
INES: Network Simulations on Virtual Environments

Ricardo Lent
Intelligent Systems and Networks

Imperial College, London, UK
r.lent@imperial.ac.uk

ABSTRACT
The paper discusses the goals, design, models and implemen-
tation state of a new discrete-event simulator of computer
networks. The Integrated Network-Environment Simulator
(INES) aims at creating a suitable simulation tool for the
evaluation of network algorithms and protocols operating
on a virtual environment. This feature makes the simulator
particularly useful for testing MANETs, VANETs, WSNs,
situated communications, and other algorithms or technolo-
gies with realistic situations where the environment could
significantly affect their operation. INES uses mesh geome-
tries to model the objects of the desired environment, which
may restrict node roaming and affect wireless communica-
tions during a simulation execution. Complementing INES
development is the implementation of the Packet Animator,
which can visualise INES traces through an OpenGL-based
animation engine. Finally, the paper discusses examples
that make use of the mobility and communication models
currently supported by the simulator.

General Terms
I.6.7 Simulation Support Systems

Keywords
Network simulation, virtual environments

1. INTRODUCTION
While research on mobile networks, wireless sensor net-

works and situated communications gain momentum, it turns
out indispensable to have proper tools to evaluate algo-
rithms and protocols with consideration of their environ-
ment or geographical context. The most natural represen-
tation of a scenario for these simulations is with the use
of tri-dimensional models recreating a virtual world where
nodes may exist and interact. This model of the environ-
ment would provide the proper representation of the physical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2008, March 3-7, 2008, Marseille, France
Copyright 2008 ACM TBA ...$5.00.

structures that may affect node mobility and wireless com-
munications. Moreover, this model would allow to create
a continuous data-flux of environmental information for the
algorithms requiring it.

Network simulation is a very active field that currently
offers several successful examples of simulators, which differ
in their architecture and scope. Representative examples are
NS-2 [9], OMNeT++ [5], GTNeTS [25], SSF [11], Glomosim
[8] and QualNet [7], YANS [15], CNET [23] and OPNET
[6]. However, the problem of situating network simulations
within a specific context has receive little attention, with
very little or no support provided by these simulators.

Simulations without a proper representation of the oper-
ating environment could lead to erroneous conclusions. For
example, most studies on MANETs rely on simple mobility
models that unrealistically assume no obstructions creating
great uncertainty about their expected behaviour once de-
ployed on a real environment. Moreover, while mobiles in-
deed tend to move on horizontal planes with few (or tempo-
ral) exceptions, communications are usually not restricted
to the plane. For instance, wireless communications can
be established (or create interference) between floors of a
building and intelligent sensors can be purposely placed at
specific places, likely at different levels, to optimize sensing.
Most previous studies on mobility with obstacles in the lit-
erature are restricted to the plane [14, 26, 22] limiting their
applicability and realism.

INES (Integrated Network-Environment Simulator) is a
software project aimed at creating a new discrete-event net-
work simulator that will offer the possibility of conducting
realistic evaluations of network algorithms and protocols in
virtual environments. The general design goals of INES are:

1. Create a general network simulator simple to use and
with an efficient object model to simplify the develop-
ment of extensions.

2. Offer the possibility of conducting network simulations
within a virtual environment, such as a urban setting
with buildings and cars, or indoor settings with walls
and furniture.

3. Support emulation, both by accepting external input
and by producing input to external processes. The
typical emulation process would include the possibil-
ity of accepting real packets, processing them in the
simulated network and potentially returning them to
the real network. In addition, it is planned to include
support for the generation of virtual topologies for em-
ulated mobile networks superseding MTM [16].

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.SIMUTOOLS 2008, March 03-07, Marseille, FranceCopyright © 2008 ICST 978-963-9799-20-2DOI 10.4108/ICST.SIMUTOOLS2008.3088

4. Finally, enable distributed execution for scalability and
improved simulation speed.

The rest of the paper will discuss the models currently
supported by the simulator. Later on, a few examples will
be presented.

2. SOFTWARE ARCHITECTURE
The core of INES is a discrete-event scheduler, which is

configurable to advance the simulated time either to match
the time of the next event in the execution list or the wall
clock (in emulation mode). As with other simulators, the
simulations can be defined using scripting. Simulation ex-
ecution is separated from visualisation. INES is being de-
veloped in ANSI/ISO C++ and relies on the standard tem-
plate library for most internal structures. In addition, INES
makes extensive use of various Boost libraries [1]. Scripting
is supported via an embedded Python interpreter, which is
provided by Boost Python.

2.1 Events
Events are handled in a similar way to other network sim-

ulators. An event (class Event) is the most basic data
structure in the simulator and allows to represent an ac-
tion to be executed. An event scheduler (class Scheduler)
handles the execution timing of events within the simulator
and permits inserting new events in logarithmic time and re-
trieving the next event in constant time. When the scheduler
selects an event for execution, it invokes a function of the
associated handler for the event as indicated in the handler
itself (derived from class Handler). Moreover, events can
be cancelled either individually or by group (events within
a time period) in linear time. The implementation relies
on std::multiset with an specialized std::less functor to
handle the ordering of event objects on insertion. Timers
on the other hand (class Timer and Timer handle), sim-
plify the creation of events by allowing developers indicate
a callback function to the scheduler engine.

2.2 Nodes and Protocols
Nodes support an arbitrary number of protocols and in-

terfaces connecting to wired or wireless media. A protocol
component (class Protcomp) is the base class from which all
network protocols are derived. A Protcomp is an event han-
dler that can send messages to other protocol components.
Protcomps implement the concept of layering and can have
associated a certain overhead for the handle of messages
(packet header and trailer).

Specific protocol implementations may implement buffers
and related functionality. Lower layer protocols offer in ad-
dition callback functionality that is triggered by packet pro-
cessing errors, for example, when dropping a packet because
of a wireless collision or after excessive retransmission at-
tempts.

The current version of INES supports both static routing
and dynamic routing via Cognitive Packet Networks (CPN)
[13, 12]. The static routes are relevant only to the INET
protocol and they are computed at the beginning of the
simulation with Dijkstra’s algorithm.

2.3 Links
Links are also handlers, which depending on their na-

ture may connect to the MAC protocol of two or more

nodes. Each link has associated a set of physical character-
istics: transmission rate, preamble time, packet error rate
and propagation delay for wired links. For wireless links,
they also indicate the propagation speed and radio charac-
teristics (maximum transmission power, modulation type,
antenna gain, etc.) Links use the decorator design pattern
to add the extra information and functionally required by
the nodes for the specific operation of the link.

2.4 Tracing and Support for Computer Clus-
ters

INES offers support for two types of traces, which can
be enabled or disabled as desired. The first is suitable for
calculating statistical results of simulations when running
the program either in a single machine or in a computer
cluster. The second type generates a trace file suitable for
the visualiser, which can also be enabled if so desired.

The current support for computing cluster execution is
limited to replicating complete simulation jobs on many
computers. For this, a custom scheduler distributes jobs
and keeps processors busy until the end of the batch. The
scheduler was written in C++ with the message passing in-
terface (LAM/MPI) [4].

2.5 User Interface
The main user interface to INES is the embedded Boost

Python interpreter wrapping (and extending) C++ objects.
The interface allows specifying simulation parameters, cre-
ating and connecting nodes, and establishing traffic flows
and events. A direct mapping between Python and C++
objects allows the latter to offer decorator functionality by
introducing additional support, such as combining primitive
calls to form higher order functions. For example, mesh, bus
and ring networks can be easily instantiated with a single
command. Likewise, networks with random graph, small
world or scale free properties can be quickly instantiated by
making use of the Boost Graph library. Topologies can be
imported from ascii files and exported in .dot format (for
Graphviz [3]) and postscript.

3. ENVIRONMENT MODELLING
INES represents the environment (scenario) with 3D ge-

ometry consisting of objects portrayed as a collection of
faces (convex polygons). Each face has associated a mate-
rial type that defines its physical characteristics and a nor-
mal vector that is used for collision detection. A material
defines whether an object face may block a node’s motion
and the attenuation that radio signals should suffer when
propagating through that object face. Obstacles can be de-
fined in one or more standard Wavefront object files (.obj),
which can refer to multiple .mtl files for material informa-
tion. The standard .mtl file format was extended to allow
the inclusion of mobility and radio propagation information
that is required by the simulator. Specifically, three defini-
tions have been introduced to .mtl files. #Ines move block

and #Ines prop block take values of either 0 or 1 to en-
able or disable motion and radio propagation collisions with
the material. #Ines prop loss defines signal attenuation
for materials that affect radio propagation. The ’#’ symbol
indicate a comment in the standard .mtl format and its use
prevent misinterpretations of the added definitions outside
the INES domain.

Object files and material files are convenient to use be-
cause they are in ASCII and therefore easy to manipulate.
Moreover, most 3D modeler programs can import and ex-
port the .obj mesh file format, which is also convenient.
There is a large number of products able to convert other
mesh file formats (e.g. 3ds, dxf, lwo, vrml) to object files.
Satellite imagery and 3D buildings from Google Earth [2]
can be imported into INES via object files, which can make
simulations particularly accurate in terms of locations, ge-
ometry and object dimensions. A scenario that was con-
structed from various buildings borrowed from Google Earth
Warehouse is shown in Figure 5. The scenario is used in one
of the examples described later on with a IEEE 802.11 net-
work. In the future, the simulator will support additional
terrain features, such as an uneven ground.

Material files often include references to the visual ap-
pearance of the objects, such as illumination parameters and
textures. Visual properties are only relevant to the visuali-
sation (Packet Animator) to represent objects on the screen
as intended.

Optionally, objects can be associated to an alternative
mesh. Usually, a low complexity model is used for simula-
tion executions to keep running times short, while high-poly
count models can be used to achieve a better visualisation
and taking advantage of an OpenGL hardware acceleration
whenever available.

3.1 Mobility
In the simulator, all nodes have associated a location. Mo-

bile nodes have at least one wireless interface and their lo-
cation in the 3D space is configurable (their location can be
either defined by the user or controlled by a mobility model
or determined by a mobility trace). This property can be
overridden as needed to better model the certain nodes, for
example, a workstation equipped with a wireless card should
not be allowed to move under normal circumstances. Nodes
without a wireless interface are stationary by default. The
location of these nodes does not have a direct meaning in the
simulation execution. However, the Packet Animator may
assign an arbitrary positions to stationary nodes for visu-
alisation purposes. Moreover, the animator can be enabled
to manipulate these nodes and establish a suitable network
layout with the Fruchterman-Reingold forced directed algo-
rithm (from the Boost Graph library).

To support mobility, each node has the following proper-
ties: location, velocity vector and time to stop. The simu-
lator gives facilities for scheduling, from a simulation script,
destinations for the nodes and for indicating the use of mo-
bility models. From the simulation script a node object has
a moveto member function that accepts as arguments the
desired destination in the 3D space and the moving speed.
To move from one place to another in the scenario, nodes
use path planning. Currently, there is support for two types
of path planning in INES:

1. Straight line, which makes nodes basically follow the
direct path connecting their current position and the
destination. The simulator allows to enable or dis-
able obstacle collision checking. If enabled, a node-
environment collision stops the node at the obstacle.

2. Obstacle avoiding, which allows nodes to evade ob-
structions if they block their direct path to the des-
tination. Obstacles can be avoided by providing nodes

with a set of waypoints to follow, which are calculated
by the obstacle avoiding module. In spite of nodes may
move in any direction in the 3D environment, the cur-
rent support is limited to horizontal planes, with their
level (Z coordinate) defined by the current location of
nodes. On the other hand, there is support for hav-
ing nodes located on different levels (e.g. on multiple
floors of a building).

To identify suitable waypoints, INES constructs 2D
maps of the scenario (floor plans) by intersecting the
3D meshes modelling the environment with one or
more horizontal planes. For each floor, those intersec-
tions produce a set of polygons that define the path-
ways, or more precisely, a graph of waypoints with ver-
tices corresponding to waypoints and edges to paths.
Also, new edges are added whenever there exist di-
rect visibility between any two vertices. Polygons are
grown by a small factor (e.g. 5%) to create a reason-
able distance from obstacles for the nodes to move.
The edges of the graph represent both the possibility
of going from one waypoint to another and the cost
(Euclidean distance) associated. As a result, nodes
tend to round obstacles while trying to avoid them.
The situation results similar to people walking on the
curbs of a street. Figure 1 depicts a few obstacles and
the calculated waypoints and pathways.

Floor plans and the shortest paths between waypoints
are calculated at the beginning of the simulation with
the A* algorithm (implemented by Dijkstra’s algorithm).
At any time later, paths can be easily calculated from
the pre-calculated table of waypoints, in addition to
the distances from the origin and destination to these
waypoints, so that paths always follow the minimum
distance. This approach produces a rich set of way-
points for nodes, which are not limited to moving on
pathways.

A previous work addressed the used of Voronoi graphs
to define pathways for nodes to avoid obstacles. This
approach produces paths that tend to go along the
middle distance between pair of obstacles [14]. The
middle distance seems appropriate to most campus-
based scenarios, but maybe not suitable for modelling
people on urban environments where there is a ten-
dency for walking next to buildings. The model de-
scribed in the paper is more suitable for the second
situation.

In addition to path planning, INES supports instantia-
tions of movers, which are objects that accept node sub-
scriptions and decide their new destinations on the space
every time a node stops. Movers simplify the process of
defining mobility models for simulations, making it possible,
for example to define sets of nodes under different mobility
models. The existing support in INES is for the random-way
point and Gauss-Markov mobility models [10].

4. WIRELESS LAN SIMULATIONS

4.1 Radio Propagation Model
In a simulated wireless scenario, the propagation model

aims at predicting the path loss of a link, so that packet

Figure 1: Obstacles and pathways. The lines repre-
sent the pathways that have been calculated by the
simulator to allow nodes avoid the obstacles.

transmissions can be delivered to the likely receivers. Wire-
less network protocols typically use microwave signals in the
ultra high frequency (UHF) (0.3–3 GHz) or in the extremely
high frequency (EHF) (30–300 GHz) radio range. For exam-
ple, the IEEE 802.11 (WiFi), IEEE 802.15.4 (sensor motes)
and Bluetooth use the 2.4 GHz band (also known as the
Industrial, Scientific and Medical band). WiMAX (IEEE
802.16) operate in 2.5, 3.5 and 5.8 GHz.

UHF and SHF radio signals propagate mainly through the
direct path, but the presence of obstacles in the environ-
ment may cause additional propagation mechanisms (mul-
tipath). Depending on the materials present in the obstacle
composition, reflections may occur with large objects com-
pared to the wavelength of the signal. Diffraction may occur
with sharp edges of objects blocking or near the direct path.
If small objects are present, such as traffic lights, the sig-
nal may suffer in addition of scattering. These propagation
mechanisms determine the path loss and signal distortions
and fading that may vary significantly the signal strength
with small movements of the transmitter and receiver.

A basic model to predict the direct path loss is given by
the Friis formula (in dB) for free space [24]:

PL = 32.4 + 20log(F) + 20log(D) (1)

where F is the carrier frequency in MHz and D the dis-
tance in kilometers, and assuming unit-gain antennas. How-
ever, path losses are usually worse than predicted by the
free-space model. A popular model that was constructed
from indoor measurements predicts:

PL = 40 + 35log(d)

where d is the separating distance in meters.
The availability of the environment geometry allows far

more accurate predictions, which can be achieved by ray
tracing and taking into account reflections, diffractions and
scattering with the objects in the scene. Unfortunately, the

complexity of ray tracing is very high [21, 16].
To balance computational complexity and accuracy, the

propagation model implemented in INES takes into account
only the objects lying on the direct path (shadowing). The
path loss is then calculated by:

PL = PudB + 10nlog(d) +

KX

i−1

Wi

where Pu is the loss for the first meter and n the power-
delay index that depends on the environment. For example,
Pu = 40 and n = 3.5 are adequate for indoors. The model
assumes a separation distance between transmitter and re-
ceiver of d meters, and K walls along the direct path, each
producing an attenuation of Wi dB.

4.2 Packet reception
The radio propagation model described in Section 4.1 al-

lows predicting the receiving signal strength for each bit of
a packet transmission. In most simulation cases, more than
one transmitter may be active at any given time, creating
the possibility of interference. The situation occurs for ex-
ample, when multiple wireless nodes are in relative close
proximity or when both a MANET and a WSN operate at
the same time on a given area.

The receiver correctly decodes a packet whenever the re-
ceived signal strength from the transmitter is sufficiently
strong to overcome channel thermal noise and interference,
in other words, when there is a sufficient signal-to-interference-
noise ratio. INES assumes that mobility does not affect a
single packet transmission; therefore it is possible to parti-
tion any packet reception time (or b bits) into a set of time
segments, each with a constant SINR, T = ∪iTi. The time
of one bit is therefore, Tb = T/b.

Formally, if Pi is the power received at any point in time
from the desired source i and Pj is the power received from
other transmitters i �= j. The SINR (γ) at the receiver is:

γi =
GiiPiP

j �=i θijGijPj + η

where Gij is the gain from source j to sink i, θij the
fraction of the transmitted signal that is projected onto the
signal space of i and η the noise power of both thermal
noise (No) and receiver noise figure. For different channels in
spread spectrum systems with matched filters, it is common
to assume θ = r/W , where r is the data rate and W the
spread bandwidth.

The SINR of a segment and the modulation system em-
ployed determine the probability of decoding the correspond-
ing bits. To decode successfully a packet, it would be nec-
essary to successfully decode all its segments. SINR can
be related to the bit error rate (BER or Pe) with knowl-
edge of the modulation scheme. For example, IEEE 802.11b
uses DBPSK (1 Mbps), DQPSK (2 Mbps) and CCK (5.5
and 11 Mbps). SINR can be related to BER from analyti-
cal and simulation models, or measurements. To avoid the
extra computation effort in calculating BER from the simu-
lated SINR of a segment, INES implements look-up tables of
known models with linear interpolation and extrapolation.

The probability Ei that segment Ti would contain at least
one bit error is:

Ei = 1 − (1 − Pe)
n
i

Idle,
process
queue

foreign RTS or CTS / set VC

Wait DIFS
+ backoff

pkt to tx / 0

Wait
SIFS

RTS /
 set VC,
 proc=1

RTS /
 set VC,
 proc=1

Wait
CTS

wait end /
send RTS,

 proc=1

Wait
DATA

SIFS end /
 send CTS

timeout /
 incr CW or

drop pkt,
 proc=0

Wait
SIFS 2

CTS / 0

wait end /
reset CW,

send broadcast
 DATA,
 proc=0

Wait
ACK

wait end /
reset CW,

send unicast
DATA

ACK /
remove pkt

queue,
proc=0

timeout /
 incr CW or

drop pkt,
 proc=0

Wait
ACK
time

DATA /
 send CTS

ack time /
proc=0

Figure 2: FSM of IEEE 802.11 with RTS/CTS sup-
port.

where ni = Ti/Tb is the number of bits in segment Ti. The
model calculates iteratively Ei immediately testing for an er-
ror occurred in the segment against a uniformly distributed
random variable. If case of error, the calculation is aborted
and the packet is declared corrupted.

4.3 IEEE 802.11
INES implements the DCF of IEEE 802.11 as a Protcomp,

allowing the inclusion of any number of interfaces (with dif-
ferent channels) per node. Multiple transmitters on the
same or different channels may cause interference as de-
scribed in the previous section.

Each interface implements its own buffer, which can be
cleared entirely or selectively by destination id on request by
another Protcomp (e.g. DSR). The implementation follows
the standard closely, including the transmission of preambles
and allowing the use of RTS/CTS packets (Figure 2) and
virtual carrier sensing whenever a packet transmission is for
a packet length above the minimum threshold. The imple-
mentation uses two timers to track the time progress. One
is used for DIFS and SIFS waiting times and the other for
tracking timeouts that trigger MAC level retransmissions.

5. PACKET ANIMATOR
Packet Animator is a program being developed concur-

rently with INES that is able to read and graphically rep-
resent the execution of a simulation from INES traces. The
program also has partial support for reading NAM traces
from NS-2.

The software architecture of Packet Animator uses the
observer design pattern, with a model (subject) that reads
the events from INES traces to reproduce them over the
simulated time. An observer then displays the current state

of the model. The model learns from INES key events in the
simulation but needs to generate the states between them to
produce a smooth animation of the simulation. For example,
the model generates the estimated position of nodes and the
wireless coverage area from a single INES event indicating
the starting time of the action.

Packet Animator is OpenGL based and takes advantage of
hardware acceleration whenever available to speed up model
drawing. As with INES, the Packet Animator is able to
read tri-dimensional geometries in object format (Section
3). In addition to the models defined by INES traces, it
is possible to include other geometries in the visualisation
(e.g. alternative representation of nodes). The animations
support node mobility, the transmission of packets on wired
and wireless links and monitors. INES traces may indicate
colour changes for nodes and packets at any time during the
simulation to facilitate visualisation.

To visually track measurements collected during the sim-
ulation, for example, to observe the end-to-end delay of a
sequence of packets at some point of the network, the an-
imator allows the creation of monitors (or meters), which
can plot these values according to the simulation time. It is
also feasible to generate special marks (in the form of lines
drawn by the animator) from INES to show arbitrary ge-
ometries during the visualisation of a simulation. This fea-
ture is useful to highlight the resulting pathways of a path
planning algorithm. When dealing with wireless links, the
animation allows to observe the potential interfering area of
transmitters over time.

User interaction is through the OpenGL API, which al-
lows starting, stopping and changing the speed of the anima-
tion. The viewing camera is flexible and can be positioned
to get suitable views of the animation from any angle and
zoom level. Finally, the animator allows to record displayed
frames for the creation of movie clips of the simulations.

Next sections (Figures 1, 3 and 5) will show direct screen
captures from the Packet Animator. A few video demon-
strations are also available online [19].

6. EXAMPLES
This section describes a couple of simple examples that

illustrate the simplicity and potential of INES for network
simulations. The scripts describing the simulations are very
short, so they are included to complement the description.
Further applications can be found in the literature [17, 18,
20].

6.1 Small-World Network Topology
A simple example can illustrate the basics of INES of both

its user interface and operation. Consider the simulation of
a small-world topology of 100 nodes to calculate the average
throughput between two nodes (0 and 50) of a CBR traf-
fic flow of packets of 128 bytes. The script describing this
simulation is:

set_param(’link_random’, 1);

set_param(’link_pdelay’, 0.001);

set_param(’link_txrate’, 1000000);

set_param(’buffer_size’, 10);

create_net_sw(100, 4, 0.2)

compute_routes()

Figure 3: Example 1: Small-world network topology
and CBR traffic flow.

cmd = "cbr(0, 50, %s, 128, 1000)" % sys.argv[1]

at(0.1, cmd)

Function set param() allows the definition of various de-
fault values in the simulation. In this script, it enables to
randomise the default bandwidth and propagation delay of
links at creation time. It also defines the default buffer size
for all network interfaces. Function create net sw() creates
the network topology with 100 nodes having a nominal de-
gree of 4 with a probability of re-wiring of 0.2. Function
compute routes() creates static routing tables in the nodes
which use IP and UDP by default. Finally, a traffic flow of
1000 packets is scheduled to start at time 0.1 with a bit rate
supplied from the command line.

Given the random nature of the topology, the simulation
was executed several times to obtain average values. Fig-
ure 3 depicts one of the resulting topologies in the Packet
Animator and the results are shown in Figure 4.

6.2 Mobile Wireless Network
As a second example, consider a typical urban scenario

(Figure 5) with 30 nodes moving at random speeds between
2 and 5 m/s and according to the random-waypoint model
with no pause times. Random destinations, outside the
buildings, are selected every time a node stops and nodes
move avoiding obstacles as described in Section 3.1. The
script describing the simulation is:

s0 = scene("buildings.obj")

w0 = link("wlan", "dsr")

w0.param(’link_txrate’, 11e6);

w0.param(’buffer_size’, 50);

w0.param(’rtscts_threshold’, 0);

mov = mover("rwp")

mov.param("initpos", 1)

mov.param("field", 350.0, 250.0)

mov.param("minspeed", 2.0)

2 Mbps 4 Mbps 6 Mbps 8 Mbps 10 Mbps1
M

bp
s

1.
5

M
bp

s

2
M

bp
s

2.
5

M
bp

s
3

M
bp

s
3.

5
M

bp
s

4
M

bp
s

Offered Load

T
ho

ug
hp

ut

Figure 4: Measured throughput between nodes 0–
50.

mov.param("maxspeed", 5.0)

mov.param("minpause", 0.0)

mov.param("maxpause", 0.0)

N = 30

n = {}

for i in range(0,N):

n[i] = node()

w0.connect(n[i])

mov.add(n[i])

at(0.0001, "mov.start()")

at(12000, "mov.stop()")

at(1.0, "cbr(n[0].id(), n[1].id(), 16000, 256, 85000)")

start()

Scenarios can be loaded with the scene() function, which
accepts standard .obj files. The link() function creates in
this case, a wireless link (wlan). The function is overloaded
to accept an association with a MANET routing protocol
(DSR). The mover() function returns an instance of the
mover indicated in the argument call (random way point
in this case). A mover object can then be manipulated to
change its default values to the desired field size, speed and
pause times. Nodes can be subscribed to the mover with
Mover::add(). By default, simulations check object colli-
sions and use path planning for mobiles with object avoid-
ance, so there is no need to define them in the script.

One CBR packet flow of UDP/IP packets of 256 bytes
at 16 Kbps is started from node 0 to node 1. The goal of
this simulation is to find out the expected path length of
the flow and compare it to the results of a similar scenario
without obstacles. The simulation script for the latter case
is identical to the one just shown, but without the line with
the scene() function.

Nodes use a transmission power of 16.6 dBm and a trans-
mission rate of 11 Mbps. Each object face in the scenario
attenuate the incoming signal by 3 dB. Under the free-space
propagation model, this transmission power allows for a
communications range of about 150m. Figure 5 shown a
screen capture of the Packet Animator illustrating the same

Figure 5: Urban scenario and IEEE 802.11 / DSR mobile network.

1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

Path Length

F
re

qu
en

cy
 o

f u
se

Figure 6: Distribution of path lengths of packet
transmissions on an unobstructed scenario.

scenario but with 100 nodes. During the animation, translu-
cent semi-spheres are drawn around radio transmitters to
represent the expected temporal radio coverage over time.
However, the actual coverage may be less because of radio
interference and obstacles (Sections 4.1 and 4.2), which are
determined packet by packet. The average observations af-
ter running the script 50 times are shown in Figures 6 and
7. They show the normalized histogram of observed path
lengths (frequency of use) and indicate that paths tend to
be longer when obstacles are present as expected. Longer
paths are the result of obstacles that restrict the physical lo-
cation of nodes to certain areas on the field and that reduce
the effective coverage of wireless communications.

1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

Path Length

F
re

qu
en

cy
 o

f u
se

Figure 7: Distribution of path lengths of packet
transmissions on the scenario shown in Figure 5.

7. CONCLUSION
The paper has discussed the goals, design, models and cur-

rent development state of INES. INES is a software project
aimed at creating a network simulator for the realistic eval-
uation of computer networks on a virtual environment. The
simulator defines an environment with a set of tri-dimensional
objects, which may affect wireless communications by in-
troducing extra attenuation to signals when they need to
traverse the scenario structures. The extra attenuation pro-
duces a higher packet loss probability and reduces effective
wireless ranges when compared to unobstructed transmis-
sions. Objects may also restrict node roaming.

Consideration of the environment effects on wireless com-
munications and node roaming could be crucial for the cor-

rect design and evaluation of wireless algorithms and related
technologies. Simulations that unrealistically assume unob-
structed environments could lead to significant errors. To
illustrate the effects of the environment, the paper has eval-
uated a MANET on a urban setting and quantified the dif-
ference in DSR hop counts compared to an scenario without
obstructions. The longer paths obtained with the obstructed
environment would cause higher energy consumption than
expected, which comes from the need of more packet trans-
missions to cover the longer paths or from the use of higher
power transmissions to maintain the hop counts.

INES is based on an object model that is flexible and ex-
tensible. It offers support for the concurrent use of multiple
interfaces to wireless and wired media. Current supported
models include wired communications with INET and CPN
protocols, wireless LANs using the IEEE 802.11 DCF proto-
col, radio propagation with intra-channel and extra-channel
interference tracking for packet error computation. There is
support for path planning with obstacle avoidance and both
the random waypoint and Gauss-Markov mobility models.
On the other hand, it uses an embedded Python interpreter
that make simulations easy to define and execute as shown
in the examples.

The Packet Animator complements INES and implements
an OpenGL-based animation engine that can visualise INES
simulation traces. INES is a work in progress and it is ex-
pected that future developments will enhance the model
support and node-environment interactions, as well as to
include emulation and distributed execution.

8. ACKNOWLEDGMENT
The work presented in this paper was partially supported

by the project CASCADAS (IST-027807) funded by the
FET Program of the European Commission. The paper
represents the work and contribution of an individual party
involved in the project.

9. REFERENCES
[1] Boost c++ libraries, online: http://www.boost.org.

[2] Google earth, online: http://earth.google.com.

[3] Graphviz - graph visualization software, online:
http://www.graphviz.org.

[4] Lam/mpi, online: http://www.lam-mpi.org.

[5] Omnet++ simulator, online: http://www.omnetpp.org.

[6] Opnet simulator, online: http://www.opnet.com.

[7] Qualnet simulator, online:
http://www.scalable-networks.com.

[8] L. Bajaj, M. Takai, R. Ahuja, R. Bagrodia, and
M. Gerla. Glomosim: A scalable network simulation
environment. Technical Report 990027, University of
California Los Angeles, 13, 1999.

[9] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann,
A. Helmy, P. Huang, S. McCanne, K. Varadhan,
Y. Xu, and H. Yu. Advances in network simulation.
IEEE Computer, pages 59–67, May 2000.

[10] T. Camp, J. Boleng, and V. Davies. A survey of
mobility models for ad hoc network research. Wireless
Communication & Mobile Computing (WCMC):
Special issue on Mobile Ad Hoc Networking: Research,
Trends and Applications, 2(5):483–502, 2002.

[11] J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogielski.
Towards realistic million-node internet simulations. In

Proceedings of the 1999 International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA’99), June 1999.

[12] E. Gelenbe and R. Lent. Power-aware ad hoc cognitive
packet networks. Ad Hoc Networks Journal,
(3):205–216, July 2004.

[13] E. Gelenbe, R. Lent, and Z. Xu. Measurement and
performance of cognitive packet networks. J.
Computer Networks, 37:691–701, 2001.

[14] A. Jardosh, E. Belding-Royer, K. Almeroth, and
S. Suri. Real-world environment models for mobile
network evaluation. Selected Areas in
Communications, 23:622–632, Mar 2005.

[15] M. Lacage and T. R. Henderson. Yet another network
simulator. In WNS2 ’06: Proceeding from the 2006
workshop on ns-2: the IP network simulator, page 12,
New York, NY, USA, 2006. ACM.

[16] R. Lent. Design of a manet testbed management
system. The Computer Journal, 49(4):171–179, jul
2006.

[17] R. Lent. On the impact of network qos on automated
distributed auctions. In Proceedings of 2nd
International Conference on Bio-Inspired Models of
Network, Information, and Computing Systems,
Budapest, Hungary, December 2007.

[18] R. Lent. Autonomic migration response to ddos
attacks in an auction system. Security and
Communication Networks (to appear), 2008.

[19] R. Lent. The integrated network-environment
simulator (ines), online: http://san.ee.ic.ac.uk/ines,
2008.

[20] R. Lent and E. C.-H. Ngai. Lightweight clustering in
wireless sensor-actuator networks on obstructed
environments. In Proceedings of International
Symposium on Wireless Pervasive Computing,
Santorini, Greece, May 2008.

[21] G. Liang and H. L. Bertoni. A new approach to 3-d
ray tracing for propagation prediction in cities. IEEE
Trans. Antennas and Propagation, 46:853–863, 1998.

[22] K. Maeda, K. Sato, K. Konishi, A. Yamasaki,
A. Uchiyama, H. Yamaguchi, K. Yasumoto, and
T. Higashino. Getting urban pedestrian flow from
simple observation: Realistic mobility generation in
wireless network simulation. In Proceedings of the 8th
ACM/IEEE International Symposium on Modeling,
Analysis and Simulation of Wireless and Mobile
Systems (MSWiM2005), 2005.

[23] C. McDonald. Network simulation using user-level
context switching. In Proc. of the Australian UNIX
Users’ Group Conference ’93, pages 1–10, Sep 1993.

[24] T. S. Rappaport. Wireless Communications. Prentice
Hall PTR, 1996.

[25] G. Riley. Large-scale network simulations with gtnets.
In Proceedings of the 2003 Winter Simulation
Conference, pages 676–684, Dec 2003.

[26] A.-K. H. Souley and S. Cherkaoui. Simulating realistic
urban scenarios for ad hoc networks. International
Journal of Business Data Communications and
Networking, 2:18–33, 2005.

