
WCET Determination Tool for Embedded Systems Software

Carsten Albrecht, Roman Koch,
Thilo Pionteck, Erik Maehle
Institute of Computer Engineering

University of Lübeck
Ratzeburger Allee 160

23538 Lübeck, Germany
albrecht@iti.uni-luebeck.de

Michael Werner, Rudolf Fuchsen

Sysgo AG
Am Pfaffenstein 14

55270 Klein-Winternheim, Germany
michael.werner@sysgo.com

1. INTRODUCTION
Embedded systems are special-purpose computer systems
within environments such as automotive, avionic, telecom-
munication, etc. As these systems often perform time-critical
control tasks, it is necessary to precisely predict their be-
haviour. Software-based solutions on the one hand provide
high flexibility. On the other hand, especially when multi-
ple software processes are to be executed concurrently on
the same hardware, the software approach makes prediction
more difficult. Predictions essentially rely on the knowledge
of when a software process terminates. For a reasonable
system architecture it has to be known at an early stage of
design time to scale the system well. Dynamic factors such
as cache usage, amount of data, and availability of shared
resources have great impact on the result. Thus, tools are
necessary to determine execution time as accurate as pos-
sible. The execution time is commonly approximated by
determining the interval of best and worst case execution
time (BCET & WCET). While the BCET can be roughly
estimated by evaluating the shortest path the achievement
of good approximations for the WCET is heavy. Consid-
ering all possible execution paths of the analysed program
as well as the effects of the underlying architecture on the
timing properties affected by pipelining and caches create
a hard issue to solve. Nevertheless these figures are impor-
tant in certification processes in the application fields given
above as well as performance prediction and solving design
issues. Another motivation is the lack of tools targeted to
an intermediate level of abstraction. In general tools are
re-targetable frameworks analysing high-level code with so-
phisticated algorithms or similar algorithms are applied to
low-level code that lacks context and type information.

2. TOOL DESCRIPTION
Existing tools such as Cinderella based on [2] et al. de-
termine the WCET by ILP systems. It is re-targetable
on lower-level code for different architectures. The tool
sketched here is focused on the wide-spread PowerPC ar-
chitecture [1] which is not supported by Cinderella. The

PowerPC includes a super-scalar pipeline, a translation look-
aside buffer (TLB), and a branch history table for branch
prediction. Beside pipeline consumption and memory la-
tencies side-effects such as cache hits and misses have to
be considered for run-time prediction. As a basic analysis
method implicit path enumeration (PE) as Cinderella does
and code simulation are used. The PE algorithm applies an
approach that includes caches [3]. The results of PE are in
general too pessimistic because it may include unused paths
or cannot bound loops. Therefore, the tool analyses the code
and requests for certain programmer knowledge to enhance
the results. If applicable the more accurate method of code
simulation is used. It delivers more precise results as exem-
plarily shown for frequently used methods and algorithms
such as sign or bubble sort.

The tool performs its analysis on object code including de-
bug information. So, there is just a low abstraction of
the underlying hardware but some useful information of the
source code is still preserved. For PE an ILP equation sys-
tem is built. It is enriched by programmer knowledge so that
even formerly unsolvable equation systems become solvable.
Necessary user input and value ranges of variables such as
loop counters can be defined in advance or interactively on
request. Dynamic impact factors such cache-miss or TLB
miss penalties are parametrisable so that the analysis is re-
targetable within the PowerPC family. Currently, only in-
struction cache analysis is implemented, data-cache evalua-
tion based on existing techniques is in development.

3. CONCLUSIONS
The analysis tool utilises state-of-the-art techniques for
WCET determination. It is targeted to a medium level of
abstraction to include certain hardware features as well as
source code information. In case of code simulation failures
the WCET can be computed by PE with a higher degree
of pessimism. All in all, the analysis tool is targeted to
embedded functions with only few user interaction.

4. REFERENCES
[1] B. Frey. PowerPC Architecture Book. International

Business Machines Corporation, Nov. 2005.

[2] Y.-T. S. Li and S. Malik. Performance analysis of
embedded software using implicit path enumeration. In
Proc. of the 32nd ACM/IEEE Conference on Design
Automation, pages 456–461, 1995.

[3] J. Staschulat and R. Ernst. Worst case timing analysis
of input dependent data cache behavior. In Proc. of the
18th Euromicro Conference on Real-Time Systems,
2006.

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.SIMUTOOLS 2008, March 03-07, Marseille, FranceCopyright © 2008 ICST 978-963-9799-20-2DOI 10.4108/ICST.SIMUTOOLS2008.3044  




