
Simulating SMEPP Middleware
Javier Barbarán, Carlos Bonilla, Jose Ángel Dianes, Manuel Díaz, Ana Reyna

Dpt. Lenguajes y Ciencias de la Computación
University of Málaga

Campus de Teatinos, 29017 Málaga. SPAIN
Tel: +34 95 2131394

Email: (barbaran, cba, jdianes, mdr, reyna@lcc.uma.es)

ABSTRACT
Embedded Peer-to-Peer Systems (EP2P) represent a new
challenge in the development of software for distributed systems.
The main objective of the SMEPP (Secure Middleware for
Embedded Peer-to-Peer Systems) project is to develop a new
middleware, based on a new network centric abstract model,
specially designed for the above described systems, and trying to
overcome the main problems of the currently existing domain
specific middleware proposals. This paper presents a SMEPP
Middleware component-based simulation tool. The main objective
of developing this simulator is to provide a tool to enable the
testing of the service model proposed for the middleware and to
provide a framework to test different middleware design choices.
Simulations will help us to make future decisions. Simulating
SMEPP applications, that is, applications running on the SMEPP
middleware and based on the API that it offers, help us to make
decisions about the most requirement-satisfactory way of
constructing the middleware. The simulated middleware API
component represents a first approach to middleware design, and
introduces some of the architectural issues that must to be solved
in the near future.

Categories and Subject Descriptors
EP2P systems, service oriented middleware, component based
simulators, routing protocols.

General Terms
Algorithms, Measurement, Performance, Design, Languages,
Theory.

Keywords
Middleware, EP2P, Simulation

1. INTRODUCTION
Embedded Peer-to-Peer Systems (EP2P) represent a new
challenge in the development of software for distributed systems.
These systems have brought about an important revolution in
distributed computing paradigms, now that the roles of client and
server, which are the basis of the most widely used distributed
computation models, are disappearing. The new scenario consists
of systems in which all the elements of the network are
symmetrical and, in most cases, the mechanisms of
communication are not based on pre-existing infrastructures, but
rather on dynamic ad-hoc networks among peers. At the same
time, the recent technological advances in short distance wireless
communications have opened up new areas of application which
represent an important technological challenge. One of the key
factors in the success of these systems is the possibility of
abstracting all these problems by means of appropriate

middleware. The main objective of the SMEPP (Secure
Middleware for Embedded Peer-to-Peer Systems) project is to
develop a new middleware, based on a new network centric
abstract model, specially designed for the above described
scenario, and trying to overcome the main problems of the
currently existing domain specific middleware proposals. The
SMEPP1 Middleware platform will have to comply with the
following general EP2P objectives: adaptability, scalability, high
availability, and ubiquity, as the model will be based on the
possibility of incorporating and removing resources in a dynamic
and adaptive way, and users can access those resources offered by
the network anytime, anywhere.
One of the key factors in the success of the definition of the
SMEPP abstract model is to provide suitable support tools that
can help in the design and testing of the application from the first
steps of the development process.

As we said before, the development of EP2P applications is a
complex task and simulation and validation activities at the initial
stages of the development process can help to minimize possible
design errors that would be difficult to discover during the
deployment phase. In this sense, the SMEPP simulation tool can
be very useful to test the early designs of applications, in a single
node, with different configurations for the different nodes of the
network and with a high-level description of the network
behavior. In the case of application developers and in order to
simplify the development of the application prototypes, the
behavior of the peers can be described as a multithreaded program
in C# or as a SMoL program [1,3].

2. SMEPP MIDDLEWARE OVERVIEW
2.1 SMEPP Features
From our point of view, the main characteristic of Peer-to-Peer
networks is that the elements of these networks communicate in a
bidirectional and symmetric way with each other. If this type of
connection is not provided directly by the underlying network, a
virtual network will be set up on top on the existing overlay
network. In this sense, the term P2P can also be applied in a more
generic context to name the set of communication models that
provides this type of end-to-end communication, independently of
the application and the network protocols used to construct this
end-to-end communication on top of the overlay network.
SMEPP will support infrastructure and infrastructure less
networks (ad-hoc networks) by re-using state of the art protocols

1 This work is supported by the SMEPP Project (Secure

Middleware for Embedded Peer-to-Peer systems). Information
Society Technologies (IST) Programe. (FP6-IST-033563)

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
SIMUTOOLS 2008, March 03-07, Marseille, France
Copyright © 2008 ICST 978-963-9799-20-2
DOI 10.4108/ICST.SIMUTOOLS2008.3016

and implementations in order to allow the SMEPP peers to
communicate and reach each-other. In terms of physical media,
again SMEPP is agnostic, wired and wireless communications are
relevant for SMEPP applications. It is true that sensor networks
are recently being developed using wireless communication
technologies such as Zigbee or even WiFi, therefore the SMEPP
applications will be most probably using this type of
implementation when relevant. It is especially important to
highlight the differences between Ad-Hoc Networks and P2P file
sharing platforms. In both cases we are dealing with self
organizing networks, where P2P communications exist, but the
objective and the technologies used to build the virtual P2P
communication channels (mainly the routing algorithms) are very
different.
The SMEPP Middleware platform will have to comply with the
following general EP2P objectives: adaptability, scalability, high
availability, and ubiquity, as the model will be based on the
possibility of incorporating and removing resources in a dynamic
and adaptive way, and users can access those resources offered by
the network anytime, anywhere. SMEPP applications will be
covering and spanning over a very heterogeneous terminal,
gateway, sensor and device ecosystem (applications may run on
different devices, from PCs, laptops, mobile phones and PDAs to
sensor network nodes, with quite different network bandwidths,
memory capacities and computing power). The networking and
routing protocols used will have to support the important
dynamicity of the network topology (the elements come into the
system and go out in an independent way, involving frequent
reorganization of the systems). The latter objectives represent
important technological challenges to tackle in the project such as
networking decentralization, network paths with transitory
communications (connections and disconnections happen in an
unpredictable and frequent manner) and a constantly changing
topology.
The SMEPP middleware -and in particular its API- is service-
oriented. Services are first-class citizens in SMEPP, and are
described by contracts. Contracts will be used for matching
(which will be in turn used within discovery) and also for
verification and analysis.
A file containing the description of the service is called “Service
Contract” or briefly “Contract”. A contract must contain all the
information that any client (human or software) of the service may
need to discover, to instantiate, and to interact with the service. A
contract is no other than metadata describing the signature and
behavior of a SMEPP Service.
The service oriented model is defined by an API including the
following services:
- newPeer
- createGroup
- getGroups
- joinGroup
- leaveGroup
- publish
- unPublish
- getPeerID
- getGroupIDs
- getServiceContract
- invoke

- receiveMessage
- receiveEvent
- reply
- smepp_event
- subscribe
- unSubscribe
For a detailed syntax and description of these services see the
SMEPP Service Model Description [3].

2.2 SMEPP workflow and workgroup
Together with the middleware infrastructure, a customizable
component framework will be developed. This framework will
provide the tools necessary to adapt the middleware infrastructure
to different embedded devices and networks.
Two validation applications will be developed: one in the field of
environmental monitoring of industrial plants and in mobile
telephony and the other in context aware computing. These
applications will be used to obtain the main requisites of the
middleware and will help to demonstrate the suitability of the new
middleware for the development of applications for these types
type of environments. The application domains are different
enough to study the flexibility and adaptability of the middleware
and its associated tools.
The SMEPP consortium is composed of a mixture of research
institutions and industries that bring together the complementary
skills and the expertise necessary for the project, with experience
in middleware development, security and different aspects of
software development for embedded systems, including
Telefonica I+D, Tecnatom S.A., Universidad de Málaga,
Technische Universitaet Graz, Siemens Aktiengesellschaft,
Valtion Teknillien Tutkimuskeskus of Oulu in Finland, Universita
de Pisa and the Institute for Infocomm Research at Singapore.

3. SIMULATION TOOL
3.1 Objectives
The main objective is to provide a tool to enable the testing of the
service model proposed for the SMEPP Middleware and to
provide a framework to test different middleware design choices.
Why simulate a middleware?
Simulations help us to make future decisions. Simulate SMEPP
applications, that is, applications running on the SMEPP
middleware and based on the API that it offers, help us to make
decisions about the most requirement-satisfactory way of
constructing the middleware. Specifically, we believe that these
decisions may affect different development areas and for different
reasons.
First of all, the simulator development, that can be seen as a first
approach to the final middleware development with the proper
design and implementation process of the simulated API that
simulated applications have to use, has generated some questions
about the architecture of this API, about its structure in different
functional units and abstraction levels. The particular SMEPP
features, a middleware ideated to support multiple hardware
platforms and operative systems, with different programming
paradigms, has produced a very rich API, but a very complex and
heterogeneous one, which needs some kind of structure in order to
be easily understandable and usable. These and other conclusions,
mainly related with the middleware architecture, will be described
in the following sections.

Related to the different interaction and service models, using the
simulation tool, with its different options of executing programs
and interacting with them by the users, allows them to decide
upon the suitability of these models to specific problems and
applications.
Finally, always when working with P2P distributed systems,
routing protocols have to be taken into account. Discussing about
them is a very important advantage that a simulation tool can
offer, testing the best options and algorithms and defining the
most appropriate interface with the rest of the middleware. The
SMEPP Simulator tool allows users to configure and interchange
different routing algorithms for the same set of simulated
applications, allowing them to reach important conclusions. Also
security issues may be introduced as a part of the simulation tool
and experimented in the execution of programs. For this purpose,
the simulation environment will offer mechanisms for the
definition of specific security policies for SMEPP groups.
3.2 Functionality
SMEPP Simulation Tool accepts as input different SMEPP
programs, a network definition and some SMEPP Peers definition,
in order to execute over the simulated middleware rather than
distributed in real nodes.

The SMEPP Simulation Tool is a ‘black-box simulator’. The
simulated application is an executable, generated from a SMEPP
application program together with different components described
below in section 3.3. Simulation interaction is performed in two
ways:

- Output events, generated by the simulator components, like
SMEPP primitive call events, network events, etc. These events
can be displayed in the simulator GUI.

- Input user events, defined by users and generated by the
simulator component. These mainly include network dynamics
events. Real world conditions also may be defined using
interaction mechanisms like events or variable value assignment.

The main functionalities to be achieved by the simulator are:
Monitoring the simulation (Monitoring the SMEPP middleware),
Control of the simulation (Start simulation., Stop simulation.),
Configuration of the simulation (Definition of nodes and
connections (network topology), Definition of peers, its behavior
and its services, Definition of events, Configuration of the routing
protocol.)

As mentioned, there are different kinds of input files for the
simulator tool, specifically five. These files contain the
information that the simulator needs to configure a specific
application environment (to generate the simulator configuration
file). The simulator tool does not exclusively simulate the
execution of a single SMEPP program but it must be able to
simulate the whole application environment. This means, that the
nodes that take place in the simulation must be defined, this is, all
the devices that are running the SMEPP middleware have to be
configured. Additionally, the peers that are running at each
device, the services provided by each peer, and, finally, the
SMEPP programs associated with each peer and service, must be
configured by the user. To ease the configuration, the simulator
tool is based on these input files, and support tools to create and
modify this input files, are provided.

Figure 1 Functionality

3.2.1 SMEPP Program File
A SMEPP program describes the behavior of a peer or a service;
this is achieved through invocation to the SMEPP API primitives.
The SMEPP Simulator needs a modified version of the version
provided by the SMEPP application developer; because this
SMEPP program must interact with the developed simulation tool,
which simulates the middleware, but the execution in the
simulator is guided by the user. This is the main difference with
respect to the execution of the program in the real world. The
modifications of the original SMEPP files are minor changes, they
do not burden the developer, and nevertheless the modified
version needed can be automatically generated by a parser tool.

3.2.2 Network Definition File
This input file must provide the description of the topology of the
overlay network, over which the SMEPP programs are going to be
simulated. This means that all the devices (network nodes) taking
part in the simulation must be specified, with its properties (such
as bandwidth capabilities, maximum running peers…) and its
connected neighbors. Additionally the routing protocol must be
specified.

3.2.3 Peers Definition File
As important as the definition of the network, is the definition of
the peers. Peers are processes that run over the devices (network
nodes) and their behavior is modeled through a SMEPP program.
A single device can execute more than one peer (process), but a
peer runs only in a single node at each time, but not necessarily
the same node during the whole simulation in order to model
mobility.
This file must provide the relationship between the nodes defined,
and the SMEPP programs provided. Associating a peer with a
specific network node means that the peer will be initially running
in that node. In addition, for each peer, the services that it
provides must also be specified with the reference to the SMEPP
program which defines the service behavior.

3.2.4 Network Events Files
Users can specify predefined network events such as location
changes or node failures. Events could also be defined using a
probability or be randomly generated by the simulator. This is
useful to test the middleware and the application in special
scenarios.

3.2.5 Routing
Finally the user has to provide the routing protocol component.
Different components can implement different routing behaviors,
creating different simulation scenarios.

3.3 Architecture
Using a component based Architecture makes applications very
flexible because of their component "plug and play" nature. This
is really useful in the case of the simulation tool because it will
enable us to test the same applications under different middleware
implementations, routing protocols or network overlays.

The simulator architecture is divided into four components that
interact: Simulation Framework Component, SMEPP Middleware
Component, Network Overlay Component and Routing
Component. Their relationship is shown in the following figure:

Figure 2 Simulator Component Based Architechture

3.3.1 Simulator Framework Component
This component is responsible for the configuration of the whole
simulation and its monitoring. Interactions between the user and
the simulations are also carried out here, using definitions of the
configuration file and using run-time interactions through the
Graphic User Interface of the simulation tool. This GUI is
composed of different tab panels. Figure 3 shows the appearance
of the simulator graphics.

Tab panels include Configured Peers, Configured Network,
SMEPP API Primitives, Middleware Groups, Middleware Peers,
Middleware Services and Routing. All will be described later.

3.3.2 SMEPP Middleware Component
This is one of the key components; it provides a preliminary
implementation of the SMEPP middleware, providing the same
API that the SMEPP middleware will provide. Changing this
component to new versions of the middleware will be useful to
test and compare different approaches during the development. In
addition, this fist implementation is useful to evaluate the service
model proposed.

Many architectural issues have been approached during the
development of this component. Data structures for storage and
management of SMEPP entities, like peers, groups, services and
events, are included here. Interaction mechanisms between all
these entities are also implemented into this component, including
raising and listening of events, synchronization of service invoke-
response sequences and data integrity when being accessed
concurrently.

Doing so, we have approached a solution to some of the problems
of the real middleware development.

3.3.3 Network Overlay Component
The NetOverlay component abstracts the operating system
network interface underlying the middleware. For this version of
the simulator, we have chosen a simple unidirectional point-to-
point channel-based API. This API includes the following
operations:

NetChannel createChannel(int nodeId);

void destroyChannel(NetChannel channel);

NetChannel connectChannel(int nodeId, int source);

NetChannel getInputChannel(int nodeId);

NetChannel[] getOutputChannels(int nodeId);

void send(int nodeId, NetChannel channel, Object[]
data);

Object[] receive(int nodeId, NetChannel channel);

Network entities include channels and nodes, the first represented
by NetChannel instances, the second by an int id.

Routing is performed each time data is sent or received, and not
when creating or connecting channels. We do this in order to
emulate an ad-hoc network.

3.3.4 Routing Component
The SMEPP Simulator tool has been designed to enable the
implementation of different routing protocols. This is achieved
through the definition of the routing component. This component
interacts with the SMEPP API to enable peers to find services or
others peers connected within the overlay network. This enables
the simulator to test different protocols over different networks
easily.
Distributed Hash Tables (DHT) are the most common approach to
routing P2P networks, and they have had a revolutionary effect in
the decentralization of this kind of networks. We have selected an
implementation of this type of protocol in order to study the
requirements of the routing component interface in the context of
the simulator. Our final objective is to be able to change this
component with the different security routing protocols which will
be defined in the context of the other SMEPP workpackages in
order to test their suitability to SMEPP objectives.
A DHT basically has the functionalities of a hash table and its
purpose is to distribute the storage and search of the hash table
between several distributed nodes. Thanks to the structured
topology, data lookup becomes a routing process with low routing
table size and maximum path length. DHT also offers high data
location guarantees.
In this first implementation, we have implemented an
approximation of Chord [7], a distributed lookup protocol based
on Distributed Hash Tables.

3.4 User interface
The Graphical User Interface of the simulation tool (figure 3) is
composed by two panels, the first one, on the left side, is a simple
control panel, and the other one contains seven tab panels with
different information:

Figure 3 Simulation Tool GUI

- Configured Peers: contains information of each defined

peer, the node where is deployed, the program that is
executing and the services that will provide.

- Configured network: shows as a table and as a graph,
the topology of the network (interconnection of nodes,
independently of the peers that contains).

- SMEPP API Primitives: a log with a trace of the
different SMEPP API primitives that are being used by
the simulated application. Normally, the trace contains
information about the invoker of the primitive and other
arguments.

- Middleware Groups: information about the created
SMEPP groups, including members and services of
these groups.

- Middleware Peers: the difference with respect the firs
tab panel is that that one contains the information
predefined by the user, and this one contains the current
state of the middleware. For example, if a peer fails to
create, still will appears in the ‘Configured Peers’ panel,
but do not appear in the ‘Middleware Peers’ panel.

- Middleware Services: lists all the published services,
including information about the publishers (peers and
groups) and the service contracts.

- Routing: it shows traces of routing each time that a node
sends information to another.

3.5 Some implementation details
The SMEPP Simulation Tool has been developed in C# using
Visual Studio 2005 to run over Windows. Concretely, all testing
has been made over Windows XP. So, applications that are going
to be simulated have to be written in C# too.
The GUI has been made using Component One framework for the
development of visual components. The simulation kernel uses
different events to alert the GUI of the different changes.

4. SAMPLE APPLICATION
A large number of scenarios can be simulated using this tool. Due
to the combination of embedded and peer-to-peer characteristics
for Wireless Sensor Networks (WSNs), this kind of application
seems to be the most interesting one that can be simulated using
the SMEPP Simulator Tool. For this reason in this paper we

propose an application for monitoring environmental conditions in
buildings using WSNs. This application must perform different
activities, such as: Indoor environmental monitoring (heating,
ventilation and air conditioning). On the other hand it is also
necessary to respond to extreme events such as fire.

Each aforementioned goal involves only a specific part of the
system. In WSNs keeping the processing close to where the data
is sensed has been long recognized as an effective approach to
save energy, achieve more efficient implementations and support
real-time requirements.
In Figure 4 is shown the application schema that is going to be
simulated. A building will have several sensors deployed,
measuring different conditions, such as humidity, temperature and
smoke. But there will also be other devices that are able to react in
response to sensor measurements, such as air conditioners,
sprinklers and fire alarms. Additionally, the application could
send as well some information to external devices (for example,
firefighter PDAs).

Figure 4. Sample application schema
Specifically, we have considered a room in a building that is
equipped, as shown in Figure 5, with an air conditioner, water
sprinklers and a fire control alarm, but is equipped also with a set
of sensors measuring temperature, humidity and smoke
conditions.
Following the operational setting described above we have
designed a SMEPP application, using the C# programming
language, which provides a solution to for the proposed scenario.
Conceptually, the application is composed of the following peers:
Sprinkler, Air Conditioner, Fire Control and sensors measuring
different conditions.

SMEPP abstractions provide an elegant way to solve complex
applications where different peers work together in order to find a
global objective. The following groups have been created for the
sample application: Temperature, Humidity, Smoke, Fire Control
groups. In temperature are involved temperature sensors, but also
air conditioner and water sprinkler peers. In the humidity group an
air conditioner and a humidity sensor are needed. The smoke
group is composed of smoke sensors and sprinklers. Finally, in the
fire control group, a sprinkler and a fire alarm control peer are
involved.

Figure 5 Sample Application

Peers publish their services in their groups, this way other peers
can invoke them. For example, temperature sensors publish a
service that is composed of a high temperature event and a
periodic event that gives a temperature value each 5 seconds. On
the other hand sprinkler peers subscribe to temperature room
services in order to receive temperature values and high
temperature events.

This kind of system due to it distributed characteristic are no
predictable, for this reason the use of SMEPP simulator helps to
the application developer to check that the code is free of
deadlocks, but also free of abnormal behaviors. In the sample
application, two different versions where simulated in order to
check the suitability of the simulator: one with a deadlock and the
other one without deadlocks. The sample application sketched
before is designed to send continuously events from sensors to
actors. The behavior of the simulator in the first case with the
deadlock it is an abnormal stopped in the flow of primitives
without any reason, then the user is announced that a possible
deadlock is reached. In Figure 6 the execution of the application
without deadlock is shown. The execution after the services are
published and the peers are joined to the right groups, is
composed by events received and sent that will not stop until the
user stops the simulation.

Figure 6 Flow primitives on free-deadlock execution

5. CONCLUSIONS
From the application programmer point of view it is clear that the
tool will help to accomplish the objectives discussed in the
introduction. During its development we have found some details
in the definition of the API that can be improved. We think that
the simulator can really help in the design of even simple
application such as the one shown in the previous section.

Middleware developers have therefore taken some advantages
from the simulator development so. The simulated middleware
API component represents a first approach to middleware design,
and introduces some of the architectural issues that must to be
solved in the next future. These issues include concurrency
models, suitable network abstractions, architectural design on its
own, data structures and their management for entities storage
(like peers, groups, services etc), service model lapses, etc.

Taking these objectives into account, we think that starting to
develop our own simulation environment instead of using a
general purpose simulation tool, was the best way to proceed.

The component-based approach of this simulator has many
advantages. The most important is the possibility of representing
different scenarios for the same application program. This will be
done using different interchangeable components, like the routing
component for testing different P2P routing algorithms, the
network overlay component for testing different operating system
network APIs, or even the own SMEPP API Component for
testing different architectural design or concurrency models.

Finally, in the future, when de SMEPP middleware has been
completely developed, the simulator will represent the first step in
real application development. These kinds of massive distributed
applications are very difficult to test and validate in real world
conditions, so a simulator is a very useful tool, saving a lot of time
and effort (and money) to application developers.

6. REFERENCES
[1] Antonio Brogi, Razvan Popescu, Francisco Gutiérrez, Pablo

López, Ernesto Pimentel. A Service-Oriented Model for
Embedded Peer-to-Peer Systems. In proceedings of the 6th
International Workshop on the Foundations of Coordination
Languages and Software Architectures, Lisbon, Portugal,
September 8, 2007.

[2] M.Albano, A.Brogi, R.Popescu, M.Diaz, J.A.Dianes.
Towards Secure Middleware for Embedded Peer-to-Peer
Systems: Objectives & Requirements. Second Workshop on
Requirements and Solutions for Pervasive Software
Infrastructures, Innsbruck, Austria, September 16, 2007.

[3] SMEPP Consortium D.2.1 SMEPP Service Model
Description.

[4] SMEPP Consortium D.2.2 Tool Support for the service
Model

[5] Sameh El-Ansary. Designs and Analyses in Structured Peer-
to-Peer Systems. June 2005

[6] Rüdiger Schollmeier, Ingo Gruber and Michael Finkenzeller.
Routing in Mobile Ad Hoc and Peer-to-Peer Networks. A
Comparision.

[7] Implementation of Chord.
http://www.seas.upenn.edu/~cis505/spring2004/project2/chor
d505-0.3.tar.gz

