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ABSTRACT  
The development of a distributed simulator requires knowledge 
and skills that might be unavailable or difficult to acquire. 
Bringing model-driven approaches to the development of 
distributed simulators contributes to reduce both the need for 
specific skills and the development effort. To support this 
innovative development methodology, we introduce a layered 
simulation architecture named SimArch that allows to define 
simulation models that can be transparently transformed into 
simulation programs ready to be executed in a distributed (or 
local) mode. 

SimArch defines layers of services at increasing levels of 
abstraction on top of the execution environment, thus allowing 
developers to build distributed simulators without explicit 
knowledge about the execution environment (local/distributed) 
and the specific distributed simulation infrastructure (e.g., HLA).  

In order to show the effectiveness of the proposed approach, 
SimArch has been provided with an Extended Queueing Network 
(EQN) simulation language, which has been applied to the 
development of an example distributed simulator in the computer 
network domain. 

Categories and Subject Descriptors 
D.2.11 Software Architecture, D.2.13 Software Reusability, 
D.2.10 Design, D.3.2 Language Classification, I.6.5 Model 
Development, I.6.7 Simulation Support Systems, I.6.8 Discrete 
Event, I.6.8 Distributed, I.6.2 Simulation Language.  

General Terms 
Design, Experimentation, Languages. 

Keywords 
Simulation Languages, Simulation Framework, Distributed 
Simulation, HLA, Queueing Network, Computer Network 
Simulation. 

1. Introduction 
Distributed simulation brings well-known advantages with respect 
to local simulation, mainly in terms of resource availability and 
reusability [1]. The availability of more memory and 
computational power can indeed allow the efficient execution of 
simulation programs that could not be run on a single machine 
and the possibility to build a distributed simulator by federating 
existing simulators enables the effective reusability of already 
developed simulation programs. On the other hand, the 
implementation of a distributed simulator is far from being easy 
and effortless, and very often distributed simulators are to be 
developed by appropriately adapting existing simulation 
components that have been developed for local execution [2]. 

Although much attention has been devoted to minimize the 
development effort by addressing interoperability and reusability 
issues, the ease (i.e. the adaptability) with which a local simulator 
developer can approach distributed simulation has not been 
considered. In order to address such a problem, we introduce a 
layered architecture named SimArch that exploits simulation 
approaches based on the precepts recently introduced in the 
model-driven development field [3]. 

Model-driven development is simply the notion that it is possible 
to build an abstract model of a system that we can then transform 
into more refined models and eventually into the system 
implementation. In the proposed approach, model-driven 
development is applied to distributed simulation by use of 
SimArch, which allows to develop a simulator by simply defining 
a simulation model that can be effortlessly transformed into a 
simulation program ready to be executed in a distributed (or local) 
mode. 

SimArch defines a set of layers at increasing levels of abstraction 
on top of a distributed computing infrastructure (HLA in our case 
[4]) to allow the simulation developer to deal with simulation 
component logic issues only, without explicitly focusing on the 
specific (distributed or local) execution environment and 
simulation infrastructure. In such a way, SimArch brings several 
advantages in terms of simulation component reusability and 
effort reduction. 
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In order to show the effectiveness of the proposed approach, 
SimArch has been provided with an Extended Queueing Network 
(EQN) [5] simulation language. Such a language has been defined 
by developing various software libraries that implement the 
services provided by the different layers of SimArch [6] [7] [8]. 

The paper is organized as follows. Section 2 briefly illustrates the 
related work, and Section 3 gives the description of the proposed 
architecture. Section 4 describes the EQN language built on top of 
the SimArch layers, and Section 5 illustrates its application to the 
development of an example distributed simulator in the computer 
network domain. 

The example application has been carried out by first defining the 
EQN model of a so-called catenet, and then showing how the 
EQN simulation modeling language defined on top of SimArch 
can be effectively used to develop both a local version and a 
distributed version of the catenet simulator, with a twofold 
motivation: comparing the effort or developing the local and the 
distributed simulators and providing confidence about the 
effectiveness of the proposed approach.  

2. Related work 
The simulation community has provided several contributions that 
aim at increasing the abstraction level of the simulation primitives 
in order to achieve effort savings and reusability when building 
distributed simulators. However, the adaptability, i.e., the ease 
with which a new distributed simulator can be derived from 
existing ones, has not been thoroughly addressed. 

Some related research efforts can be found in [9] [10] [11] [12], 
which describe PDNS, DisSimJava, DEVS/HLA, and OSA, 
respectively. 

PDNS is an extension of the popular ns-2 tool for running 
network simulation in a distributed mode. SimArch differs from 
PDNS in two main aspects. The first is that SimArch is 
application domain independent, and therefore it does not deal 
with computer networks specifically. The second is the uniform 
representation of the communication among entities, 
independently from their type (local-local, local-remote, or 
remote-local), while PDNS explicitly introduces the ghost node 
abstraction to locally represent the connections to remote entities. 

The DisSimJava work presented in [10] is based on a view similar 
to SimArch, from which it differs for three major aspects: first, it 
is only a prototype with the implementation of communication 
entities but without synchronization; second, it does not identify a 
layered architecture that allows simulation components to be run 
on different implementations; third, it does not provide HLA-
compliant implementations. 

DEVS/HLA [11] and the associated definition of a simulation 
middleware [13] can also be considered as contributions similar to 
SimArch. The basic difference is that SimArch approaches the 
problem of enabling developers familiar with local simulation to 
easily switch to distributed simulation, with a more pragmatic 
solution inspired by the current trend of semi-formal modeling 
languages, like UML. Moreover, SimArch clearly defines the 
communication interfaces between the layers and, at the same 
time, allows the composition of any set of implementations of 
such layers. In the end, SimArch could also be used to provide a 
DEVS implementation [14].  

Finally, OSA [12] has a broader scope compared to SimArch. 
OSA aims at providing a general framework to cover the activities 
involved in the definition, development, validation and execution 
of a discrete event simulators. SimArch, differently, focuses on a 
restricted sub-set of the above activities, but in a deeper way. 
SimArch partitions the provided simulation services into four 
independent layers, whose implementation can be effortlessly 
changed to accommodate different requirements or future needs.  

In addition, SimArch is currently provided with jEQN [15], a very 
flexible Domain-Specific Language (DSL) [16] for the 
description of EQN models. 

3. SimArch 
Distributed simulation systems can be considered as composed of 
several layers, each introducing a more abstract set of simulation 
services on top of the underlying layer, the bottom one being the 
distributed computing infrastructure. 

There are three main advantages for adopting this layering 
approach. The first is that the simulation model is decoupled from 
the specific execution environment, and then it can be reused 
across several simulation platforms. The second is that the layers’ 
implementations can be easily modified or replaced to 
accommodate custom deployment requirements (i.e. local or 
distributed deployment, performance optimization for given 
simulation workload, etc.). Finally, the third advantage is that 
simulation developers deal only with the high level simulation 
services, and therefore can focus on the model description rather 
than being involved in the typical intricacies of distributed 
simulators implementation.  

The proposed layered simulation architecture SimArch consists of 
four layers [13] [8], each dealing with a specific distributed 
simulation issue. 

Figure 1 illustrates the architecture layers, whose detailed 
description is given in [8].  

In SimArch, the top Layer 4 is the layer where the simulation 
model is defined through the invocation of the simulation 
language primitives. 

The primitives’ implementation, i.e., the components’ simulation 
logic and the model configuration services, are provided by Layer 
3; while Layer 2 deals with the simulation components 
synchronization and communication, transparently for local and 
distributed environments. The distributed version of this layer 
uses in turn Layer 1 to achieve global time synchronization and 
provides communication with the remote simulation components.  

Finally, Layer 1 provides a DES (discrete-event simulation) 
abstraction on top of the distributed computing infrastructure 
conventionally identified by Layer 0. Such bottom layer does not 
belong to SimArch and therefore the service interfaces between 
Layers 1 and 0 are not defined. In the case of a HLA-based 
implementation of Layer 1, such interfaces are subsets of the RTI-
Ambassador and FederateAmbassador interfaces for the 
communication between Layers 1 and 0 and between Layers 0 
and 1, respectively. 



 

Figure 1 SimArch layers 

3.1 Data interfaces 
The data interfaces define the access methods to the data 
exchanged between the layers. Specifying abstract data structures 
instead of concrete data structures decreases the level of layer 
coupling, and therefore allows layers’ implementation to be 
effortlessly modified or replaced. 

SimArch defines the following data interfaces: 

• ComponentLevelEntity: interface for local simulation 
entities (including their hierarchical composition); 

• Event: interface for events scheduled between layers; 
• GeneralEntity: a base interface for local and remote 

entities; 
• InputPort: interface for received events; 
• Link: interface for connecting input and output ports; 
• Name: interface for the declaration of names in 

SimArch; 
• OutputPort: interface for sent events; 
• Port: interface for the common access to port internal 

data; 
• RemoteEntity: interface for remote simulation entities; 
• Time: interface for the representation of simulation 

time. 
 
Each of the above defined interfaces is of immediate 
understanding and therefore not discussed further here. The reader 
is sent to [7] [8] for additional details. 
 

3.2 Layers’ service interfaces 
The service interfaces defines the communication paths between 
adjacent layers, in both directions. Layers 1 and 2 communicate 
through the Layer2ToLayer1 (Figure 2) and Layer1ToLayer2 
(Figure 3) interfaces; similarly Layer 2 and 3 communicate 
through the Layer3ToLayer2 (Figure 4) and Layer2ToLayer3 
(Figure 7) interfaces. At Layer 4, the simulator developers can 
describe their simulators by assembling Layer 3’s domain-specific 

components through the Layer3UserInterface (Figure 5), which is 
to be considered as Layer4ToLayer3 SimArch interface.  

In more detail: 

The Layer2ToLayer1 (Figure 2) interface allows communication 
from Layer 2 to Layer 1. The interface is defined through five 
services. The initDistributedSimulationInfrastructure and 
postProcessingDistributedSimulationInfrastructure services are 
general placeholders to allow the system set-up and the initial 
state recover after the simulation execution, respectively. The 
remaining three services provide the DES abstraction in the 
distributed system. In particular, sendEvent delivers the given 
event to the recipient at the specified time; 
waitNextDistributedEvent blocks the invoking thread until a 
distributed event is received, and 
waitNextDistributedEventBeforeTime blocks the invoking thread 
until either a distributed event is received or the specified time is 
reached by the distributed simulation. 

The Layer1ToLayer2 (Figure 3) interface allows Layer 1 to 
transparently schedule distributed events into the local system. 
This functionality, however, is split into two services, 
scheduleEvent and scheduleSimulationEndEvent, to further 
decouple Layers 1 and 2. 

 

Figure 2 Layer2ToLayer1 interface [8] 

 

Figure 3 Layer1ToLayer2 interface [8] 

The communication from Layer 3 to Layer 2 takes place through 
the Layer3ToLayer2 (Figure 4) interface, which is in turn 
composed of a user-oriented service set 
(Layer3ToLayer2UserInterface - Figure 5) and a developer-
oriented service set (Layer3ToLayer2DeveloperInterface - Figure 
6).  

 

Figure 4 Layer3ToLayer2 interface [8] 

The Layer3ToLayer2UserInterface groups the services that enable 
the simulation language user (simulator developer at Layer 4) to 
produce the simulator. The interface provides two basic 
configuration and simulation management services: 
registerEntity, to add a simulation component to the simulator; 
and start, to make the execution container start the simulation 
execution. 

 

Figure 5 Layer3ToLayer2 user interface [8] 



The Layer3ToLayer2DeveloperInterface provides DES services to 
build the simulation logic of each component. The services are of 
four types: waitNextEvent, to block the component execution until 
an event is received; hold, to block the component execution for t 
simulated time units; holdUnlessIncomingEvent, to block the 
component execution for t simulated time units or until an event is 
received, whichever first; and, finally, a send method to deliver 
events at a given simulated time. 

 

Figure 6 Layer3ToLayer2 developer interface [8] 

The Layer2ToLayer3 interface defines the Layer 2 access to the 
Layer 3 simulation components (Figure 7). 

 

Figure 7 Layer2ToLayer3 interface [8] 

The body method encapsulates the simulation logic of the 
component, and therefore it is invoked when the component 
container is started. This method is made up of the 
Layer3ToLayer2 service calls (i.e. hold, waitEvent, etc.) in 
addition to the operations on the component state variables (e.g. 
the length of a queue, the state busy/free of a service center, etc.). 
The other services are of immediate understanding and therefore 
not further discussed here.  

3.3 Layers’ implementation 
To provide evidence of the SimArch usefulness, we designed and 
developed a Java library for each of the layers (1 through 3), and 
produced an example simulator at Layer 4, as described in Section 
5. The three libraries have been named DDESoverHLA (at Layer 
1), SimJ (at Layer 2)and jEQN (at Layer 3). 

DDESoverHLA implements the Layer2ToLayer1 interface on top 
of HLA and CORBA-HLA [17]. 

SimJ provides a framework for the local development of 
simulation components that can be equivalently deployed in local 
and distributed simulations. 

Finally, jEQN defines a DSL [16] for the definition of EQN 
simulators [15]. A DSL can be seen as a programming language 
designed for a specific kind of task, in contrast to a general-
purpose programming language, such as C or Java. 

The combination of SimArch and the three libraries allows the 
portability of locally developed simulation components onto 
HLA-based infrastructures and, at the same time, brings effort 
savings in the development of HLA-based simulators. Such 
savings are due to the fact that the simulator developers are only 
concerned with the essential services related to the simulation 

logic, while the synchronization, the interaction between the local 
and the distributed environment, and the distributed 
communication are transparently provided by SimArch behind the 
Layer3ToLayer2DeveloperInterface, as illustrated in [6] [7] [8]. 

The next Section gives a brief overview of the jEQN language 
that has been used to simulate the example system illustrated in 
Section 5. 

4. jEQN brief overview 
As above mentioned, jEQN  is a DSL for the definition of EQN 
models and for the implementation of EQN simulators on top of 
SimArch. jEQN is currently implemented as a Java library though 
its design features allow to make use of any other object oriented 
language [15].  

The language is defined by the Layer 4’s services (i.e. 
Layer3ToLayer2UserInterface’s services) in addition to the 
syntax of the proper jEQN simulation components. This in turn 
includes the components’ name, assigned according to the EQN 
standard taxonomy (e.g., user sources, waiting systems, service 
centers, routers and special nodes), and support components for 
their parameterization (e.g., the policy framework, see below) and 
for the data structures (e.g., User, Queue, etc.). 

jEQN has been designed to encapsulate the simulation logic only  
within the simulation components and to leave undefined the 
parameters that do not directly affect it. In such a way, each 
simulation component exhibits a high degree of cohesion and it 
can be easily reused across the several values the parameters 
might assume. The parameters are designed and developed as 
support components, in order to decouple the jEQN simulation 
components from the parameters themselves and to allow a 
flexible configuration of such components. 

jEQN defines the following types of support components: 

cat 1. parameters used to take decisions; 

cat 2. parameters that provide a sequence of values; 

cat 3. parameters that provide storage support. 

Parameters like the routing policy (decision: where to route a 
given user), the termination condition (decision: assess whether or 
not the source has to terminate), the enqueueing policy (decision: 
where to insert a given user), etc., belong to the first category. For 
these parameters, jEQN defines a framework and a taxonomy 
within which each policy has to be classified according to the use 
and the type of the following four parameters [15]: 

- I: the type of implicit input;  
- S: the type of the policy state data; 
- T: the type of the explicit input; 
- D: the type of the decision. 

Where implicit input is the input taken at policy instantiation 
time, the policy state is the internal state of the policy and the 
explicit input is the data for which the decision has to be taken 
(the meaning of the type of decision being straightforward). 

The second category includes parameters like interarrival times, 
user generators, etc.  

Finally, the third category defines parameters for the components 
that provide storage support for the simulation, such as queues. 



The definition of an EQN model is carried out by identifying: the 
EQN components (e.g.: user sources, waiting systems, etc.), their 
properties (e.g.: enqueueing policy, routing policy, user 
interarrival rate, etc.), and their connections. 

The development of a jEQN simulator, either local or distributed, 
follows the same process, and therefore it contributes to bring the 
model-driven development into the system simulation. 

Further jEQN modeling details are available in [15]. 

5. Computer network distributed simulation 
with jEQN 
Figure 8 illustrates the example system that has been simulated 
using jEQN. The system is a so called catenet1, composed of: 

(a) two separate LANs, the first (LAN1) a token ring that 
connects Host A, and the second (LAN2) an Ethernet that 
connects Host B 

(b) two gateways GW1 and GW2, that connect LAN1 and LAN2 
to the WAN, respectively, 

(c) the WAN, an X.25 packet switched network. 

The objective of the simulation study is to evaluate the end-to-end 
delay between Host A and Host B, the former in the LAN A and 
the latter in the LAN B. Host A acts as a client and Host B as a 
server. 

We developed both a local version of the simulator and a 
distributed one, in order to: 

• validate the results (i.e., the end-to-end delay) obtained from 
both the local simulator and the distributed simulator through 
direct comparison with already available data (see [18]) and 

• compare the effort needed to build the distributed simulator 
with respect to the one required for developing the local 
simulator. 

5.1 Model definition 
It is assumed the interaction between the client (Host A) and the 
server (Host B) is based on message exchanges carried out by 
packet flows over the various components of the catenet. The 

                                                                 
1 The term “catenet” is an obsolete term used to indicate a system of 

packet-switched communication networks interconnected via gateways 
[21]. It is here used for the sake of brevity to denote a computer network 
speaking the Internet protocol. 

packet flow involves several technologies (Token Ring, X.25, 
Ethernet) and thus several mechanisms are necessary to deal with 
heterogeneity, namely: 

(m1) protocol conversion, from the transport layer protocol TCP, 
to the network layer protocol IP, to the data-link layer and 
physical layer protocols (and vice versa), in either direction 
from Host A to Host B, with the IP to X.25 (and vice versa) 
protocol conversion at the gateway level, 

(m2) packet fragmentation and re-assembly at many protocol 
conversion interfaces, 

(m3) window-type flow control procedure operated at transport 
layer by protocol TCP for a fixed window size of value C 
(for the sake of simplicity no varying window sizes are 
considered, nor the use of congestion-avoidance 
algorithms). 

Figure 9 gives a more detailed view of the packet flow in the 
system and puts into evidence the work performed by the network 
components in order to deal with mechanisms m1, m2 and m3, 
when transferring data from Host A to Host B (a symmetrical 
flow holds when transferring data from Host B to Host A). 

In the A-to-B flow, illustrated in Fig. 9, the packets are originated 
by the Host A application layers in TCP format and then 
translated into IP format by the Host A network layers to enter 
LAN1. From LAN1 they exit in LLC/MAC802.5 format to enter 
GW1 that fragments them into X.25 format to be accepted by the 
WAN. Vice versa for the GW2, where X.25 packets are re-
assembled into LLC/MAC802.3 format for LAN2 and from there 
into the IP format and then in the TCP format by the Host B 
network layers. The token pool in Figure 9 is introduced to 
represent the window-type flow control procedure implemented 
by TCP between the source and the sink. For a window size C, the 
pool consists of C tokens, and so up to C consecutive TCP 
packets can GET a token and be admitted to the catenet. Non-
admitted packets are enqueued outside the catenet. On the other 
hand, each admitted packet RELEASEs its token at the sink 
entrance, thus allowing another packet to enter. Further details 
about the definition of the model of the catenet system can be 
found in [18]. 

 

Figure 8. General view of the catenet system 



5.2 Design and implementation details 
The implementation of the local version of the simulator consists 
of the following three steps: 

1. Instantiate the Layer 2 local container (the simulation 
engine) to execute the jEQN components. 

2. Define the jEQN components of the model by: 

a. Defining the jEQN entities 

b. Defining the connections among entities. 

3. Start the container execution. 

It is worth noting that the jEQN components (Layer 3) are 
automatically registered with the underlying Layer2 container that 
executes them. 

Step 1 and step 3 can be simply carried out by use of the SimArch 
services. Step 2, the core activity for the development of the 
simulator, is carried out by use of a procedure that can be partially 
automated to obtain jEQN components from the detailed 
definition (Layer 4) of the EQN model.  

For the sake of brevity, we report here jEQN development details 
of only the Token Ring (LAN1) part of the catenet. Figure 10 
shows the LAN1 model, which reflects the typical behavior of 
local area networks of Token Ring type. The queueing policies at 
each queue, including the Token allocation queues, are of FCFS 
(First Come First Served) type, while the service centers are of 
non-preemptive type with Gaussian service times. The users 
(packets) flow into the main loop (from the allocTok node to the 
routing node) until the number of the frames they are composed 
of has been processed. 

The implementation of the simulator is carried out by defining a 
jEQN component for each corresponding element in Figure 10. 
The model thus consists of six jEQN waiting systems, three 
service centers, one router, two allocate nodes, one release node, 
one destroy node, two set nodes, and finally two pools of tokens. 

The configuration of those components is carried out by applying 
the jEQN parametrization procedure that identifies, for each 
component, appropriate parameters within the three jEQN 
categories of parameters described in Section 4. 

As an example, each queue in the model is defined through an 
enqueueing policy (cat 1 parameter) and a storage structure (cat 3 
parameter). The enqueueing policy can be defined through the 
jEQN policy framework by first classifying the policy according 
to the jEQN policy taxonomy and then identifying the parameters 
[15]. The FCFS enqueueing policy can be modelled as a policy 
that depends on the implicit input parameter (the queue), which 
has no internal state, no explicit input, and whose returned 
decision data is the index within the queue. This policy is easily 
implemented by returning as “decision” the length of the queue.   

As regards the storage parameter, the model implicitly considers 
all the queues as infinite single FCFS queues. In jEQN, this can 
be  done by first choosing a concrete data structure implementing 
the Java List interface, and then setting up both the storage 
parameter of such structure and the enqueueing policy. The jEQN 
modularity and flexibility allows the introduction of more 
complex storage structures (e.g., multiqueue with different 
enqueueing policies and capacity, etc.), at no additional costs. 

The service centers are of non-preemptive type, according to the 
model definition, and their parameters are limited to the type of 
service, i.e. to the sequence of numbers that simulate the 
introduced delay. The Gaussian property of service centers is set 
by use of the jRand framework [19], by passing a Gaussian 
pseudo-random generator at instantiation time. 

The router is allocated with the proper routing policy. This policy 
is once again defined by use of the jEQN policy framework. It 
depends on the parameter T, explicit data, which is of type User, 
and returns a decision of type Integer, which indicates the port id 
through which the processed User has to be forwarded. The 
implementation of this policy can be easily obtained by testing 
whether the number of frames is equal to zero or not. In the 

 

Figure 9 Detailed view of the catenet packet dataflow 



former case, the returned port id is the id of the port connected to 
the destrMsg node, whereas in the latter case the id is returned of 
the port connected to the allocTok node. 

The remaining jEQN components, corresponding to nodes for 
allocating and releasing tokens, do not need to be  parametrized. 

The simulation model definition of the LAN1 is completed by 
connecting the components as in the model specification. To this 
purpose, the jEQN implementation of the Link SimArch interface 
can be used to instantiate links and to register components’ ports 
as in [6]. For example, the allocTok waiting system has its user 
output port connected to the getToken service center, which is in 
turn connected to the following setSender special node, and so on 
for the remaining components.  

Now assume all the remaining parts of the catenet have been in a 
similar way jEQN-modeled, to obtain the complete local version 
of the simulator. 

The implementation of the distributed version of the simulator is 
easily obtained from the corresponding local version. This further 
remarks how the abstraction layers introduced by SimArch 
actually allow the model-driven development of distributed 
simulators, as they are almost not aware of the distributed 
execution environment. 

In general, the implementation of a SimArch distributed simulator 
follows four steps, for each (distributed) submodel: 

1. Instantiate the Layer1 and Layer2 implementations; 

2. Define the submodel by: 

a. Defining the entities: 

i. Local simulation entities as in the local 
simulator; 

ii.  Remote simulation entities by declaring remote 
references through the proper SimArch 
interface; 

b. Defining the connections: 

i. Local connections among local entities as in the 
local simulator; 

ii.  Remote connections (outcoming connections) 
from local entities to remote entities. 

3. Activate the Layer2 container.  

In our example, assume we decided to partition the Fig. 9 model 
into three distributed submodels (Submodel 0, Submodel 1 and 
Submodel 2), as shown in Figure 11.  

By use of Simarch it is straightforward to define submodels as 
follows:    

Submodel 0 will consist of the HostA and LAN1 entities and their 
local connections, as in the local simulator, in addition to a remote 
reference to GW1 and a remote connection between the LAN1 
entity and GW1. 

Similarly, Submodel 1 will consist of the GW1, WAN and GW2 
entities and their local connections as in the local simulator, in 
addition to two remote references to the LAN1 and LAN2 entities 
with the related remote connections to GW1 and GW2, 
respectively. 

Finally, Submodel 2 will consist of the HostB and LAN2 entities 
and their local connections, as in the local simulator, in addition 
to a remote reference to GW2 with the related remote connection.  

Which ends the distributed simulator definition. 

 

Figure 11 Model partitioning for the distributed simulator 

5.3 Simulator validation 
The distributed simulator validation is carried out through 
comparison of exact values and global trend of the end-to-end 
delay in the local and distributed case. The end-to-end delay is 
measured by increasing values of the arrival rate λ (packets/sec) 
from the source for different values of the window size (C = 4, 7 
and 12 packets). The simulation statistics are collected according 
to the batch method, with initial bias removed, in 5000 simulated 
seconds. The local simulator results are shown in Figure 12. 
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Figure 10 EQN details of the token ring LAN1 model 



  

 

Direct comparison of the simulation output with previous analyses 
confirms that the derived results are reasonably within the O(10-2) 
acceptance interval with respect theoretical results in [18]. 

Similar results are found for the distributed simulator, consisting 
of three simulators, one for each submodel in Figure 11. 
Experiments have been carried out by distributing the three 
submodels over separate servers, running either in a LAN or in a 
WAN environment. In the latter case, the WAN was connecting 
servers between Rome (Italy) and Atlanta (USA). The results 
obtained from the distributed simulator are illustrated in Figure 
13.  

 

The small differences in some points with respect to Fig. 12 arise 
from the use of finite delays in the communication between 
simulation entities running on different simulators necessary, with 
the current HLA implementation, to avoid the non-reproducibility 
of zero lookahead simulations [20]. This leads to the simulation of 
a slightly different EQN model, whose end-to-end delay is 
generally higher and with a lower saturation point for a given 
window size. 

To further validate the distributed simulator, we also adapted the 
local simulator model by introducing such finite delays to model 
the effect of the lookahead introduced in the distributed simulator. 
As expected, the results obtained from the updated local simulator 
are identical to the ones obtained from the distributed one. 

6. Conclusions 
Building a distributed simulator requires non negligible efforts 
and time, and specialized skills, in comparison to the development 
of a conventional local simulator. This problem can be in 
principle mitigated by the introduction of a set of layered abstract 
simulation services on top of the distributed environment. In such 
a way, it is possible to apply a model-driven approach to the 
development of the distributed simulator. In this case, the 
simulation logic can be specified by use of few basic simulation 

services, which enable the simulator developers to abstract from 
the details of the underlying (local or distributed) execution 
environment. 

In this paper we have introduced SimArch, a layered architecture 
that brings model-driven development into the simulation field. 

In order to prove the effectiveness of the SimArch concept, a set 
of software libraries that implement the different layers of the 
architecture have been developed and several simulators have 
been produced. To this scope SimArch has been provided with an 
Extended Queueing Network (EQN) modeling language, which 
has been then used to develop an example case of distributed 
simulation in the computer network domain. 

The example case has been validated through direct comparison 
with results obtained from previous studies, and has shown that, 
by use of SimArch, the distributed simulator can be easily built 
from the definition of the simulation model, either from scratch or 
by slightly modifying a local version of the same simulator. 
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