
Simulation of Ad Hoc Networks:
ns-2 compared to JiST/SWANS

Elmar Schoch, Michael Feiri, Frank Kargl, Michael Weber
Ulm University, Institute of Media Informatics

89069 Ulm, Germany
elmar.schoch michael.feiri frank.kargl michael.weber@uni-ulm.de

ABSTRACT
For the evaluation of ad hoc network protocols, researchers
traditionally use simulations because they easily allow for a
large number of nodes and reproducible environment condi-
tions. But still, simulations are costly in terms of required
processing time and memory. New approaches like the Java-
based simulator JiST/SWANS promise to provide significant
performance advantages compared to existing, well-known
network simulators like ns-2. Though its creators have done
comparison studies regarding processing time and memory
requirements of JiST/SWANS, they did not test the validity
of the results produced by the SWANS stack as well as its
performance in detail.

In this work, we focus on the comparability of imple-
mented protocols and models in SWANS. Using the corre-
sponding counterparts both in SWANS and ns-2, with an
identical set of parameters, we are able to produce results
and compare them afterward. In addition, we also provide
a performance analysis using these simulations. By show-
ing that JiST/SWANS produces equivalent simulation re-
sults as ns-2 in less time and with less memory, we support
JiST/SWANS as a potential alternative.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: General

General Terms
Performance, Measurement

Keywords
Simulation, Comparison, ns-2, JiST/SWANS

1. INTRODUCTION
Simulations play an important role in the development

and evaluation of future systems. For ad hoc networks, sim-
ulations are traditionally used for testing since they allow

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools March 3–7, 2008, Marseille, France
Copyright 2008 ACM ISBN 978-963-9799-20-2 ...$5.00.

reproducible environment conditions and a large number of
nodes. In real world tests, wireless transmission conditions
can vary from experiment to experiment, which makes it im-
possible to compare the performance of different protocols
under identical circumstances. In simulations, a scenario can
be repeated exactly as often as required. Moreover, setting
up test equipment is usually also a time-consuming task.
Another problem arises when researches want to study pro-
tocol scalability with a large number of nodes, which is typ-
ical for ad hoc network protocol evaluation. When scenarios
consist of hundreds of nodes, cost and time constraints usu-
ally do not allow to set up real world tests.

For simulation of ad hoc networks, a number of required
elements can be identified.

• Simulation engine
As a core component, the simulation engine orches-
trates the execution of code parts representing sim-
ulated logic. Most of the existing simulators for ad
hoc networks like ns-2, OPNET Modeler, Omnet++
as well as JiST/SWANS are based on discrete events in
simulation time. With simulation time, the simulation
engine introduces a notion of time that is decoupled
from the real execution time of the simulation.

• Physical environment model
For simulating ad hoc networks, the physical model
primarily has to reproduce radio propagation. In ad-
dition, a more detailed model of the world in which the
nodes reside is often required, e.g. by including rooms,
buildings or streets.

• Node model
As the central elements, the simulator must specify
how nodes interact with their environment and with
other nodes. The interaction with the environment
typically includes sending out messages and moving
around. For the interaction with other nodes, the same
components need to be implemented that would also
be available in real devices, e.g. medium access ac-
cording to 802.11, a routing protocol like AODV, a
transport mechanism like TCP or UDP and applica-
tions that mainly generate data traffic.

• Execution and evaluation support
Because simulations consist of a lot of components,
which all need to be configured, keeping track of all pa-
rameters of a simulation is not easy. The same holds
for traces and aggregated results of a simulation. A

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.SIMUTOOLS 2008, March 03-07, Marseille, FranceCopyright © 2008 ICST 978-963-9799-20-2DOI 10.4108/ICST.SIMUTOOLS2008.3021

solution to handle input and output as well as to effi-
ciently execute multiple simulations with varying pa-
rameters is valuable.

As mentioned before, simulations are generally restricted
by two main constraints: accuracy and runtime require-
ments. On the one hand, studies need to model the simu-
lated network as close to reality as possible. On the other
hand, processing time and memory requirements need to be
kept on a reasonable level. This trade-off between accuracy
and runtime requirements is a typical problem to be bal-
anced.

A number of simulation tools including suitable libraries is
available for MANET simulations. One of the most promi-
nent is ns-2 [1], which was originally designed for simulation
of wired networks. However, since CMU published their
”wireless extensions” [6], it is also widely used for MANETs.
The simulator relies on a split-object model, where parts
of simulation code can be written in OTcl, whereas most
logic is implemented in C/C++. Due to its long tradition,
a large amount of extensions is available for ns-2. However,
ns-2 simulations tend to require very much processing time
and memory, when simulations exceed several hundreds of
nodes.

To thwart that problem, a number of improvements have
been developed, for instance the parallelized version called
PDNS [9]. With PDNS, ns-2 simulations can be distributed
to a compute cluster, and [8] shows that PDNS was able to
simulate a network with 600,000 nodes on a cluster with 136
processors, high-end hardware and a very fast interconnec-
tion network.

Compared to standard ns-2, GloMoSim [13] is slightly
more performant on standard hardware and allows for simu-
lations of networks consisting of roughly 10,000 nodes. Glo-
MoSim is based on Parsec, a C-like programming language
for discrete-event simulation developed at UCLA. It includes
a library for MANET simulations which already provides a
number of protocol implementations, but by far not that
many that ns-2 delivers. A parallel version of GloMoSim
called QualNet [10] is available as a commercial product,
which the manufacturer claims to be able to scale up to ”10s
of thousands of nodes”.

Another commercially available simulator is OPNET
Modeler [7]. It allows for creating and configuring simu-
lations using a mixture of graphical editors, state-diagrams
and C++. In contrast to ns-2 and GloMoSim, simulations
are compiled into a dedicated executable before running.
Both in terms of protocol support and performance, OP-
NET is comparable to ns-2. For instance, in [12], the au-
thors show that OPNET Modeler also has a relatively poor
scalability.

Hence, if researchers want to conduct simulations with
high accuracy and large number of nodes in reasonable time,
only few alternatives remain. Recently, the new Java-based
simulator JiST/SWANS developed by Rimon Barr e.a. at
Cornell University has attracted more and more attention
in the MANET community. Though the simulator is still
in an early stage and available components are poor so far,
the interest is continuously growing due to its performance
benefits and several additional advantages.

The authors of JiST/SWANS already provided an in-
depth performance comparison between JiST and other sim-
ulators. However, there is currently no work that particu-
larly focuses on the SWANS part, i.e. the question is not

answered yet, whether JiST/SWANS simulations lead to re-
sults comparable to other simulators, which is important for
the acceptance of the simulator. In this paper, it is our goal
to provide answers to that question by investigating various
elements of SWANS in comparison to their ns-2 counter-
parts.

The following section gives an introduction on ideas and
concepts of JiST/SWANS. We are going to review perfor-
mance measurements and give a state-the-art on ongoing
JiST/SWANS activities. In Section 3, we look at basic archi-
tectural differences between JiST/SWANS and ns-2 which
explain performance gains of JiST/SWANS. After that, Sec-
tion 4 provides a comparison of ad-hoc network simulations
conducted with both simulators.

2. JIST/SWANS
The JiST [3] abbreviation stands for ”Java in Simula-

tion Time”, which already denotes the basic idea, namely
to transform the Java virtual machine into a scheduler for
events. Basically, this is done by modifying the way how
methods are called between simulation entities. On top of
this discrete event simulation engine, the authors have de-
veloped the ”Scalable Wireless Ad Hoc Network Simulator”
SWANS [2], which provides environment models and com-
munication protocols for simulating MANETs.

2.1 JiST
JiST simulation entities are implemented and compiled

like regular Java classes. Therefore, all advantages of
Java like platform independence, large library support or
widespread familiarity with language, apply as well for JiST.
To introduce simulation time semantics, JiST partitions sim-
ulations into ”Entities”, which are actually Java objects as
well, but whose public methods are always called via the
scheduler. Because this is not standard Java behavior, these
method calls are redirected to the simulation engine upon
invocation. The redirection step is introduced by applying
byte-code rewriting before the start of a simulation. Dur-
ing the simulation, when a method of an entity is called,
the call returns immediately, a new entry is inserted in the
scheduling queue and executed later.

To implement this behavior, every such entity class is
marked either with the interface JistAPI.Entity or the in-
terface JistAPI.Proxiable. Before execution of a simula-
tion, calls to methods of classes marked with such an inter-
face are subject to be rewritten. Whenever code within an
entity is executed, it runs at a certain point in the global sim-
ulation time ts. Within the entity, local entity time te can be
advanced by calling the JistAPI.sleep() function. Thus, if
an entity starts at ts = 1 and then calls JistAPI.sleep(1),
te will be set to 2. Any following method call of another en-
tity will then be scheduled to be executed at ts = 2. From
the Java perspective, however, such a call to another entity’s
method returns immediately, whereas regular Java would
branch into it when executed without JiST.

The example in Listing 1 depicts a basic JiST entity.
In the main method, an object of the class Hello is cre-
ated, which in fact is an entity, as the class is marked with
JistAPI.Entity. Thus, the following call of myEvent() is
scheduled to be run at the current time, which is ts = 0
at the beginning. After that, main() continues and termi-
nates. Then, the scheduler calls the queued event, i.e. the
myEvent() entity method. Upon the call, the local entity

1 import jist.runtime.JistAPI;
2 class Hello implements JistAPI.Entity {
3 public static void main(String [] args) {
4 System.out.println("Simulation start");
5 Hello h = new Hello();
6 h.myEvent ();
7 }
8 public void myEvent () {
9 JistAPI.sleep (1);

10 myEvent ();
11 System.out.println("hello world ,

t="+JistAPI.getTime ());
12 }
13 }

Listing 1: A simple JiST Entity

time te is set to the scheduled time 0. As first action, the
method increases te by one time unit, which means that now
te = 1. Then, the method myEvent calls itself again. Note
that this call is not recursive as it would be in regular Java.
As it is a call to an entity method, it simply results in a new
scheduler queue entry at ts = 1. Finally, myEvent returns
after the println() command. Now the scheduler will ex-
ecute the next pending event, which is the one at ts = 1.
Again, the same procedure is repeated, and this loop con-
tinues infinitely.

In contrast to public methods, non-public methods of en-
tity objects are called directly. Additionally, all public meth-
ods of an entity are not allowed to return any values as they
are called by the scheduler. This is also one reason, why
the interface JistAPI.Proxiable was introduced, which al-
lows for facade interfaces that contain the public methods
to rewrite on invocation.

The described JiST approach has a number of significant
benefits:

• Type-safety: As the ”delivery of events” is simply
a method call, the virtual machine always checks the
compatibility of source and destination. When receiv-
ing events, no additional type-checking needs to be
done by the receiving entity.

• No marshaling/demarshaling: As there are no ex-
plicit event data structures, there is no overhead for
marshaling/demarshaling data. Instead, the entities
just pass references within the VM. Using RMI, refer-
ences can even be passed beyond VM boundaries.

• Java: Using Java provides a large amount of bene-
fits: robustness due to type safety, large library, ease
of use, well-known to many developers, platform inde-
pendence, garbage collection, good IDE support, etc.

• Byte-code rewriting: Because class files are directly
transformed, no source access is necessary. Existing
libraries and protocol implementations can directly be
used for simulations.

• Parallel distribution: The JiST event scheduling
can support parallel and optimistic execution, which
crosses VM boundaries and is transparent for the ap-
plication. However this is not implemented in the cur-
rent version.

2.2 SWANS
SWANS is a complete library for simulation of MANETs

running on the JiST engine. As already described in the
introduction, MANET simulations need a model for the en-
vironment and for the nodes. In SWANS, the Field entity
provides node mobility and radio propagation. Nodes con-
sist of a number of entities implementing various protocol
layers, where the radio entity is connected to the global field
entity. Packets traverse the protocol stack entities usually as
simple references, at virtually no cost. Duplication is only
done where necessary, e.g. if a packet is broadcasted and
needs to be changed by the forwarders.

Regarding radio propagation, one can choose a free space
or a two-ray-ground pathloss model, together with Rayleigh
fading, Rician fading or without fading. Moreover, a statis-
tic packet dropping can be applied. As node mobility, the
standard distribution supplies teleporting, random walk and
random waypoint models. For the composition of nodes,
SWANS brings basic radio noise models, an implementa-
tion of 802.11b MAC, IPv4, AODV, DSR and ZRP MANET
routing, as well as TCP and UDP transport and several ap-
plications. As a special feature, SWANS also allows to run
legacy Java network applications as part of simulations.

2.3 Performance
When designing a new simulation tool, evaluation of per-

formance is a primary concern. Performance evaluations
have been conducted by the authors of JiST/SWANS in [3],
specifically regarding the performance of the JiST engine,
but also including SWANS simulations.

For the JiST benchmark, a small simulation similar to the
above example in Listing 1 was carried out. The program
schedules an identical event step by step for 5 million times,
so that only the raw event throughput is relevant. Then,
the authors compare the runtime behavior with the same
small program implemented in ns-2 and GloMoSim. As re-
sult of this competition, JiST performed this task 1.97 times
faster than Parsec, 3.36 times faster than the ns-2 program
(when implemented completely in C-code), 9.84 times faster
than GloMoSim, and even 78.97 times faster than an ns-2
implementation in Tcl. As a performance baseline, the au-
thors also implemented a plain C program that imitates the
scheduler behavior by inserting and removing elements from
an efficient array-based priority queue. Compared to that,
JiST performs 31% slower. Regarding memory consump-
tion, JiST performs similarly well.

Considering the efficiency of SWANS, the authors have
implemented a simple neighbor discovery protocol in
SWANS, ns-2 and GloMoSim. When using an optimized
radio binning model, JiST/SWANS is able to outperform
the other two simulators. For example, with 500 nodes on
the field, SWANS runs 43 seconds and consumes 1, 101 kB
of memory, whereas GloMoSim takes 82 seconds and 5, 759
kB and ns-2 needs 7, 136 seconds and 58, 761 kB memory.
SWANS even can compute simulations with 50,000 nodes
rather efficiently in 4, 377 seconds using 49, 262 kB of mem-
ory.

2.4 Ongoing efforts
Since the publication of JiST/SWANS, more and more

researchers have started to use, to improve and to extend it.
One of the earlier available extensions was STRAW [5], the
”Street Random Waypoint” mobility model for simulation of

vehicles driving on roads. Currently, this activity has been
extended to an open source project called SWANS++. In
addition, also numerous researchers have used JiST/SWANS
in their work.

In our own work on JiST/SWANS, we have developed ex-
tensions of SWANS as well as a framework for automated
execution of simulations. As mentioned in the introduction,
simulations usually require to control input parameters and
output data. Thus, a more sophisticated solution is desirable
to handle these data. These tasks can be facilitated by our
framework called DUCKS. DUCKS first of all implements a
generic ”driver” for SWANS simulations, which takes all nec-
essary information from a configuration file and generates a
set of corresponding simulations. For the execution, a cen-
tral component is available which can distribute simulations
to an arbitrary number of simulation servers. Finally, re-
sults from the simulation servers are collected and stored in
a database, from where they can easily be queried.

Emerging from our research in the field of vehicular ad
hoc networks, we also simplemented several extensions of
SWANS, particularly geographic forwarding. The same al-
gorithms and protocols have been implemented in ns-2 be-
fore, and therefore this will also be used in later sections.
The logical equivalence of this code particularly allows us
a meaningful comparison of the two simulators. More-
over, other extensions from the field of VANETs include
a raytracing-based radio propagation model for urban envi-
ronments and more are under development 1.

In summary, the popularity of JiST/SWANS is continu-
ously growing in the community. In the following sections,
we compare JiST/SWANS to the well-known ns-2, both in
terms of architecture, implementation details and simulation
results.

3. COMPARISON
Before we compare actual simulations we want to high-

light some of the important aspects that differentiate
JiST/SWANS and ns-2. Both packages provide network
simulations using a discrete event-based approach. This
fundamental similarity allow us to focus only on the key
aspects that differentiate these two simulators. We assume
that readers will be familiar with the basic principles of dis-
crete event based simulators and ns-2 in general.

3.1 Architectural differences in JiST
The most obvious difference between ns-2 and JiST/SWANS

is the general approach to implement simulation logic.
While ns-2 provides interesting possibilities thanks to the in-
tegration of scripting capabilities with Tcl one can say that
the approach of writing an object oriented simulator core in
C++ is a standard approach to implementing event driven
simulators. Alternatives to this approach would be domain
specific programming languages or simulation environments
that enforce timed execution by taking over system services
such as threading. The developers of JiST call their solution
a virtual machine based simulator. By rewriting appropri-
ately marked Java bytecode during class loading it is pos-
sible to have registration and temporally ordered execution
of simulation events. While the virtual machine itself does
not know (or need any changes to support) the temporally

1Extensions will be made publicly available under
http://www.vanet.info/

ordered execution of simulation events we see that JiST is
implemented at a very low level which keeps the overhead for
maintenance of simulation logic relatively small. In fact the
core logic of JiST is implemented by just a scheduler com-
ponent, a sophisticated bytecode rewriter and some marker
interfaces and utility functions. No support for special pro-
tocols or event serializations are necessary to run simulations
with “Java in Simulation Time”.

The idea of using a Java virtual machine as a simulation
platform and bytecode rewriting of method calls as a means
to register events is a middle ground between having a cus-
tom language and a classic simulator library. Since the vir-
tual machine is left unmodified JiST can benefit from all the
features provided by modern just in time compilation like
profiling based optimizations and aggressive inlining. For
example profile based inlining during runtime is a feature
which is clearly interesting for simulators because codepaths
might not be predictable during compile time. A compiled
simulator driven by a scripting language would have a hard
time to replicate such functionality. The easy integration of
scripting facilities on top of the virtual machine by means of
libraries like Jython is another nice benefit of running inside
a Java virtual machine. Other noteworthy features are effi-
cient garbage collected memory handling, comfortable cross
platform support, opportunities to benefit from future en-
hancements of virtual machine technologies and prospective
free optimizations for architectures that might not even exist
yet.

Memory management in particular is an area where JiST
not only benefits from things like parallel generational
garbage collection but where it also provides means for de-
velopers to reduce the resources needed for simulations. So
called timeless objects are objects that can safely be ex-
changed between entities without the need to clone them.
In order to guarantee the temporal integrity of the simu-
lation a developer must guarantee the immutability of an
object when declaring it as timeless. This restriction how-
ever is not enforced by Java so it is the sole responsibility of
a simulation developer to fulfill this guarantee. The amount
of memory that can be saved in this way justifies this risk
though. Other simulators like ns-2 have to clone objects
very aggressively in order to guarantee temporal integrity
across entities.

3.2 Architectural differences in SWANS
When focusing on SWANS, we also see some distinctive

advantages compared to ns-2. The implementation of move-
ment and smarter data structures for faster wireless sig-
nal transmission are two main highlights that differentiate
SWANS from ns-2.

The mobility of nodes in a field is implemented in SWANS
not as a strictly event based subsystem but rather with a
time-stepped paradigm. A user can specify a desired gran-
ularity and SWANS will update the position of nodes on
the field accordingly. This is a deviation from a strict event
based model as it is practiced in ns-2. Here the exact posi-
tions of nodes on a field are computed when an event needs
to know positions on the field. Heuristics could be used to
limit the calculation of position updates to an area where
a particular event is relevant. But the naive method is to
compute all positions on the field. As long as the number
of nodes and the amount of traffic is low this is not a dis-
advantage. A time-stepped model can even perform worse

than a strict event based model because position updates
always happen as explicit events at the specified granular-
ity, whereas ns-2 calculates positions only when needed (e.g.
because a packet is to be sent). With large numbers of traf-
fic and/or nodes it is obvious that the limited frequency
of position updates in a time-stepped model scales better
than the strict event based model which has to update po-
sitions of numerous or even all nodes for every event that
needs position information. Unrelated to the time-stepped
approach to mobility we see another advantage in the fact
that SWANS calculates position updates not only based on
precomputed trace files but usually computes mobility on
demand during the simulation. This setup allows more flex-
ible and interactive mobility models. For example, an ap-
plication where cars exchange and use congestion warnings
across vehicular networks can be simulated easily in SWANS
because changing the direction of a node based on simulation
data is readily possible in SWANS.

The time-stepped mobility subsystem also benefits from
another optimization that reduces the cost of sending ra-
dio signals. Wireless nodes in ns-2 register themselves on a
channel to receive radio signals when a node is sending. It
is then the responsibility of each node to compute the signal
strength in relation to the sender position and to decide if
a signal can be received or not. SWANS employs a method
called hierarchical binning to limit the number of nodes that
have to compute the signal strength at their receiver to those
that are actually within the signal range of a sender. A data
structure that keeps track of the positions of nodes on the
field is kept organized in a way that enables SWANS to eas-
ily address nodes within a maximum range of a given signal
transmission. Only the nodes in this area have to use the full
signal propagation algorithms to calculate actual reception
success, noise accumulation and so forth. Due to the fact
that the time-stepped mobility subsystem keeps the posi-
tions of nodes on the field updated we do not have to do any
position update at all as part of such sending operations.

The differences between JiST/SWANS and ns-2 are cer-
tainly not limited to the highlighted features we outlined
above. In numerous cases the authors of JiST/SWANS
have for example modeled the design of subsystems after
the GloMoSim simulator and not after ns-2. In other cases
JiST/SWANS for example tends to use single precision floats
where ns-2 prefers double precision. Also some functionality
might be missing in one simulator or might only be available
as a third party patch.

3.3 Infrastructure, community and prospects
An aspect that is not architectural but concerns the in-

frastructure surrounding JiST/SWANS and ns-2 might be
an issue for prospective users of JiST/SWANS. While the
availability of extensions and additional features seems to
be less of a problem as the user base of JiST/SWANS grows
it might be a problem that the core simulator itself sees little
maintenance from its authors. This has already led to small
incompatibilities with recent releases of the Java runtime
environment, which required a set of patches against the
rewriter and the bytecode engineering library in JiST. Also
an automated process of validating SWANS against known
scenarios does not exist for JiST/SWANS. While it would
be unfair to discredit the potential quality of JiST/SWANS
merely by the absence of such tests, it is nevertheless not
inspiring confidence.

Independent investigations into the validity of results gen-
erated by JiST/SWANS compared to equivalent results from
other simulators are thus useful and might help to induce
confidence into JiST/SWANS. Confirmation of the adver-
tised performance advantages and documentation of ex-
periences in using JiST/SWANS for applications beyond
the scope of the original codebase might also be use-
ful for a wider audience to help qualify the usefulness of
JiST/SWANS. For some situations, like simulations of very
large scenarios of MANETs, JiST/SWANS seems to be one
of the only available options. However, an assessment of
the applicability of JiST/SWANS to scale typical MANET
simulations to large sizes is an open question, which we will
address in the next section.

4. SIMULATIONS
As the main focus of our studies lies in the simulation

of vehicular networks we decided to put an emphasis on
the scalability and validity of MANET simulations with
JiST/SWANS compared to the baseline of ns-2.

4.1 Setup
On one side we used a standard distribution of

JiST/SWANS version 1.0.6 which we enhanced with a cus-
tom driver mechanism, the CGGC routing protocol [4], and
support for more recent releases of the Sun Java runtime
environment. CGGC is a greedy-based geographic routing
protocol that employs temporary storage of data packets
as a recovery strategy from local dead ends, which makes it
particularly suitable for inter-vehicle communication. These
changes, among other enhancements, are publicly available
from our webpages. On the other side we used ns-2 at version
2.29 in conjunction with the well known Monarch Wireless
and Mobility Extensions. This version was built with a re-
cent version of gcc version 3.4. For JiST/SWANS we used
the ecj compiler provided by the Eclipse SDK version 3.2 in
conjunction with a Sun Java Runtime Environment at ver-
sion 6.0.1. All simulations were executed on a Gentoo Base
System version 1.12.6 running a Linux Kernel version 2.6.15
on a machine with Pentium 4 CPU at 3.0 GHz and 882 MB
of RAM.

4.2 Scenario
The ability to scale simulation scenarios to large numbers

of nodes is an important concern for our future ability to
simulate large scenarios of vehicular networks. Therefore
we decided to focus our investigations on a scenario with a
growing number of nodes in a simulation. To validate the
correctness of simulations performed with JiST/SWANS we
set up matching scenarios in JiST/SWANS and ns-2 to com-
pare the results. At the same time we used these simulations
to collect data about the performance characteristics of the
two simulators.

To keep the number of variables down we decided to set
a fixed average connectivity of 7. This value was chosen
arbitrarily in order to ensure that routing protocols have a
good chance for successful packet delivery. The field size for
our scenarios grew subject to the average connectivity of the
nodes and a wireless range of 250 meters, using equation (1).

ρ =

(
π ∗ r2

)(
w∗h

n

) (1)

The actual measured connectivity in our simulation was
between 9 and 10, which is mainly due to border effects
and the tendency of random waypoint model to concentrate
nodes in the center. The number of nodes was set in a range
between 200 to 1000 nodes. Again these values were chosen
arbitrarily, this time in order to keep the runtimes of the
simulations down, in particular because of ns-2. During our
experiments, we have easily simulated scenarios with more
than 10.000 nodes using JiST/SWANS. For the purposes of
this paper we provide simulation results as the average of
10 redundant passes with identical parameters but differing
random seeds. A trivial test with fixed random seeds showed
that our version JiST/SWANS produces exactly repeatable
simulations. JiST/SWANS and ns-2 use their respective de-
fault sources for pseudo random numbers, which in case of
JiST/SWANS is the standard java.util.Random facility pro-
vided the the Java runtime.

Nodes 200-1000
Transmission Range 250m

Field 2368-5296m
Mobility Random Waypoint

Max speed 20m/s
Min speed 1m/s

Pause 0s
Duration 120s
Warmup 20s

Cooldown 10s
Noise Independent

Pathloss Tworay
Fading None

Packetloss None
Traffic 1 packet/min

Routing CGGC, AODV
Beaconing 1 Hz

Packet caches Unlimited
Destination radius 100-300m

Table 1: Key settings of the simulated scenarios

It would take too much space to list all settings exhaus-
tively. Therefore we close this section with Table 1, which
lists some key settings. We hope that this specification al-
lows meaningful reproduction of our simulations [11].

4.3 Qualitative comparison
We applied the previously described scenarios equally to

ns-2 and JiST/SWANS and used two routing protocols to
run the actual simulations. As mentioned before, the first
protocol is a position-based routing protocol called CGGC.
Geographic routing is an important area of research for our
group and for research in vehicular ad hoc networks and
was thus of special interest to our needs. Our implementa-
tion of geographic routing is based on the equivalent logic
both in SWANS and ns-2 to be able to really compare the
qualitative results. The second protocol we are testing is
the more commonly known AODV protocol, using standard
implementations that come with the distributions of both
JiST/SWANS ans ns-2. Hence, we can compare on a level
where we know that the routing code is equivalent and on
a level where we just use a provided implemention, without
looking into detail, like many beginners would do.

 0

 20

 40

 60

 80

 100

 200 300 400 500 600 700 800 900 1000

D
el

iv
er

y
ra

tio

Nodes

ns-2 CGGC
JiST CGGC
ns-2 AODV
JiST AODV

Figure 1: Delivery success ratio

 0

 2

 4

 6

 8

 10

 12

 14

 16

 200 300 400 500 600 700 800 900 1000

H
op

co
un

t

Nodes

ns-2 CGGC
JiST CGGC
ns-2 AODV
JiST AODV

Figure 2: Average hopcount of message transfer

 0

 5

 10

 15

 20

 25

 200 300 400 500 600 700 800 900 1000

D
el

ay
 in

 s
ec

on
ds

Nodes

ns-2 CGGC
JiST CGGC
ns-2 AODV
JiST AODV

Figure 3: Average message delay

Based on previous experiences we expected to see the ge-
ographic routing protocol to perform very nicely in a situa-
tion with good connectivity between the nodes and relatively
high mobility of the nodes on the field. The AODV routing
protocol on the other hand was expected to suffer with in-
creasing number of hops between origin and destination. In-
deed these expectations were fulfilled in both JiST/SWANS
and ns-2 with qualitative differences of only a few percent
points. For CGGC, this is true for metrics such as deliv-
ery ratio (Figure 1), hop count (Figure 2) and average delay
from source to destination (Figure 3). In case of AODV,
the picture is a bit different. In particular, delays are sig-
nificantly higher in SWANS, though the number of hops is
at least comparable. Therefore, we assume that the AODV
implementation in SWANS employs more relaxed caching
settings. This is partly backed by the number of success-
fully delivered packets, which decreases slower for AODV in
SWANS compared to AODV in ns-2.

4.4 Performance analysis
The performance characteristics of ns-2 nd JiST/SWANS

do differ quite a bit. Due to the different implementations
of movement in the simulators it is not easy to directly com-
pare the raw execution times. As JiST/SWANS calculates
the movements of all nodes during the runtime of the simula-
tion there is no way to subtract the time it takes to calculate
these movements from the other parts of the simulation. For
ns-2 though, the subprogram that calculates the movements
of nodes is not part of the main simulation. In fact it is
commonly the case that movements which have previously
been rendered into a trace file are reused repeatedly in dif-
ferent simulation runs. This practice is encouraged by the
fact that a subprogram like the commonly used setdest ap-
plication seem to be rather unoptimized in terms of runtime
performance. In Figure 4 we compare the cumulative exe-
cution times of all subprograms that compose a simulation
of CGGC routing. We list ns-2 two times, once excluding
the time required to generate movements for ns-2, in or-
der to reflect a common usage pattern for ns-2 that reuses
movement traces across different simulations. The relevance
of this practice in relation to performance characteristics of
ns-2 is also clearly visible.

 10

 100

 1000

 10000

 200 300 400 500 600 700 800 900 1000

T
ot

al
 p

ro
ce

ss
in

g
tim

e
in

 s
ec

on
ds

Nodes

ns-2 CGGC
ns-2 CGGC, w/o setdest

JiST CGGC, J2SE 5.0
JiST CGGC, Java SE 6

Figure 4: Processing time of CGGC routing

When we compare JiST/SWANS against ns-2 without
the time required to precompute movements, we see that
CGGC routing in JiST/SWANS scales almost linearly with
the number of nodes on the field. Remember that the con-
nectivity as a function of node count and field size is kept
constant as we increase the numbers of nodes on the field.
Since we also keep additional factors like packet traffic tied
to the node count of the scenario, this behavior represents
an expected optimal scaling behavior for a reactive routing
protocol like CGGC. With ns-2 on the other hand we see
execution times grow faster than the number of nodes we
add to the simulation. Even worse, when we add the time
required to compute the movements in ns-2, as is done in
JiST/SWANS, we see that ns-2 shows significantly worse
scalability compared to JiST/SWANS. This graph is drawn
on a logarithmic scale for better readability.

In our opinion a good part of the performance advantage
of JiST/SWANS can be traced to the underlying Java virtual
machine. To visualize this assumption we included perfor-
mance data of JIST/SWANS using a different Java runtime.
Exactly the same binaries/bytecode have been used to run
simulations with JiST/SWANS under a Sun JRE version
1.5.0 11 in addition to our current default environment, a
Sun JRE at version 1.6.0 01. Clearly the performance of the
underlying VM is a significant but mostly constant factor.
As has been mentioned in a previous chapter, several archi-
tectural advantages such as runtime profiling, efficient mem-
ory management and the reduced overhead for managing
simulation logic by embedding the simulator as a bytecode
rewriter contribute to the comparatively good performance
of JiST/SWANS. The effect of merely updating the Java VM
without changing any algorithmic aspects of JiST/SWANS
illustrates this influence nicely. Also note that the original
authors of JiST/SWANS used only a Sun JRE at version 1.4
to benchmark their original release.

A second important aspect is the performance of the mo-
bility subsystem. It is clear in Figure 4 that ns-2, and the
setdest subprogram to be more precise, perform particu-
larly bad when movements have to be calculated for each
simulation. The efficiency of the time-stepped mobility in
JiST/SWANS and the usage of hierarchical binning strate-
gies are one explanation for the significant differences in per-
formance. On the other hand we do not see good reasons
for the setdest subprogram in ns-2 to perform as badly as
it does. Our observations indicate that setdest calculates
large amounts of metadata that is not necessary for the raw
simulation. We also assume that setdest simply was not op-
timized for runtime performance. As it stands however the
current incarnation of setdest is a serious obstacle to simulat-
ing large numbers of varying or even dynamically changing
movement models with ns-2.

When it comes to performance of AODV, we find that
the gap between the simulators is not too big, at least
when we consider only the effective simulation time with-
out the mobility calculation in case of ns-2. However, since
SWANS implicitly includes mobility, the results slightly sup-
port SWANS. In any case, with growing number of nodes,
ns-2 requires more than linearly increased processing time
(Figure 5).

A third relevant aspect is memory usage of the respective
simulators. In Figure 6, we see the memory consumption of
the two simulators is drastically different. The fact that ns-2
has to manage such huge amounts of memory is a distinctive

 0

 1000

 2000

 3000

 4000

 5000

 200 300 400 500 600 700 800 900 1000

T
ot

al
 p

ro
ce

ss
in

g
tim

e
in

 s
ec

on
ds

Nodes

ns-2 AODV w/o setdest
JiST AODV

Figure 5: Processing time of AODV routing

 0

 100

 200

 300

 400

 500

 600

 700

 800

 200 300 400 500 600 700 800 900 1000

M
em

or
y

co
ns

um
pt

io
n

in
 m

eg
ab

yt
e

Nodes

ns-2 CGGC
ns-2 AODV
JiST AODV
JiST CGGC

Figure 6: Memory usage

disadvantage compared to JiST/SWANS. The possibility to
use Timeless Objects in JiST/SWANS enables large savings
in memory usage compared to ns-2 where objects are copied
far more aggressively in order to protect the integrity of
the simulation. The aspect of memory usage is not just
an issue of performance. Memory requirements tend to be
a limiting factor in the ability to simulate large scenarios
with several thousand participants. Our simulation with
ns-2 and CGGC routing with 1000 nodes already required
close to one gigabyte of memory. While there is likely some
room for improvement in our implementation of CGGC for
ns-2 we can safely say that JiST/SWANS scales much more
gracefully in this area than ns-2.

5. CONCLUSION
With our simulation study, we show that JiST/SWANS

is able to produce very similar results to those of ns-2 when
we use the geographic routing protocol. This is mainly due
to the fact that both implementations were developed by
ourselves. In contrast to that, the AODV implementations
that come with both simulators partly show diverging be-
havior. In summary, the qualitative comparison clearly in-

dicates a basic problem of simulations: Comparing results
between different implementations on different simulation
tools is delicate. Even if implementations are conceptually
identical, other components still have some influence on the
results.

However, in general, one can see that JiST mostly shows
superior performance, which allows for more detailed simu-
lations in shorter times. Even huge simulations with thou-
sands of nodes become possible, mainly because of the very
low memory footprint. Nevertheless, the particular imple-
mentations also have implications on performance.

In summary, we could provide a number of arguments
that support the usage of JiST/SWANS for ad hoc net-
work simulations, though there are still questions remain-
ing. For instance, results from other layers of the simu-
lation, like medium access or radio propagation have not
been addressed. In the future, we also plan to extend
JiST/SWANS with more accurate environment models like
raytracing-based radio propagation.

6. REFERENCES
[1] Network Simulator ns-2. http://www.isi.edu/nsnam/ns/, 2004.

[2] R. Barr, Z. Haas, and R. van Renesse. Handbook on Theoretical
and Algorithmic Aspects of Sensor, Ad hoc Wireless, and
Peer-to-Peer Networks, chapter 19 - Scalable Wireless Ad Hoc
Network Simulation, pages 297–311. Auerbach, 2005.

[3] R. Barr, Z. Haas, and R. van Renesse. JiST: An efficient
approach to simulation using virtual machines. Software
Practice & Experience, 35(6):539–576, 2005.

[4] Christian Maihöfer, Reinhold Eberhardt, and Elmar Schoch.
CGGC: Cached Greedy Geocast. In Proc. 2nd Intl. Conference
Wired/Wireless Internet Communications (WWIC 2004),
volume 2957 of Lecture Notes in Computer Science, Frankfurt
(Oder), Germany, Feb. 2004. Springer Verlag.

[5] David R. Choffnes and Fabián E. Bustamante. An Integrated
Mobility and Traffic Model for Vehicular Wireless Networks. In
Proc. of the 2nd ACM International Workshop on Vehicular
Ad Hoc Networks (VANET), Sept. 2005.

[6] D. Johnson. Validation of wireless and mobile network models
and simulation. In DARPA/NIST Workshop on Validation of
Large-Scale Network Models and Simulation, May 1999.

[7] OPNET. OPNET Modeller Homepage.
http://www.opnet.com/products/modeler/home.html.

[8] G. Riley. PDNS Website.
http://www-static.cc.gatech.edu/computing/compass/pdns/.

[9] G. Riley, R. Fujimoto, and M. Ammar. A generic framework for
parallelization of network simulations. In Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication, March 1999.

[10] SNT. QualNet Product Homepage.
http://www.scalable-networks.com/products/qualnet.php.

[11] Stuart Kurkowski, Tracy Camp, and Michael Colagrosso.
MANET Simulation Studies: The Incredibles. Mobile
Computing and Communications Review, 9(4):50–61, Oct.
2005.

[12] B. Zeigler and S. Mittal. Modeling and Simulation of
Ultra-large Networks: Methodology Responds to Challenges. In
ULN Workshop, November 2001.

[13] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: a library for
parallel simulation of large-scale wireless networks. In
Workshop on Parallel and Distributed Simulation, May 1998.

http://www.isi.edu/nsnam/ns/
http://www.opnet.com/products/modeler/home.html
http://www-static.cc.gatech.edu/computing/compass/pdns/
http://www.scalable-networks.com/products/qualnet.php

	1 Introduction
	2 JiST/SWANS
	2.1 JiST
	2.2 SWANS
	2.3 Performance
	2.4 Ongoing efforts

	3 Comparison
	3.1 Architectural differences in JiST
	3.2 Architectural differences in SWANS
	3.3 Infrastructure, community and prospects

	4 Simulations
	4.1 Setup
	4.2 Scenario
	4.3 Qualitative comparison
	4.4 Performance analysis

	5 Conclusion
	6 References

