ca/faculty/wainer/standard/>.
Last access on February, 21, 2008.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTools’08, March 3–7, 2008, Marseille, France.
ISBN 978-963-9799-20-21

