
A Layered Architecture for the
Model-driven Development of Distributed Simulators

Daniele Gianni
Dept. of Electrical and Electronic

Engineering

Imperial College London
Exhibition Road

SW7 2AZ, London, UK

gianni@imperial.ac.uk

Andrea D’Ambrogio
Dept. of Computer Science

University of Rome TorVergata
Via del Politecnico, 1
I-00133 Rome, Italy

dambro@info.uniroma2.it

Giuseppe Iazeolla
Dept. of Computer Science

University of Rome TorVergata
Via del Politecnico, 1
I-00133 Rome, Italy

iazeolla@info.uniroma2.it

ABSTRACT
The development of a distributed simulator requires knowledge
and skills that might be unavailable or difficult to acquire.
Bringing model-driven approaches to the development of
distributed simulators contributes to reduce both the need for
specific skills and the development effort. To support this
innovative development methodology, we introduce a layered
simulation architecture named SimArch that allows to define
simulation models that can be transparently transformed into
simulation programs ready to be executed in a distributed (or
local) mode.

SimArch defines layers of services at increasing levels of
abstraction on top of the execution environment, thus allowing
developers to build distributed simulators without explicit
knowledge about the execution environment (local/distributed)
and the specific distributed simulation infrastructure (e.g., HLA).

In order to show the effectiveness of the proposed approach,
SimArch has been provided with an Extended Queueing Network
(EQN) simulation language, which has been applied to the
development of an example distributed simulator in the computer
network domain.

Categories and Subject Descriptors
D.2.11 Software Architecture, D.2.13 Software Reusability,
D.2.10 Design, D.3.2 Language Classification, I.6.5 Model
Development, I.6.7 Simulation Support Systems, I.6.8 Discrete
Event, I.6.8 Distributed, I.6.2 Simulation Language.

General Terms
Design, Experimentation, Languages.

Keywords
Simulation Languages, Simulation Framework, Distributed
Simulation, HLA, Queueing Network, Computer Network
Simulation.

1. Introduction
Distributed simulation brings well-known advantages with respect
to local simulation, mainly in terms of resource availability and
reusability [1]. The availability of more memory and
computational power can indeed allow the efficient execution of
simulation programs that could not be run on a single machine
and the possibility to build a distributed simulator by federating
existing simulators enables the effective reusability of already
developed simulation programs. On the other hand, the
implementation of a distributed simulator is far from being easy
and effortless, and very often distributed simulators are to be
developed by appropriately adapting existing simulation
components that have been developed for local execution [2].

Although much attention has been devoted to minimize the
development effort by addressing interoperability and reusability
issues, the ease (i.e. the adaptability) with which a local simulator
developer can approach distributed simulation has not been
considered. In order to address such a problem, we introduce a
layered architecture named SimArch that exploits simulation
approaches based on the precepts recently introduced in the
model-driven development field [3].

Model-driven development is simply the notion that it is possible
to build an abstract model of a system that we can then transform
into more refined models and eventually into the system
implementation. In the proposed approach, model-driven
development is applied to distributed simulation by use of
SimArch, which allows to develop a simulator by simply defining
a simulation model that can be effortlessly transformed into a
simulation program ready to be executed in a distributed (or local)
mode.

SimArch defines a set of layers at increasing levels of abstraction
on top of a distributed computing infrastructure (HLA in our case
[4]) to allow the simulation developer to deal with simulation
component logic issues only, without explicitly focusing on the
specific (distributed or local) execution environment and
simulation infrastructure. In such a way, SimArch brings several
advantages in terms of simulation component reusability and
effort reduction.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

First International Conference on Simulation Tools and Techniques for
Communications, Networks and Systems, (SIMUTOOLS’08), March 3–7,
2008, Marseille, France.
Copyright 2008 ACM 1-58113-000-0/00/0004…$5.00.

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.SIMUTOOLS 2008, March 03-07, Marseille, FranceCopyright © 2008 ICST 978-963-9799-20-2DOI 10.4108/ICST.SIMUTOOLS2008.3071

In order to show the effectiveness of the proposed approach,
SimArch has been provided with an Extended Queueing Network
(EQN) [5] simulation language. Such a language has been defined
by developing various software libraries that implement the
services provided by the different layers of SimArch [6] [7] [8].

The paper is organized as follows. Section 2 briefly illustrates the
related work, and Section 3 gives the description of the proposed
architecture. Section 4 describes the EQN language built on top of
the SimArch layers, and Section 5 illustrates its application to the
development of an example distributed simulator in the computer
network domain.

The example application has been carried out by first defining the
EQN model of a so-called catenet, and then showing how the
EQN simulation modeling language defined on top of SimArch
can be effectively used to develop both a local version and a
distributed version of the catenet simulator, with a twofold
motivation: comparing the effort or developing the local and the
distributed simulators and providing confidence about the
effectiveness of the proposed approach.

2. Related work
The simulation community has provided several contributions that
aim at increasing the abstraction level of the simulation primitives
in order to achieve effort savings and reusability when building
distributed simulators. However, the adaptability, i.e., the ease
with which a new distributed simulator can be derived from
existing ones, has not been thoroughly addressed.

Some related research efforts can be found in [9] [10] [11] [12],
which describe PDNS, DisSimJava, DEVS/HLA, and OSA,
respectively.

PDNS is an extension of the popular ns-2 tool for running
network simulation in a distributed mode. SimArch differs from
PDNS in two main aspects. The first is that SimArch is
application domain independent, and therefore it does not deal
with computer networks specifically. The second is the uniform
representation of the communication among entities,
independently from their type (local-local, local-remote, or
remote-local), while PDNS explicitly introduces the ghost node
abstraction to locally represent the connections to remote entities.

The DisSimJava work presented in [10] is based on a view similar
to SimArch, from which it differs for three major aspects: first, it
is only a prototype with the implementation of communication
entities but without synchronization; second, it does not identify a
layered architecture that allows simulation components to be run
on different implementations; third, it does not provide HLA-
compliant implementations.

DEVS/HLA [11] and the associated definition of a simulation
middleware [13] can also be considered as contributions similar to
SimArch. The basic difference is that SimArch approaches the
problem of enabling developers familiar with local simulation to
easily switch to distributed simulation, with a more pragmatic
solution inspired by the current trend of semi-formal modeling
languages, like UML. Moreover, SimArch clearly defines the
communication interfaces between the layers and, at the same
time, allows the composition of any set of implementations of
such layers. In the end, SimArch could also be used to provide a
DEVS implementation [14].

Finally, OSA [12] has a broader scope compared to SimArch.
OSA aims at providing a general framework to cover the activities
involved in the definition, development, validation and execution
of a discrete event simulators. SimArch, differently, focuses on a
restricted sub-set of the above activities, but in a deeper way.
SimArch partitions the provided simulation services into four
independent layers, whose implementation can be effortlessly
changed to accommodate different requirements or future needs.

In addition, SimArch is currently provided with jEQN [15], a very
flexible Domain-Specific Language (DSL) [16] for the
description of EQN models.

3. SimArch
Distributed simulation systems can be considered as composed of
several layers, each introducing a more abstract set of simulation
services on top of the underlying layer, the bottom one being the
distributed computing infrastructure.

There are three main advantages for adopting this layering
approach. The first is that the simulation model is decoupled from
the specific execution environment, and then it can be reused
across several simulation platforms. The second is that the layers’
implementations can be easily modified or replaced to
accommodate custom deployment requirements (i.e. local or
distributed deployment, performance optimization for given
simulation workload, etc.). Finally, the third advantage is that
simulation developers deal only with the high level simulation
services, and therefore can focus on the model description rather
than being involved in the typical intricacies of distributed
simulators implementation.

The proposed layered simulation architecture SimArch consists of
four layers [13] [8], each dealing with a specific distributed
simulation issue.

Figure 1 illustrates the architecture layers, whose detailed
description is given in [8].

In SimArch, the top Layer 4 is the layer where the simulation
model is defined through the invocation of the simulation
language primitives.

The primitives’ implementation, i.e., the components’ simulation
logic and the model configuration services, are provided by Layer
3; while Layer 2 deals with the simulation components
synchronization and communication, transparently for local and
distributed environments. The distributed version of this layer
uses in turn Layer 1 to achieve global time synchronization and
provides communication with the remote simulation components.

Finally, Layer 1 provides a DES (discrete-event simulation)
abstraction on top of the distributed computing infrastructure
conventionally identified by Layer 0. Such bottom layer does not
belong to SimArch and therefore the service interfaces between
Layers 1 and 0 are not defined. In the case of a HLA-based
implementation of Layer 1, such interfaces are subsets of the RTI-
Ambassador and FederateAmbassador interfaces for the
communication between Layers 1 and 0 and between Layers 0
and 1, respectively.

Figure 1 SimArch layers

3.1 Data interfaces
The data interfaces define the access methods to the data
exchanged between the layers. Specifying abstract data structures
instead of concrete data structures decreases the level of layer
coupling, and therefore allows layers’ implementation to be
effortlessly modified or replaced.

SimArch defines the following data interfaces:

• ComponentLevelEntity: interface for local simulation
entities (including their hierarchical composition);

• Event: interface for events scheduled between layers;
• GeneralEntity: a base interface for local and remote

entities;
• InputPort: interface for received events;
• Link: interface for connecting input and output ports;
• Name: interface for the declaration of names in

SimArch;
• OutputPort: interface for sent events;
• Port: interface for the common access to port internal

data;
• RemoteEntity: interface for remote simulation entities;
• Time: interface for the representation of simulation

time.

Each of the above defined interfaces is of immediate
understanding and therefore not discussed further here. The reader
is sent to [7] [8] for additional details.

3.2 Layers’ service interfaces
The service interfaces defines the communication paths between
adjacent layers, in both directions. Layers 1 and 2 communicate
through the Layer2ToLayer1 (Figure 2) and Layer1ToLayer2
(Figure 3) interfaces; similarly Layer 2 and 3 communicate
through the Layer3ToLayer2 (Figure 4) and Layer2ToLayer3
(Figure 7) interfaces. At Layer 4, the simulator developers can
describe their simulators by assembling Layer 3’s domain-specific

components through the Layer3UserInterface (Figure 5), which is
to be considered as Layer4ToLayer3 SimArch interface.

In more detail:

The Layer2ToLayer1 (Figure 2) interface allows communication
from Layer 2 to Layer 1. The interface is defined through five
services. The initDistributedSimulationInfrastructure and
postProcessingDistributedSimulationInfrastructure services are
general placeholders to allow the system set-up and the initial
state recover after the simulation execution, respectively. The
remaining three services provide the DES abstraction in the
distributed system. In particular, sendEvent delivers the given
event to the recipient at the specified time;
waitNextDistributedEvent blocks the invoking thread until a
distributed event is received, and
waitNextDistributedEventBeforeTime blocks the invoking thread
until either a distributed event is received or the specified time is
reached by the distributed simulation.

The Layer1ToLayer2 (Figure 3) interface allows Layer 1 to
transparently schedule distributed events into the local system.
This functionality, however, is split into two services,
scheduleEvent and scheduleSimulationEndEvent, to further
decouple Layers 1 and 2.

Figure 2 Layer2ToLayer1 interface [8]

Figure 3 Layer1ToLayer2 interface [8]

The communication from Layer 3 to Layer 2 takes place through
the Layer3ToLayer2 (Figure 4) interface, which is in turn
composed of a user-oriented service set
(Layer3ToLayer2UserInterface - Figure 5) and a developer-
oriented service set (Layer3ToLayer2DeveloperInterface - Figure
6).

Figure 4 Layer3ToLayer2 interface [8]

The Layer3ToLayer2UserInterface groups the services that enable
the simulation language user (simulator developer at Layer 4) to
produce the simulator. The interface provides two basic
configuration and simulation management services:
registerEntity, to add a simulation component to the simulator;
and start, to make the execution container start the simulation
execution.

Figure 5 Layer3ToLayer2 user interface [8]

The Layer3ToLayer2DeveloperInterface provides DES services to
build the simulation logic of each component. The services are of
four types: waitNextEvent, to block the component execution until
an event is received; hold, to block the component execution for t
simulated time units; holdUnlessIncomingEvent, to block the
component execution for t simulated time units or until an event is
received, whichever first; and, finally, a send method to deliver
events at a given simulated time.

Figure 6 Layer3ToLayer2 developer interface [8]

The Layer2ToLayer3 interface defines the Layer 2 access to the
Layer 3 simulation components (Figure 7).

Figure 7 Layer2ToLayer3 interface [8]

The body method encapsulates the simulation logic of the
component, and therefore it is invoked when the component
container is started. This method is made up of the
Layer3ToLayer2 service calls (i.e. hold, waitEvent, etc.) in
addition to the operations on the component state variables (e.g.
the length of a queue, the state busy/free of a service center, etc.).
The other services are of immediate understanding and therefore
not further discussed here.

3.3 Layers’ implementation
To provide evidence of the SimArch usefulness, we designed and
developed a Java library for each of the layers (1 through 3), and
produced an example simulator at Layer 4, as described in Section
5. The three libraries have been named DDESoverHLA (at Layer
1), SimJ (at Layer 2)and jEQN (at Layer 3).

DDESoverHLA implements the Layer2ToLayer1 interface on top
of HLA and CORBA-HLA [17].

SimJ provides a framework for the local development of
simulation components that can be equivalently deployed in local
and distributed simulations.

Finally, jEQN defines a DSL [16] for the definition of EQN
simulators [15]. A DSL can be seen as a programming language
designed for a specific kind of task, in contrast to a general-
purpose programming language, such as C or Java.

The combination of SimArch and the three libraries allows the
portability of locally developed simulation components onto
HLA-based infrastructures and, at the same time, brings effort
savings in the development of HLA-based simulators. Such
savings are due to the fact that the simulator developers are only
concerned with the essential services related to the simulation

logic, while the synchronization, the interaction between the local
and the distributed environment, and the distributed
communication are transparently provided by SimArch behind the
Layer3ToLayer2DeveloperInterface, as illustrated in [6] [7] [8].

The next Section gives a brief overview of the jEQN language
that has been used to simulate the example system illustrated in
Section 5.

4. jEQN brief overview
As above mentioned, jEQN is a DSL for the definition of EQN
models and for the implementation of EQN simulators on top of
SimArch. jEQN is currently implemented as a Java library though
its design features allow to make use of any other object oriented
language [15].

The language is defined by the Layer 4’s services (i.e.
Layer3ToLayer2UserInterface’s services) in addition to the
syntax of the proper jEQN simulation components. This in turn
includes the components’ name, assigned according to the EQN
standard taxonomy (e.g., user sources, waiting systems, service
centers, routers and special nodes), and support components for
their parameterization (e.g., the policy framework, see below) and
for the data structures (e.g., User, Queue, etc.).

jEQN has been designed to encapsulate the simulation logic only
within the simulation components and to leave undefined the
parameters that do not directly affect it. In such a way, each
simulation component exhibits a high degree of cohesion and it
can be easily reused across the several values the parameters
might assume. The parameters are designed and developed as
support components, in order to decouple the jEQN simulation
components from the parameters themselves and to allow a
flexible configuration of such components.

jEQN defines the following types of support components:

cat 1. parameters used to take decisions;

cat 2. parameters that provide a sequence of values;

cat 3. parameters that provide storage support.

Parameters like the routing policy (decision: where to route a
given user), the termination condition (decision: assess whether or
not the source has to terminate), the enqueueing policy (decision:
where to insert a given user), etc., belong to the first category. For
these parameters, jEQN defines a framework and a taxonomy
within which each policy has to be classified according to the use
and the type of the following four parameters [15]:

- I: the type of implicit input;
- S: the type of the policy state data;
- T: the type of the explicit input;
- D: the type of the decision.

Where implicit input is the input taken at policy instantiation
time, the policy state is the internal state of the policy and the
explicit input is the data for which the decision has to be taken
(the meaning of the type of decision being straightforward).

The second category includes parameters like interarrival times,
user generators, etc.

Finally, the third category defines parameters for the components
that provide storage support for the simulation, such as queues.

The definition of an EQN model is carried out by identifying: the
EQN components (e.g.: user sources, waiting systems, etc.), their
properties (e.g.: enqueueing policy, routing policy, user
interarrival rate, etc.), and their connections.

The development of a jEQN simulator, either local or distributed,
follows the same process, and therefore it contributes to bring the
model-driven development into the system simulation.

Further jEQN modeling details are available in [15].

5. Computer network distributed simulation
with jEQN
Figure 8 illustrates the example system that has been simulated
using jEQN. The system is a so called catenet1, composed of:

(a) two separate LANs, the first (LAN1) a token ring that
connects Host A, and the second (LAN2) an Ethernet that
connects Host B

(b) two gateways GW1 and GW2, that connect LAN1 and LAN2
to the WAN, respectively,

(c) the WAN, an X.25 packet switched network.

The objective of the simulation study is to evaluate the end-to-end
delay between Host A and Host B, the former in the LAN A and
the latter in the LAN B. Host A acts as a client and Host B as a
server.

We developed both a local version of the simulator and a
distributed one, in order to:

• validate the results (i.e., the end-to-end delay) obtained from
both the local simulator and the distributed simulator through
direct comparison with already available data (see [18]) and

• compare the effort needed to build the distributed simulator
with respect to the one required for developing the local
simulator.

5.1 Model definition
It is assumed the interaction between the client (Host A) and the
server (Host B) is based on message exchanges carried out by
packet flows over the various components of the catenet. The

1 The term “catenet” is an obsolete term used to indicate a system of

packet-switched communication networks interconnected via gateways
[21]. It is here used for the sake of brevity to denote a computer network
speaking the Internet protocol.

packet flow involves several technologies (Token Ring, X.25,
Ethernet) and thus several mechanisms are necessary to deal with
heterogeneity, namely:

(m1) protocol conversion, from the transport layer protocol TCP,
to the network layer protocol IP, to the data-link layer and
physical layer protocols (and vice versa), in either direction
from Host A to Host B, with the IP to X.25 (and vice versa)
protocol conversion at the gateway level,

(m2) packet fragmentation and re-assembly at many protocol
conversion interfaces,

(m3) window-type flow control procedure operated at transport
layer by protocol TCP for a fixed window size of value C
(for the sake of simplicity no varying window sizes are
considered, nor the use of congestion-avoidance
algorithms).

Figure 9 gives a more detailed view of the packet flow in the
system and puts into evidence the work performed by the network
components in order to deal with mechanisms m1, m2 and m3,
when transferring data from Host A to Host B (a symmetrical
flow holds when transferring data from Host B to Host A).

In the A-to-B flow, illustrated in Fig. 9, the packets are originated
by the Host A application layers in TCP format and then
translated into IP format by the Host A network layers to enter
LAN1. From LAN1 they exit in LLC/MAC802.5 format to enter
GW1 that fragments them into X.25 format to be accepted by the
WAN. Vice versa for the GW2, where X.25 packets are re-
assembled into LLC/MAC802.3 format for LAN2 and from there
into the IP format and then in the TCP format by the Host B
network layers. The token pool in Figure 9 is introduced to
represent the window-type flow control procedure implemented
by TCP between the source and the sink. For a window size C, the
pool consists of C tokens, and so up to C consecutive TCP
packets can GET a token and be admitted to the catenet. Non-
admitted packets are enqueued outside the catenet. On the other
hand, each admitted packet RELEASEs its token at the sink
entrance, thus allowing another packet to enter. Further details
about the definition of the model of the catenet system can be
found in [18].

Figure 8. General view of the catenet system

5.2 Design and implementation details
The implementation of the local version of the simulator consists
of the following three steps:

1. Instantiate the Layer 2 local container (the simulation
engine) to execute the jEQN components.

2. Define the jEQN components of the model by:

a. Defining the jEQN entities

b. Defining the connections among entities.

3. Start the container execution.

It is worth noting that the jEQN components (Layer 3) are
automatically registered with the underlying Layer2 container that
executes them.

Step 1 and step 3 can be simply carried out by use of the SimArch
services. Step 2, the core activity for the development of the
simulator, is carried out by use of a procedure that can be partially
automated to obtain jEQN components from the detailed
definition (Layer 4) of the EQN model.

For the sake of brevity, we report here jEQN development details
of only the Token Ring (LAN1) part of the catenet. Figure 10
shows the LAN1 model, which reflects the typical behavior of
local area networks of Token Ring type. The queueing policies at
each queue, including the Token allocation queues, are of FCFS
(First Come First Served) type, while the service centers are of
non-preemptive type with Gaussian service times. The users
(packets) flow into the main loop (from the allocTok node to the
routing node) until the number of the frames they are composed
of has been processed.

The implementation of the simulator is carried out by defining a
jEQN component for each corresponding element in Figure 10.
The model thus consists of six jEQN waiting systems, three
service centers, one router, two allocate nodes, one release node,
one destroy node, two set nodes, and finally two pools of tokens.

The configuration of those components is carried out by applying
the jEQN parametrization procedure that identifies, for each
component, appropriate parameters within the three jEQN
categories of parameters described in Section 4.

As an example, each queue in the model is defined through an
enqueueing policy (cat 1 parameter) and a storage structure (cat 3
parameter). The enqueueing policy can be defined through the
jEQN policy framework by first classifying the policy according
to the jEQN policy taxonomy and then identifying the parameters
[15]. The FCFS enqueueing policy can be modelled as a policy
that depends on the implicit input parameter (the queue), which
has no internal state, no explicit input, and whose returned
decision data is the index within the queue. This policy is easily
implemented by returning as “decision” the length of the queue.

As regards the storage parameter, the model implicitly considers
all the queues as infinite single FCFS queues. In jEQN, this can
be done by first choosing a concrete data structure implementing
the Java List interface, and then setting up both the storage
parameter of such structure and the enqueueing policy. The jEQN
modularity and flexibility allows the introduction of more
complex storage structures (e.g., multiqueue with different
enqueueing policies and capacity, etc.), at no additional costs.

The service centers are of non-preemptive type, according to the
model definition, and their parameters are limited to the type of
service, i.e. to the sequence of numbers that simulate the
introduced delay. The Gaussian property of service centers is set
by use of the jRand framework [19], by passing a Gaussian
pseudo-random generator at instantiation time.

The router is allocated with the proper routing policy. This policy
is once again defined by use of the jEQN policy framework. It
depends on the parameter T, explicit data, which is of type User,
and returns a decision of type Integer, which indicates the port id
through which the processed User has to be forwarded. The
implementation of this policy can be easily obtained by testing
whether the number of frames is equal to zero or not. In the

Figure 9 Detailed view of the catenet packet dataflow

former case, the returned port id is the id of the port connected to
the destrMsg node, whereas in the latter case the id is returned of
the port connected to the allocTok node.

The remaining jEQN components, corresponding to nodes for
allocating and releasing tokens, do not need to be parametrized.

The simulation model definition of the LAN1 is completed by
connecting the components as in the model specification. To this
purpose, the jEQN implementation of the Link SimArch interface
can be used to instantiate links and to register components’ ports
as in [6]. For example, the allocTok waiting system has its user
output port connected to the getToken service center, which is in
turn connected to the following setSender special node, and so on
for the remaining components.

Now assume all the remaining parts of the catenet have been in a
similar way jEQN-modeled, to obtain the complete local version
of the simulator.

The implementation of the distributed version of the simulator is
easily obtained from the corresponding local version. This further
remarks how the abstraction layers introduced by SimArch
actually allow the model-driven development of distributed
simulators, as they are almost not aware of the distributed
execution environment.

In general, the implementation of a SimArch distributed simulator
follows four steps, for each (distributed) submodel:

1. Instantiate the Layer1 and Layer2 implementations;

2. Define the submodel by:

a. Defining the entities:

i. Local simulation entities as in the local
simulator;

ii. Remote simulation entities by declaring remote
references through the proper SimArch
interface;

b. Defining the connections:

i. Local connections among local entities as in the
local simulator;

ii. Remote connections (outcoming connections)
from local entities to remote entities.

3. Activate the Layer2 container.

In our example, assume we decided to partition the Fig. 9 model
into three distributed submodels (Submodel 0, Submodel 1 and
Submodel 2), as shown in Figure 11.

By use of Simarch it is straightforward to define submodels as
follows:

Submodel 0 will consist of the HostA and LAN1 entities and their
local connections, as in the local simulator, in addition to a remote
reference to GW1 and a remote connection between the LAN1
entity and GW1.

Similarly, Submodel 1 will consist of the GW1, WAN and GW2
entities and their local connections as in the local simulator, in
addition to two remote references to the LAN1 and LAN2 entities
with the related remote connections to GW1 and GW2,
respectively.

Finally, Submodel 2 will consist of the HostB and LAN2 entities
and their local connections, as in the local simulator, in addition
to a remote reference to GW2 with the related remote connection.

Which ends the distributed simulator definition.

Figure 11 Model partitioning for the distributed simulator

5.3 Simulator validation
The distributed simulator validation is carried out through
comparison of exact values and global trend of the end-to-end
delay in the local and distributed case. The end-to-end delay is
measured by increasing values of the arrival rate λ (packets/sec)
from the source for different values of the window size (C = 4, 7
and 12 packets). The simulation statistics are collected according
to the batch method, with initial bias removed, in 5000 simulated
seconds. The local simulator results are shown in Figure 12.

allocMsg setSendergetToken transfrm putToken decrfrm destrMsgroutingcreateMsg relTok

Tok

Msg

allocTok

?

Figure 10 EQN details of the token ring LAN1 model

Direct comparison of the simulation output with previous analyses
confirms that the derived results are reasonably within the O(10-2)
acceptance interval with respect theoretical results in [18].

Similar results are found for the distributed simulator, consisting
of three simulators, one for each submodel in Figure 11.
Experiments have been carried out by distributing the three
submodels over separate servers, running either in a LAN or in a
WAN environment. In the latter case, the WAN was connecting
servers between Rome (Italy) and Atlanta (USA). The results
obtained from the distributed simulator are illustrated in Figure
13.

The small differences in some points with respect to Fig. 12 arise
from the use of finite delays in the communication between
simulation entities running on different simulators necessary, with
the current HLA implementation, to avoid the non-reproducibility
of zero lookahead simulations [20]. This leads to the simulation of
a slightly different EQN model, whose end-to-end delay is
generally higher and with a lower saturation point for a given
window size.

To further validate the distributed simulator, we also adapted the
local simulator model by introducing such finite delays to model
the effect of the lookahead introduced in the distributed simulator.
As expected, the results obtained from the updated local simulator
are identical to the ones obtained from the distributed one.

6. Conclusions
Building a distributed simulator requires non negligible efforts
and time, and specialized skills, in comparison to the development
of a conventional local simulator. This problem can be in
principle mitigated by the introduction of a set of layered abstract
simulation services on top of the distributed environment. In such
a way, it is possible to apply a model-driven approach to the
development of the distributed simulator. In this case, the
simulation logic can be specified by use of few basic simulation

services, which enable the simulator developers to abstract from
the details of the underlying (local or distributed) execution
environment.

In this paper we have introduced SimArch, a layered architecture
that brings model-driven development into the simulation field.

In order to prove the effectiveness of the SimArch concept, a set
of software libraries that implement the different layers of the
architecture have been developed and several simulators have
been produced. To this scope SimArch has been provided with an
Extended Queueing Network (EQN) modeling language, which
has been then used to develop an example case of distributed
simulation in the computer network domain.

The example case has been validated through direct comparison
with results obtained from previous studies, and has shown that,
by use of SimArch, the distributed simulator can be easily built
from the definition of the simulation model, either from scratch or
by slightly modifying a local version of the same simulator.

7. Acknowledgments
This work was partially supported by funds from the FIRB project
“Software frameworks and technologies for the development and
maintenance of open-source distributed simulation code”, by the
University of Roma TorVergata research on “Performance
Validation of Complex Systems” and by the CERTIA Research
Center.

8. References
[1] R. Fujimoto, Parallel and Distributed Simulation Systems,

Wiley (2000).

[2] A. Verbraeck, “Component-based distributed simulations:
the way forward?”, Proceedings of rht 18th Workshop on
Parallel and Distributed Simulation (PADS04), 16-19 May,
2004, pp 141-148.

[3] S.J. Mellor, A.N. Clark, T. Futagami, “Model-driven
development”, IEEE Software, 20 (5), 2003, 14-18;

[4] IEEE, Standard for Modeling and Simulation (M&S) High
Level Architecture (HLA) – framework and rules, Technical
Report 1516, IEEE (2000).

[5] G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queueing
Networks and Markov Chains, Wiley (1998).

[6] A. D'Ambrogio, D. Gianni and G. Iazeolla, “SimJ: A
Framework to Develop Distributed Simulators”, Proceedings
of the 2006 Summer Computer Simulation Conference,
Calgary, Canada, Aug, 2006, pp. 149 – 156.

[7] A. D'Ambrogio, D. Gianni and G. Iazeolla, “jEQN: a Java-
based Language for the Distributed Simulation of Queueing
Networks”, LNCS vol. 4263/2006, Proceedings of the 21st
International Symposium on Computer and Information
Sciences (ISCIS'06), Istanbul, Turkey, Nov, 2006, pp 854 –
865.

[8] D. Gianni and A. D’Ambrogio, “A Language to Enable the
Distributed Simulation of Extended Queueing Networks”,
Journal of Computer, Vol. 2, N. 4, Academy Publisher, July,
2007, pp 76 – 86.

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5
lambda [packets/s]

Time [s]

C=4
C=7
C=12

End-to-end delay [s]

Figure 13 End-to-end delay obtained from distributed simulator

Figure 12 End-to-end delay obtained from the local simulator

[9] G.F. Riley, M.H. Ammar, R.M. Fujimoto, A. Park, K.
Perumalla, and D. Xu, “A federated approach to distributed
network simulation”, ACM Transaction on Modeling and
Computer Simulation (TOMACS), Vol. 14 N. 2, April 2004.

[10] E.H. Page, R.L. Moose and S.P. Griffin, “Web-Based
Simulation in SimJava using Remote Method Invocation”,
Proceedings of the 1997 Winter Simulation Conference,
Atlanta, GA, pp 468-474, December 1997.

[11] B.P. Ziegler, G. Ball, H. Cho, J.S. Lee, and H. Sarjoughian,
“Implementation of the DEVS Formalism over the
HLA/RTI: Problems and Solutions”, Proceedings of the
1999 Simulation Interoperability Workshop (SIW99).

[12] O. Dalle, “The OSA Project: an Example of Component
Based Software Engineering Techniques Applied to
Simulation”, The 2007 Summer Computer Simulation
Conference (SCSC’07), San Diego, USA, July 15–18, 2007.

[13] B.P. Zeigler, H.S. Sarjoughian, S. Park, J.S. Lee, Y.K. Cho,
J.J. Nutaro, “Devs Modeling And Simulation: A New Layer
Of Middleware”, The Third Annual International Workshop
on Active Middleware Services, 2001, p. 21.

[14] B.P. Zeigler, T.G. Kim, H. Praehofer, Theory of Modeling
and Simulation, Academic Press (2000).

[15] D. Gianni and A. D’Ambrogio, “A Domain-Specific
Language for the Description of Extended Queueing
Networks Model”, to appear in the Proceedings of the

IASTED International Conference on Software Engineering
(SE08), February, Innsbruck, Austria, 2008.

[16] Marjan Mernik, Jan Heering, and Anthony M. Sloane,
“When and how to develop domain-specific languages”,
ACM Computing Surveys, 37(4):316–344, 2005.

[17] A. D’Ambrogio and D. Gianni, “Using CORBA to Enhance
HLA Interoperability in Distributed and Web-Based
Simulation”, Proceedings of the 19th International
Symposium on Computer and Information Sciences
(ISCIS'04), Antalya, Turkey, Nov, 2004, pp 696 - 705.

[18] A. D’Ambrogio and G. Iazeolla, “Steps towards the
Automatic Production of Performance Models of Web-
Applications”, Computer Networks, n. 41, pp 29-39, Elsevier
Science, 2003.

[19] D. Gianni, “jRand: A Flexible Framework for Sequences of
Numbers”, Technical Report RI.20.2003, University of
Rome TorVergata, 2003.

[20] R. Fujimoto, “Zero Lookahead and Repeatability in the High
Level Architecture”, Proceedings of the 1997 Spring
Simulation Interoperability Workshop, Orlando, FL, USA,
March, 2007.

[21] L. Pouzin, “A Proposal for Interconnecting Packet Switching
Networks”, Proceedings of EUROCOMP, Brunel University,
May 1974, pp. 1023-36.

