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ABSTRACT
A substantial number of massive large-scale applications re-
quire scalable underlying network topologies. Nowadays
structured Peer-to-Peer overlay networks meet these require-
ments very well. But there is still a need to decide which
of these overlay networks is most suitable for providing the
best possible performance for a certain application. This pa-
per describes SimCon - a simulation environment for over-
lay networks and large-scale applications. SimCon allows
the comparison of different overlay networks with respect to
predefined metrics derived from requirements of the consid-
ered application. This approach allows determining which
overlay network meets the needs of a given application best,
which in turn is a great support for developers of large-scale
applications.

Categories and Subject Descriptors
I.6.3 [Simulation and Modeling]: Applications

General Terms
Experimentation, Measurement

Keywords
Simulation Framework, Peer-to-Peer Overlay Networks,
Large-Scale Applications
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1. INTRODUCTION
Distributed large-scale applications make high demands

on underlying network topologies in terms of latency, scal-
ability, reliability and performance. For example, think of
a massive multiplayer online game (MMOG) where every
movement of an avatar has to be propagated to all the other
avatars in virtual proximity. The virtual proximity com-
prises all avatars being at a certain place in the virtual world,
whereby the players may actually be distributed all over the
real world. That is, there is just a weak correlation be-
tween virtual and real proximity. Assuming a huge amount
of moving avatars in a dense virtual neighborhood we rec-
ognize that latency of movement notifications may become
a crucial problem affecting the game quality and user expe-
rience. This in turn has a wide influence on the popularity
and the success of the game. Moreover, because of the in-
crease in popularity of multiplayer online games observed in
the recent years, the number of people playing such games
is expected to surge. This rise would make it impossible
to manage these kind of games centrally and causes the ne-
cessity of underlying scalable distributed network technolo-
gies. The problems outlined above highlight the importance
of addressing the question of finding a feasible underlying
network technology. We argue that this technology is the
key to the development of scalable and performing large-
scale applications. The claim that MMOGs have become
a driving factor for development of large-scale distributed
environments, made in [23], supports our argumentation.

Structured Peer-to-Peer overlay networks1 such as Chord
[21], Pastry [19], Tapestry [24], CAN [18], etc. inherently
meet the outlined requirements of distributed large-scale
applications. As opposed to earlier unstructured Peer-to-
Peer networks they all provide very efficient publish/lookup
mechanisms. That makes them considerable for latency cru-
cial applications. All overlay networks perform the same
tasks in a distinguished way, setting up a trade-off between

1An overlay network is a logical communication structure
that is built on top of a physical underlying network.
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performance and cost [10]. Therefore there is a need to com-
pare them with each other in order to decide which of them
is most suitable for a given application. This decision has a
huge impact on the performance and quality of the applica-
tion itself.

We propose an approach for monitoring simulated large-
scale applications running on top of different overlay network
technologies (see sec. 2). In the course of the simulation we
gather certain statistical information, e.g. overall number
of messages required for a multicast, and evaluate this in-
formation on the basis of predefined metrics derived from
requirements of a given application (see sec. 4.4.1). By
means of evaluation results, we can figure out which overlay
network technology suits the requirements of a given appli-
cation best.

In order to facilitate the task of selecting the appropriate
overlay network technology, we developed SimCon, a generic
and extensible simulation environment for distributed over-
lay networks and large-scale applications (see sec. 4). Sim-
Con, which is written in C#, provides four extensible pro-
gramming interfaces:

• IApp - An application level API providing an interface
for development of large-scale applications (for details
see sec. 4.3.1).

• ITopology - A network API offering an extensible in-
terface for overlay network implementations (see sec.
4.3.2).

• IRecorder - A recorder API designed for capturing
user-defined information (e.g. sending events). This
interface is described in section 4.4.1

• IView - A view API needed to create a customized
view to graphically demonstrate the behavior of the
application (sec. 4.4.2).

SimCon uses the Internet Topology Generator TopGen
(sec. 4.1) for creating underlying Internet topologies. By
this means SimCon is able to perform the simulation of an
overlay network with exchangeable Internet topologies and
variable network sizes providing very realistic results.

Unlike the most comparable simulation environments con-
sidered in section 5, SimCon has a strong focus on the anal-
ysis and evaluation of overlay network characteristics and
in particular on their conjunction with distributed largesca-
le applications. This makes SimCon interesting for use in
research projects.

2. MOTIVATION FOR SIMCON
In a current research project we intend to provide an ef-

ficient global-scale Peer-to-Peer overlay topology. We have
developed SimCon to attain the ability to verify and com-
pare different existing and newly-developed topology ap-
proaches with respect to different application scenarios. A
simulation environment tailored for large-scale Peer-to-Peer
overlay networks and applications based on realistic Internet
router graphs generated by TopGen. The SimCon simula-
tion environment is a useful tool for developers of distributed
applications. Using SimCon, it is possible to test different
overlay networks in order to figure out which one is the most
suitable for their application scenario. The overlay network
algorithms have to be implemented in a self-contained unit

called topology module. Each topology module is defined in
a single assembly and has only weak dependencies to Sim-
Con. In this way, the topology modules are reusable in real
world applications. In section 4.3 we describe in detail how
the independence of the topology modules from SimCon is
achieved using a so-called communication shim.

In order to obtain realistic simulation results, it is impor-
tant to perform the simulation on top of a router graph that
is as close to reality as possible. Unlike other overlay network
simulators SimCon benefits from the realistic and detailed
Internet router graphs generated by the topology generator
TopGen. TopGen follows the latest results on the Internet
topology presented in [11] and provides the possibility to
define different router types and properties like bandwidth
and latency for each type. Furthermore, we can define how
different router types have to be interconnected. It is, for
example, possible to differentiate between core routers that
build the Internet backbone and DSL routers that are lo-
cated at the edge of the Internet to serve as gateway for end
hosts. By this means the real Internet topology can be imi-
tated very well. Duo to the fact that SimCon is strongly con-
nected to TopGen we can expect realistic simulation results.
Section 4.1 provides further information about TopGen.

Another important feature of SimCon is its extensibility.
Thereby the simulation environment can be adapted and ex-
tended in many ways. Hence SimCon is not limited to the
simulation scenarios that were considered at design time,
rather the simulation environment can be customized to the
requirements of a simulation. In order to achieve extensibil-
ity, customized recorder- and view modules can be loaded
dynamically at runtime from an assembly. In section 4.4 we
present how to implement customized modules.

One advantage of SimCon is its modular design. This
means that the applications simulated by SimCon have to
consist of two self-contained parts: An application module
and a topology module. An application module emulates the
behavior of a certain application. A topology module con-
tains the implementation of an overlay network algorithm.
Communication between both modules proceeds via the in-
terface ITopology. Hence application module and topology
module are independent of each other. By this means it is
possible to implement one application module and test it
with different overlay networks by interchanging the topol-
ogy modules. Consequently it is easy to verify which topol-
ogy is most suitable for an intended purpose.

Miscellaneous metrics can be used in order to compare
the performance of different algorithms. For example we
can count the number of sent unicast messages to compare
two algorithms. SimCon provides a simple mechanism for
counting events that occur during the simulations. But even
more sophisticated metrics can be accomplished in SimCon
by implementing a customized recorder.

Typically, each overlay network algorithm has some pa-
rameters that can be used in order to adjust the behavior of
the algorithm. These parameters may have a strong impact
on the performance of the algorithm. To allow the testing
of an algorithm with different parameters, SimCon provides
a mechanism to modify this parameters before a simulation
runs. SimCon reads the parameters of a given application
via .NET Reflection and allows the user to change them at
runtime.
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Figure 1: SimCon Simulation Environment

3. SIMULATION EXAMPLE
In this section we describe the handling of the SimCon

environment using a simple publish/lookup application as
example.

Figure 1 shows the Graphical User Interface (GUI) of the
SimCon environment. The GUI is divided into two parts.
On the left hand side we can see the management and con-
figuration console. Here it is possible to dynamically load
the following modules:

• An Internet topology graph

• An application to simulate

• Recorders to capture information

• A view module to display the course of the simulation
process

Moreover we can define how many application endpoints
should be initialized and how long the simulation should
last. The space on the right hand side is allocated for the
loaded view module.

In the following we describe how to setup a simulation step
by step: First of all we have to load an Internet topology
graph generated by TopGen (see fig. 1 label (1)).

Afterwards we load an application module (see fig. 1 la-
bel (2)). As mentioned above in our example we load a

simple application whose functionality is restricted to pub-
lish and lookup operations. After the application module
is loaded we can configure the application by editing its
settings. SimCon loads the settings dynamically from the
application module by using .NET Reflection.

Each application can provide miscellaneous events of the
TopologyEvent type. These events can be selected for cap-
turing by the standard recorder (see fig. 1 label (3)). Be-
sides the standard recorder, an arbitrary number of cus-
tomized recorders can be attached to the simulation (fig.
1(3)). Similar to the application module each recorder has
certain settings which can be modified via the user inter-
face. As described in subsection 4.4.1 the use of a recorder
is mandatory in order to receive the required information
about the application’s behavior and to enable the evalua-
tion.

It is very important to use a visualization module, in par-
ticular in an educational context. For example, it can be
used to facilitate the comprehension of application’s behav-
ior and of underlying overlay network algorithms. We can
load a visualization module as shown in figure 1 label (4).

The loaded view is displayed on the right hand side of the
GUI. A view can define certain interaction elements used
to gear into a running simulation and to affect its flow. In
our example the view has four interaction elements. These
are two combo boxes containing the IDs of application end-



points and object keys. Furthermore there are Publish and
Lookup buttons, invoking homonym operations on the se-
lected endpoints (see fig. 1 label (6)).

After setting up all simulation parameters we can assign
the number of application endpoints, determine the duration
of the simulation and finally start it (see fig. 1 label (5)).
Hereby the value 0 means that there is no runtime limitation.

As soon as the simulation has terminated, all measure-
ments are evaluated and the results are written to a file by
the recorders. The simulation stops if the specified runtime
duration has expired. We can also stop the simulation at
any time by clicking the Stop Simulation button.

Figure 1 shows the SimCon environment simulating the
behavior of 20 application endpoints, based on our Tapestry
overlay network implementation. However SimCon is not
limited to the simulation of distributed hash table algo-
rithms, other Peer-to-Peer technologies and protocols like
e.g. P-Grid [1] can also be simulated. The current visual-
ization was created with an educational focus in order to
support the comprehension of the Tapestry algorithm and
particularly of the publish/lookup mechanism.

4. DESIGN AND IMPLEMENTATION
This chapter presents the design and the implementation

of the SimCon simulation environment. SimCon has been
designed with strong focus on extensibility and reusability.
Extensibility refers to the fact that the simulation environ-
ment can be adapted and extended in many ways. Reusabil-
ity means that overlay network protocols, implemented to
perform simulations and measurements, have only weak de-
pendencies to SimCon. This facilitates the reuse of the code
in other applications.

Figure 2 shows an overview of the SimCon architecture.
SimCon consists of three main components:

• Simulated application

• Simulation controller

• Simulation evaluation component

The simulation controller is the core of SimCon. The con-
troller connects the simulated application to the evaluation
component, which is composed of the view and the recorders.
Whereas the view is responsible for displaying the simula-
tion process, the recorders have to record and analyze the
simulation. Recorders, views, as well as applications are dy-
namically interchangeable. The controller is able to load
them at runtime from a .NET assembly. This way, the high
degree of extensibility is reached. The following sections de-
scribe the different components and their interdependence
in detail.

SimCon is strongly connected to the TopGen graph gener-
ator. In particularly SimCon uses TopGen’s GraphManager

library to manage the Internet graph. For that reason sec-
tion 4.1 will deliver insight to the TopGen implementation.

4.1 TopGen
In order to obtain realistic simulation results which re-

spect real world router graph connectivity, bandwidth lim-
itations and latency distribution, we have to use a realistic
model of the router topology underlying the simulated topol-
ogy. Since actually measuring this topology is not desirable
(and often not even possible), topology generators are tra-
ditionally used to create realistic router-level graphs. For

our simulations, we have used TopGen, a topology genera-
tor that has been created within our group. It has been built
with a special focus on creating router-level graphs that are
solely based on the fundamental principles of the Internet as
well as on technological and economic constraints applying
to routers. In contrast the approach of most existing topol-
ogy generators is to create graphs offering a certain vertex
degree distribution similar to that of the actual Internet.

Graphs generated by TopGen not only provide informa-
tion on router connectivity (like the ones created by most
existing topology generators) but also on bandwidth, la-
tency and the type of a router. Evaluations have shown
that graphs generated by TopGen are very similar to real
world data sets not only in respect to vertex degree distribu-
tion but also clustering coefficient and assortativity. These
metrics are commonly used to distinguish graphs otherwise
offering the same vertex degree distribution. Several met-
rics as well as a function fitter for examining vertex degree
distribution are built right into TopGen in order to simplify
graph generation and their evaluation.

TopGen can export generated graphs into a file and comes
with a library that can be used to load such graphs into
one’s own applications and use them for one’s own pur-
poses. Since many classes and functions from this library
are frequently used in SimCon, we briefly discuss the most
important classes in the following.

• Vertex: A vertex in a router level graph that maintains
a list of neighbors and of adjacent edges.

• OverlayVertex: This class is derived from Vertex and
represents an end host in an overlay graph of end-
points. It has a reference to exactly one router level
vertex. This is the router the OverlayVertex is con-
nected to.

• Edge: A class representing an edge between two ver-
tices.

• Graph: A Graph represents a router level graph and
contains a list of edges and vertices. It offers methods
to compute the edge costs between two vertices in the
graph.

• OverlayGraph: This type is derived from Graph and
represents an overlay graph of overlay vertices. The
OverlayGraph has a reference to the underlying router
level graph.

4.2 Simulation Controller
The simulation controller is the central unit of the simu-

lation environment. It starts and controls the different in-
stances of the simulated application. Via the user interface
of the simulation controller the user is able to load router
graphs and applications as well as recorder and view mod-
ules. The controller loads the Internet router graph gener-
ated by TopGen from a file using the GraphManager library
of TopGen.

The controller loads application modules at runtime from
a .NET assembly. We describe the implementation of appli-
cation modules in section 4.3.1. Each application can define
a set of application parameters. These have to be defined
as public properties of a setting class that is derived from
ISettings. Via the SimCon user interface it is possible to
modify the settings before a simulation run. By this means
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measurement series with different parameters can be per-
formed without changing the application code before each
run. Since all applications define their own settings, the
application controller has to read the settings from the ap-
plication assembly by .NET Reflection.

For the purpose of recording the simulation, an arbitrary
number of recorders can be registered. In addition to the
standard recorder that is an inherent part of SimCon, the
user is able to define his own customized recorders. We
describe the properties of the standard recorder and the im-
plementation details of customized recorders in section 4.4.1.
The second possibility to trace and evaluate the simulation
is via the view module that displays the simulation process
on the screen. Again, SimCon provides a standard view,
but customized views are usable as well. We present details
concerning the views in section 4.4.2.

In order to trace the simulation, both recorders and views
have to be notified of simulation events. Therefore the sim-
ulated applications offer so-called topology events. Before
starting the simulation the controller registers view and re-
corders to the topology events they are interested in.

After view, recorders, router level graph and application
have been loaded, the controller is ready to start the simula-
tion. For that purpose the controller creates a user defined
number of application instances and registers the topology
event handlers for each instance. Each of the application
instances has to be connected to one vertex in an Internet

graph. The base for this Internet graph is the router level
graph generated by TopGen. The vertices in this graph are
of type Vertex and represent Internet routers. Since the ap-
plication instances are running on end hosts, an
OverlayVertex is created for each instance and the instance
is connected to this overlay vertex. Therefore a reference
to the OverlayVertex is given to the application instance.
As mentioned above, Internet router graphs generated by
TopGen consist of different router types. In reality it is un-
likely that end hosts are connected to Internet core routers.
Therefore SimCon allows the selection of the router type
the end hosts should be connected to. In order to ob-
tain realistic simulation results, end hosts should be con-
nected to the router type that represents edge routers. The
OverlayVertex provides the methods SendMessage and
Receive, which are used to send and receive messages. The
sending of a message is realized by the controller. For that
purpose the controller registers an event handler to the Send

event of each OverlayVertex. This event is fired in order to
send a message. The event handler reads the ID of the desti-
nation of a message from the event arguments and calls the
Receive method of the destination vertex. We describe how
to handle the sending and the receiving of messages inside
a simulated application in section 4.3.1.

The control flow of each application instance is started
in a single thread by calling the method Start of the ap-
plication. As described in section 4.3.1, every application



needs to have such a Start method. Since SimCon uses
multiple threads to perform the simulation, it benefits from
the current surge of multi-core processor architectures. The
simulation ends either after a predefined period of time is
elapsed or when the user forces the simulation to stop via
the stop button. In each case the controller terminates the
simulation by aborting all simulating threads. Afterwards
the method FinalizeRecording of all registered recorders
is called to notify that the simulation is terminated so that
they can write the results of their measurements to a file.

The simulation of random link and node failures is also a
task of the controller. For this purpose a user can define a
probability for link and node failures. According to this
probability the controller shuts down nodes and discards
messages randomly.

4.3 Simulated Application
On the left side figure 2 shows the different components

of a simulated application and how they work together. As
mentioned before, a simulated application consists of two
self-contained modules: An application module and a topol-
ogy module. The application module has to emulate the
behavior of a large-scale application, for example a MMOG.
The topology modules realize the underlying overlay net-
work topology. In order to achieve exchangeability of topol-
ogy modules they have to implement the interface ITopology.
Thus it is possible to test one application with different
topology modules by changing the topology module while
keeping the same application module.

4.3.1 IApp - Application Interface
An application module has to be derived from the abstract

class IApp. Figure 3 shows an overview of the IApp class.
The method SetVertex is used to set the OverlayVertex

the application is connected to. Via SetKnownVertices the
controller can hand over a set of initially known vertices to
the application. The application settings we described above
can be set by the method SetSettings. The SetTopologies
method is used by the controller to cause the application to
instantiate the topology modules. As already mentioned
the method Start is used to start the control flow of an
application.

As described in section 3 using view’s interaction elements
we can gear into a running simulation manually. To enable
this we use a mechanism to send asynchronous events to
an instance of a simulated application. For this purpose
IApp defines a method AsyncEvent. This method is called
by the controller in order to send asynchronous events to
an application. This can be done since the controller has
references to all application instances.

4.3.2 ITopology - Topology Interface
The interface ITopology (fig. 4), that has to be imple-

mented by the topology modules, defines a set of methods
that have to be provided by an overlay network protocol.
These are methods like SendUnicast to send a message to
another vertex. Moreover there are methods like Join or
Leave to join and leave an overlay network that can be used
by application endpoints to go on- or offline. In order to
enable the recorders and the view to trace the simulation,
the topology modules have to fire events if certain incidents
occur, for instance if a vertex joins an overlay network.
All these events have to be of type TopologyEvent since

IApp
Abstract Class

Fields

knownVertices
settings
Topologies
vertex

Methods

AsyncEvent

Receive

SetKnownVertices

SetSettings

SetTopologies

SetVertex
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Nested Types

Figure 3: IApp Class Diagram

recorders as well as views expect this type. The arguments
of these events have to be derived from TopologyEventArgs.

TopologyEvent
Delegate

ITopology
Interface

Methods

Fail

Join

Leave

LookUp

Publish

Read

SendBroadcast

SendMulticast

SendUnicast

SetComShim

Stabilise

Write

Figure 4: ITopology Class Diagram

As already mentioned, the OverlayVertex class provides
methods to send and receive messages in SimCon. But since
the topology modules are supposed to be reusable in other
applications it is important that they do not have any ref-
erences to the SimCon specific OverlayVertex. For that
reason the communication shim layer is introduced. The
communication shim is located between OverlayVertex and
topology modules. A communication shim implementation
has to be derived from the abstract class IComShim. In a
topology module this class is responsible for sending and re-
ceiving messages. It defines the abstract method Send and
the event Received that is fired if the communication shim



receives a message. By this means a topology module is
able to send and receive messages via the methods defined
by IComShim without knowing about the concrete commu-
nication shim implementation. By interchanging the com-
munication shim a topology module is usable in different
applications. A concrete communication shim implementa-
tion is responsible for mapping the sending and the receiv-
ing of messages to the underlying communication mecha-
nisms. For example the SimCon communication shim uses
the OverlayVertex to send and receive messages. Messages
sent via a communication shim have to be derived from the
class BaseMessage that is defined as inner class in IComShim.
By this means the communication shims allows the above
mentioned reusability of the topology module code. More-
over the communication shim mechanism can be used to
simulate already existing overlay protocol implementations
using SimCon. All we have to do is to implement a corre-
sponding communication shim.

4.4 Simulation Evaluation and Visualization
Recorders and views are responsible for the evaluation and

the observation of the simulation process. They can register
to arbitrary topology events of the simulated application in
order to get information about the course of the simulation
process.

4.4.1 IRecorder - Recorder Interface
A customized recorder has to be derived from the abstract

class IRecorder (fig. 5). This class contains a public dic-
tionary named Handler that defines a mapping of topology
events to event handler methods. The key of an item of
this dictionary is an EventInfo object and the value is a
delegate to an event handler method. In order to enable a
recorder to dynamically define this mapping in dependence
of the events provided by the application, the controller calls
the method SetHandler. An EventInfo list of the available
events is handed over to the method as an argument.

IRecorder
Abstract Class

Fields

Handler
Settings

Methods

FinalizeRecording

GetSettings

SetHandler

SetSettings

Figure 5: IRecorder Class Diagram

Similar to an application a recorder is able to define a set
of properties. These are modifiable before a simulation run
is started. The settings have to be defined in a class that is
derived from IRecorderSettings. To enable the controller
to get and set these settings, the methods SetSettings and
GetSettings are available.

The last IRecorder method is FinalizeRecording. The
controller calls this method after the simulation is termi-

nated. Thereupon the recorder is able to finalize the mea-
surement and to write the results to a file.

As described in section 4.2 the controller emulates the
sending of a message by calling the Receive method of the
destination vertex. In order to evaluate the simulation it
may be necessary to measure the hop count or the latency
of a message. These measurements can be performed by
SimCon since the underlying router level graph holds latency
values for each link and allows the calculation of the shortest
path between two end hosts. By this means hop count and
latency can be calculated in a post processing step by using
the detailed information about the network infrastructure
provided by the TopGen graph. Furthermore, sophisticated
evaluations that measure for example the load in certain ar-
eas of the router graph can be performed. We believe that
this technique of sending end to end messages and evaluating
the network traffic from a global point of view is more effi-
cient than simulating additionally the behavior of hundreds
of thousands of Internet routers.

The standard recorder is an IRecorder implementation
that is an inherent part of SimCon. The SimCon controller
reads all available topology events from a loaded applica-
tion. Via the SimCon user interface the user is able to select
events he is interested in, as shown in section 3. Before the
simulation starts, the SimCon controller registers event han-
dlers of the standard recorder to the selected events. After-
wards the standard recorder is able to count the occurrence
of this event during the simulation. For example the num-
ber of unicast messages that were sent during a simulation
can be counted. Using customized recorders a user is able
to perform more sophisticated measurements. As an exam-
ple we have implemented a customized recorder that realizes
the performance versus cost (PVC) metric presented in [10].
This metric uses the average number of bytes sent per node
and unit of time as the cost metric. However SimCon is not
limited to a set of predefined metrics, since each user has the
ability to implement arbitrary metrics within a customized
recorder.

4.4.2 IView - View Interface
The design of a view is similar to that of a recorder. Views

have to be derived from the abstract class IView (see fig 6).

IView
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Methods

GetSettings

SetAsyncHandle
SetHandler

SetPanel

SetSettings

Figure 6: IView Class Diagram



In opposite to the recorders only one view can be attached
to a simulation. Similar to IRecorder, IView defines a
dictionary Handler and methods SetHandler, SetSettings
and GetSettings. In order to display something on the
screen the view has to have a reference to a Panel object.
This object is used by the view to draw to. The IView inter-
face has the method SetPanel that is used to pass a Panel

reference to the view.
To enable the user to gear into a running simulation via

the view, the view needs a possibility to call the method
AsyncEvent of an application. Since only the controller
has references to the applications, the controller provides a
method that can be used to initiate an asynchronous event.
The view is able to call this method via a delegate. The con-
troller passes the delegate to the view via the IView interface
method SetAsyncHandle.

5. RELATED WORK
The analysis of overlay network characteristics is the key

to the development of distributed large-scale applications
based on such networks. In this section we present some
environments for overlay network simulation. Most of them
come up with one or several implementations of overlay net-
works (Chord, Tapestry, etc.) and/or provide an extensible
API for the development of further network technologies.
Some others have been explicitly developed with the objec-
tive of presenting the features of a special overlay network.

VisPastry2 is a Pastry and Scribe [3] visualization tool
written in C#. It provides a GUI with a map of the world.
The nodes are randomly located on the map. Using VisPas-
try we can get an impression of Pastry’s routing mechanism
and see how Scribe’s multicast tree is built. Since VisPastry
is tailored for Pastry and Scribe visualization, it does not
support any other overlay network implementations.

Chord also provides a simulation and visualization envi-
ronment: Visualizer3. The Visualizer gives the information
about some specific characteristics of an assigned node. In
this way it can represent the state of the Chord ring and
facilitates better understanding of its properties. Similar to
VisPastry, which can be used only with Pastry and Scribe,
Visualizer is restricted to Chord simulation and visualiza-
tion.

OverSim [2] is a simulation framework for overlay net-
works based on OMNeT++[22]. The main advantage pro-
vided by OverSim in comparison to the above mentioned en-
vironments is that it can be used to simulate miscellaneous
overlay networks. OverSim supports Chord, Kademlia [14]
and Gia [4] implementations which also can be used in real
world applications. Moreover, OverSim provides a generic
interface to implement additional overlay networks. Sim-
ilar to SimCon, OverSim may also be used with different
exchangeable underlay network models. Overlay networks
with up to 100000 nodes can be simulated by OverSim.

Another simulation environment written in C++ is P2PSim
[10]. It compares diverse overlay networks such as Chord,
Tapestry, Kelips [7], Kademlia and OneHop [6]). P2PSim
puts the focus of the simulation on key lookups, crashes and
re-joins of overlay nodes. But only a limited set of statis-
tics can be gathered using this environment. P2PSim can
be combined with different underlying network models. The

2http://research.microsoft.com/~antr/Pastry
3http://pdos.csail.mit.edu/chord/howto.html

simulated network can have up to 3000 nodes.
OverlayWeaver [20] is an overlay construction framework

implemented in Java. It can be used for development and
testing of new and existing overlay networks. OverlayWeaver
provides an application user interface which supports some
common features like distributed hash table (DHT) or mul-
ticast to facilitate the implementation of novel overlay net-
works. But it also supports multiple existing routing al-
gorithms i.e. Chord, Kademlia, Koorde [9], Pastry and
Tapestry. Overlay networks with up to 4000 nodes can be
simulated. But neither may statistics be gathered nor is
support for modeling underlying networks provided [16].

Narses [12] is a Java discrete-event simulator, designed to
validate the network scalability with a huge amount of traf-
fic. Narses allows a tradeoff between performance and accu-
racy and provides a number of underlying network topologies
with up to 600 nodes. Using Narses some statistics may also
be captured.

PlanetSim [5] is another simulation framework for over-
lay networks also written in Java. It supports Chord and
Symphony [13] and provides an API for one’s own implemen-
tations. In the generation stage a zero-sized network has to
be created. Then using join, leave and fail operations up to
100000 nodes can be combined to an overlay network. Plan-
etSim also allows saving of a current network, or loading of a
serialized network from disk. By this means a network that
was once created can easily be reused. The PlanetSim-API
provides broadcast and DHT operations on the application
level. PlanetSim offers a very simple underlying network
model, but no statistics can be gathered [16].

PeerSim [8] - a Java written simulation environment - sup-
ports the simulation of networks with up to 1000000 nodes.
The simulation is restricted to joining, departing and failing
of nodes (no traffic simulation). Moreover no support for
the modeling of underlying network topologies is provided.
PeerSim offers an API for gathering statistical data.

More detailed studies of overlay network simulators are
provided in [16], [15] and [17].

6. CONCLUSION AND FUTURE WORK
Distributed large-scale applications necessitate the use of

distributed underlying topologies and make high demands
in terms of latency, scalability, reliability and performance.
Unfortunately, it is not trivial to verify which overlay net-
work is the most appropriate to fit the requirements of a
certain application.

We propose an approach for gathering statistical infor-
mation about the behavior of overlay networks and evalu-
ate this information on the base of certain metrics derived
from the application’s requirements. By this means we figure
out which network technology meets the given requirements
best.

Our simulation environment SimCon facilitates the con-
junction of large-scale applications with different underlying
network technologies. Its strong focus on the analysis and
evaluation of network characteristics makes it interesting for
use in research projects and is very helpful for developers of
large-scale applications. Moreover, the provided view inter-
face facilitates the use of SimCon in an educational context.

At the moment SimCon can be used with several Internet
topologies generated by TopGen, however there is only one
(Tapestry) implementation of an overlay network technol-
ogy. Our short-term objective is to implement some more



overlay networks (Chord, P-Grid). This would allow us to
compare them in terms of performance and scalability, and
to provide first evaluation results. We are also to improve
the usability of the SimCon environment, for example by
supporting scripts to enable automated simulation configu-
ration.

The current version of the SimCon implementation does
not support clustering, constraining the number of simu-
lated application endpoints to ca. 20004. Therefore our
middle-term objective is to extend our implementation in
terms of clustering. This would enable simulation with a
considerable higher number of endpoints and allow us to
provide even more significant evaluation results. The multi-
threading awareness of SimCon and the usage of communi-
cation shims facilitate this aim.

In order to compare our simulation environment with other
available tools, we intend to perform measurements and eval-
uations with respect to performance and scalability. Hereby
analyzing whether these simulations can benefit from multi-
core processor platforms is an interesting point.
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