
An Investigation of Credit-based Flow Control Protocols∗

Jonathan Billington
Computer Systems Engineering Centre

School of Electrical and Information Engineering
University of South Australia

Mawson Lakes Campus, SA 5095, AUSTRALIA
jonathan.billington@unisa.edu.au

Smit Saboo
Computer Systems Engineering Centre

School of Electrical and Information Engineering
University of South Australia

Mawson Lakes Campus, SA 5095, AUSTRALIA
smit.saboo@unisa.edu.au

ABSTRACT
Credit-based flow control mechanisms, such as those used in
the Transmission Control Protocol, allow flow control and
error control procedures of data transfer protocols to oper-
ate independently. We create a Coloured Petri Net model of
a class of data transfer protocols, which uses retransmissions
and acknowledgements for error control and“credits”for flow
control. This model is characterized by 3 parameters: the
maximum sequence number, the maximum number of re-
transmissions and the maximum receiver buffer size. From
the analysis results, we derive expressions in these param-
eters for the channel bounds and the number of terminal
states. These expressions are verified for a range of values
of the parameters.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network
Protocols; I.6.5 [Simulation and Modeling]: Model De-
velopment

General Terms
Verification, Experimentation

Keywords
Flow Control, Coloured Petri Nets, Exhaustive Simulation

1. INTRODUCTION

1.1 Background and Motivation
Flow control is an integral and an essential part of most

data transfer protocols [16]. Without efficient flow control
a fast sender can overwhelm a receiver. This may also lead
to network congestion and bandwidth wastage. Flow control
mechanisms are mainly employed in link layer and transport

∗This work was partially funded by ARC Discovery Grant,
DP0559927.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools, March 03-07, 2008, Marseille, France.
ISBN 978-963-9799-20-2.
Copyright 2008 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

layer protocols [14]. Flow control is a rather complex mech-
anism at the transport layer, because it may have to deal
with an unreliable underlying medium (such as the Internet
Protocol) where the sending entity would not know whether
the lack of an acknowledgement is due to flow control or
packet loss. Moreover, if the receiver withholds the acknowl-
edgement, to let itself process the data and free buffers for
further incoming data, this withholding could lead to re-
transmission from the sender. Therefore flow control at the
transport layer (such as TCP) is not linked with acknowl-
edgements as it is in most data link protocols [16].

Stallings [14] calls this mechanism a credit scheme in which
the receiver sends a credit (number of buffers available for
buffering data) to the sender to let the sender know the
receiver’s condition and regulate its transmission rate. In
this paper we aim to investigate this credit-based flow con-
trol mechanism by modelling it with Coloured Petri Nets
(CPNs) [9]. We choose CPNs because of their clear graphi-
cal representation and their associated tools and techniques
for analysis [2]. Moreover, CPNs have been successfully used
to model and analyse communication protocols [8]. A model
of the protocol specification is created and analysed using
exhaustive simulation to characterize terminal states and
communication channel bounds, in terms of the protocol’s
parameters.

1.2 Related Work
There have been several attempts to verify data trans-

fer protocols. Chkliaev et al. [3] verified a sliding window
protocol for window size ‘n’ and sequence number space
‘2n’ using a theorem prover over an unreliable communica-
tion channel, which can re-order, lose and duplicate packets.
Fokkink et al. [5] used axiomatic theory to verify the slid-
ing window protocol again for any arbitrary finite window
size ‘n’ but over a lossy queue of capacity one. In [12] un-
bounded sequence numbers are assumed when verifying a
sliding window protocol for the transport layer. This sim-
plifies verification because it is known that repetition (wrap-
ping) of sequence numbers is the main source of errors for
data transfer protocols [15]. The combination of abstraction
techniques and model-checking allowed the sliding window
protocol to be verified for a relatively large window size of
16, using the SPIN model checker [13]. Billington and Gal-
lasch [1] showed how stop and wait protocols can fail over re-
ordering channels and later verified a parameterised model
of the class of Stop-and-wait protocols operating over lossy
in-order channels by obtaining an explicit algebraic expres-
sion for the infinite set of state spaces as a function of the
different parameters (retransmission limit and maximum se-

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.SIMUTOOLS 2008, March 03-07, Marseille, FranceCopyright © 2008 ICST 978-963-9799-20-2DOI 10.4108/ICST.SIMUTOOLS2008.2998

1. [] Free Buffers = 10
[0 1 2 3 4 5 6 7 8 9]2.

4. [0 1 2 3 4 5 6 7]

Free Buffers=2

[8 9]5.

[8 9]6.

[8 9 10 11 12 13 14 15 16 17]8.

[8 9 10 11 12 13 14 15 16 17]9. 10. Out−of−Sequence
packets discarded

[8 9 10 11 12 13 14 15 16 17]11.

Free Buffers= 0

12.[8 9 10 11 12 13 14 15 16 17]

[]13.

Sender’s Window Receiver’s Buffers

[0 1 2 3 4 5 6 7]

(Ack=0,Credit=10)

(8 , 2)

Packets Lost

[8 9]

(8, 10)

[10 11 12 13 14 15 16 17]

[8 9 10 11 12 13 14 15 16 17]

(18, 0)

3. [0 1 2 3 4 5 6 7 8 9]

7. [] Free Buffers=10

Data Handed over
to application

Retransmission Timer
Expires

Figure 1: Credit-based flow control scenario

quence number) [6, 7].
All the work mentioned above uses acknowledgements for

both flow control and error control. In contrast, as in the
Transmission Control Protocol (TCP) [11], our protocol uses
a credit-based scheme for flow control and retransmission
(with acknowledgements) for error control. This decouples
error control from flow control. We have not found any pre-
vious work that formally models and analyses this important
class of data transfer protocols.

1.3 Contribution and Organisation
This paper provides two contributions:

• Firstly, we believe it is the first time that a class of
credit-based flow control protocols is modelled and anal-
ysed using Coloured Petri Nets. This is important be-
cause credit-based flow control is what is used in real
transport protocols (TCP) rather than sliding window
protocols which have been analysed previously.

• Secondly, we derive expressions for the channel bounds
and the number of terminal states for the CPN model,
and validate them for a range of values of the protocol
parameters.

The rest of this paper is organised as follows. Section 2
contains some background information about credit-based
flow control. Section 3 discusses the assumptions made in
our CPN model of the protocol, while the model is described
in Section 4. Section 5 analyses the CPN model and some
conclusions are drawn in Section 6. We assume familiarity
with Coloured Petri Net terminology [9].

2. CREDIT BASED FLOW CONTROL
The principles behind credit-based flow control protocols

are illustrated in Fig. 1. Each action in the time sequence
diagram has been numbered and is explained below.

1. In Fig. 1, the Receiver allocates ten buffers and sends
the first acknowledgement packet to the sender, stat-
ing, starting from sequence number ‘0’ it has space for
ten packets. For our purposes, we consider that an
acknowledgement packet comprises a pair of two non-
negative integers, (Ack,Credit). Ack is the sequence
number (SN) of the packet that is next expected by the
Receiver. Credit represents the number of free buffers
in the Receiver. In this example, we assume that the

receiver is expecting to receive a packet with SN=0
(hence Ack=0). Because 10 buffers have been allo-
cated (and are free), Credit=10. This acknowledge-
ment (shown by the dotted arrow) from the Receiver,
usually occurs during connection establishment.

2. The Sender receives this acknowledgement and estab-
lishes its window, shown between square brackets. This
window is at its maximum size representing the max-
imum number of buffers. The acknowledgement num-
ber determines the start of the window and the credit
determines the end of the window. Packets with se-
quence number ‘0’ to ‘9’ are thus allowed to be trans-
mitted.

3. Initially the Sender has eight packets (‘0’ to ‘7’) to
send and transmits them all. These packets are now
called outstanding packets as they are waiting for ac-
knowledgements from the receiver. These outstanding
packets are enclosed in a rectangular box, which can
be considered the retransmission queue.

4. The Receiver receives these packets and buffers them.
It also sends an acknowledgement packet with acknowl-
edgement number ‘8’ and a credit of two, as eight out
of ten buffers are occupied by received packets.

5. The Sender receives the acknowledgement and checks
its window. The acknowledged outstanding packets
are removed from its retransmission queue. A credit
of 2 corresponds to the current window and hence it is
not changed.

6. The Sender obtains another 10 packets from its user to
send but can only transmit packets ‘8’ and ‘9’, which
in this case are lost.

7. Meanwhile the Receiver delivers its packets to its ap-
plication and in turn frees its buffers. It now has ten
free buffers, which it advertizes to the sender by an
acknowledgement.

8. The Sender receives the acknowledgement and increases
its upper window limit to 17, since it is to send 10
packets starting from 8. It is still waiting for an ac-
knowledgement for the outstanding packets ‘8’ and ‘9’.

9. The Sender now transmits the new packets within the
window, which are also placed in the retransmission
queue along with packets ‘8’ and ‘9’.

10. The Receiver receives these packets and discards them
as they arrived out of order. Different accept policies
can be used by the receiver, which we discuss below.

11. The retransmission timer for packet ‘8’ times out and
the whole retransmission queue is transmitted. There
are different retransmission policies that the Sender
may employ, and these are also discussed below.

12. The Receiver accepts all the in order packets and has
all buffers occupied (Free buffers=0). It sends an ac-
knowledgement with zero credit.

13. On receipt, the retransmission queue is cleared and
the window is zero. The Sender cannot transmit any
further packets until it receives some credit from the
receiver.

2.1 Retransmission Policy
The packets which are transmitted by the sender are plac-

ed in a retransmission queue and can be retransmitted ac-
cording to the following policies [14]:

• First-only: Only one retransmission timer is main-
tained for the entire queue. If an acknowledgement is
received, the acknowledged packets are removed from
the queue and the timer is reset. When the timer ex-
pires, the first packet is retransmitted, the timer is
restarted and the retransmission count incremented by
one.

• Batch: Again only one timer is maintained for the en-
tire queue. When the timer expires, the whole queue
is transmitted and the retransmission counter incre-
mented.

Each of the above mentioned schemes has its pros and cons,
moreover the efficiency of each of these policies depends
upon the accept policy of the receiver, which is discussed be-
low. The First-only retransmit policy is efficient in terms of
traffic generated, because only the lost packets are retrans-
mitted. Though this policy helps with congestion control,
there can be considerable delays as the sender will always
wait for the acknowledgement for the first packet, before it
can retransmit any other packets.

In the batch retransmit policy, a single retransmission
might take care of all the lost packets as the sender does
not wait for the timer to timeout again for another retrans-
mission. Although Batch retransmit reduces the likelihood
of long delays, it performs badly in terms of congestion con-
trol. Retransmitting all packets on the queue when only
one packet is lost (or its acknowledgement is lost) is very
wasteful of bandwidth and may lead to congestion.

2.2 Receiver Accept Policy
According to [14], the receiver can implement one of the

following accept policies:

• In-Order: The receiver only accepts in-order packets,
discarding those that arrive out of order. Receivers
implementing this policy are called non-buffering re-
ceivers.

• In-window: The receiver accepts all packets that are
within the receiver’s receive window, which depends
on the number of free buffers. Receivers implementing
this policy are usually called buffering receivers.

The in-order policy is easily implemented but it burdens
the network, as the sender has to timeout and retransmit
packets that were successfully received but discarded be-
cause of misordering. This accept policy is best suited to
the Batch retransmit policy. The in-window accept policy
reduces the burden on the network by reducing the number
of retransmissions but requires a more complex acceptance
test depending on the Receiver’s window size and a more
sophisticated data storage scheme to buffer and keep track
of data accepted out of order. The In-window accept policy
is more suited to the First only retransmit policy.

3. MODELLING ASSUMPTIONS
The assumptions made in modelling the credit scheme

with CPNs are as follows:

1. Receiver and Sender are initially synchronized: Syn-
chronization occurs during connection establishment
so that the sender and receiver know the initial se-
quence number. The Sender also obtains the number
of buffers the Receiver has allocated for the connec-
tion during connection establishment and adjusts its
window accordingly. As it is part of connection estab-
lishment, synchronization is not included in the model.
We assume the initial sequence number is zero for both
the sender and the receiver. The number of buffers de-
pends on a constant, MaxBufSize. MaxBufSize can
take any positive integer value, but must be less than
MaxSeqNo+1, to ensure no packets within the window
have the same sequence number.

2. Data abstraction: The data transferred is not mod-
elled, since the protocol behaves the same way irre-
spective of packet contents. Hence data packets are
just represented by their sequence numbers.

3. Lossy and in-order communication channel: This cor-
responds to usual behaviour in many networks and is
a good assumption to start with. Reordering chan-
nels result in more complex behaviour that will be the
subject of future work.

4. Received data delivery: According to [14], a receiving
entity is free to deliver the received data to the user
at its own convenience. It can deliver the data to the
user as soon as it receives an in-order packet or it can
first buffer the data before delivery. The actual policy
will depend on performance considerations. If the data
transfer to the user is infrequent and large, there is low
overhead and less processing, whereas if the data trans-
fer is frequent and small, the system provides a quick
response. This quick response is required mainly for
interactive user applications. For non-interactive ap-
plications like file transfer, efficiency is more important
than response time [16], hence buffering the received
data until a large chunk of data is available for the
user is more suitable for non-interactive applications.
In this paper we assume a non-interactive application
to be the user. Thus the receiver in the CPN model
waits until all its buffers are full before transferring all
the data to the user.

5. Limited Retransmission: We explicitly model the limit
of retransmission (MaxRetrans), as these limits exist
in practice. Thus the system will terminate when all
the retransmissions are lost (or the acks are lost). In
practice, when the sender reaches its limit (MaxRe-
trans), and no acknowledgement is received within a
certain period, the user is notified of this condition and
the connection (or session) is cleared down. However,
as we are only modelling the flow control procedures,
we do not model this closing procedure. Hence we ex-
pect to obtain a set of terminal states that relate to
this condition in the sender.

6. Acknowledgements of received data packets: The re-
ceiver can receive any number of packets, before they
are acknowledged. This makes our CPN model more
general and also considers the more usual case of ac-
knowledging every packet received.

(c t , r m)(n x t c t (r e t r a n s , a c k , c t , l l , s e q) , r m)

(c t , r m)(c t + 1 , r m)
p k t _ q i f r m = B a t c ht h e n p k t _ q ^ ^ [s e q d] ^ ^ r e t r a n se l s e p k t _ q ^ ^ [s e q d]s e q d : : r e t r a n sr e m o v e (r e t r a n s , a c k , l l , s e q) r e t r a n sr e t r a n s ^ ^ [n s e q]

u p d a t e S W (n s e q ,a c k , c r e d i t , l l , u l)(n s e q , l l , u l)
a c k _ q(a c k , c r e d i t) : : a c k _ q

p k t _ qs e q : : p k t _ q
a c k _ qa c k p k t : : a c k _ q a c k _ q ^ ^ [(r n , F r e e b u f(u s e d b u f))]a c k _ q (a m , M a x B u f S i z e & F r e e b u f (u s e d b u f) ,r n , m i s s , l r , a c k e d)(a m , u s e d b u f ,r n , m i s s , l r , s t a t u s)

u p d a t e R W (a m , u s e d b u f ,r n , m i s s , l r , s e q , s t a t u s)(a m , u s e d b u f ,r n , m i s s , l r , s t a t u s)p k t _ qs e q : : p k t _ qp k t l i s tp k t l i s t ^ ^ [n s e q](n x t (n s e q) , l l , u l)(n s e q , l l , u l)
R e t r a n s m i t [c t < M a x R e t r a n s]

R e c e i v e _ A c k A c k _ l o s s
P k t _ l o s s S e n d _ A c k[s t a t u s < > a c k e d]

R e c e i v e _p a c k e tT r a n s m i t[n x t s n d (n s e q , u l)]C o u n t c o u n t
R e t r a n s _q u e u e 1 ` []R e t r a n s

A c k _ c h a n n e l1 ` []A c k _ Q u e u e
R e c e i v e r _W i n d o w (b u f f e r e d , 0 , 0 , [] , M a x S e q N o , a c k e d)r e c e i v e rP k t _ c h a n n e l1 ` []P k t _ Q u e u eS e n d e r _W i n d o w (0 , 0 , M a x B u f S i z e & 1)s e n d e r1 ` (0 , F i r s t)

r e t r a n s
Figure 2: CPN of Credit-based Flow Control Protocol

1 (* Parameters *)
2 val MaxSeqNo= 7;
3 val MaxBufSize= 5;
4 val MaxRetrans= 1;

5 (* Colour Sets associated with Sender *)
6 colset Seq = int with 0..MaxSeqNo;
7 colset RM= with First | Batch;
8 colset count= product INT *RM;
9 colset Retrans= list Seq;
10 colset sender= product Seq*Seq*Seq;

11 (* Colour Sets associated with Receiver *)
12 colset Status= with acked | notacked;
13 colset AM= with order | buffered;
14 colset Buffers= int with 0..MaxBufSize;
15 colset Missing=list Seq;
16 colset receiver= product AM*Buffers*Seq*Missing*Seq*Status;

17 (* Colour Sets associated with Communication Channel *)
18 colset Pkt Queue= list Seq;
19 colset Ack= product Seq*Buffers;
20 colset Ack Queue=list Ack;

21 (* Variables *)
22 var seq,nseq,seqd,rn,lr,ll,ul,ack: Seq;
23 var rm: RM;
24 var ct:INT;
25 var retrans: Retrans;
26 var status: Status;
27 var am: AM;
28 var usedbuf,credit:Buffers;
29 var miss: Missing;
30 var pkt q: Pkt Queue;
31 var ackpkt: Ack;
32 var ack q: Ack Queue;

Figure 3: Colour Set declaration for the CPN model

4. THE CPN MODEL
With the assumptions above, a CPN model was developed

using the software package CPN Tools [4]. The CPN model
is given in Fig. 2 and Fig. 3 lists the colour sets and vari-
ables for our CPN model. The model consists of a Sender
communicating with a Receiver over lossy FIFO (First-in,
First-out) channels.

4.1 Sender
The sender part consists of three places: Sender_Window,

Retrans_queue and Count and three transitions: Transmit,
Retransmit and Receive_Ack. Each of the places and tran-
sitions are discussed below.

4.1.1 Places
The place Sender_Window represents the sender’s window.

It is typed by the colour set, sender, which is the product
of three sequence numbers (line 10, Fig. 3). Colour set, Seq
(line 6, Fig. 3), defines the set of sequence numbers as a
finite range of integers from zero to the maximun sequence
number (MaxSeqNo). A token on place Sender_Window is
of the form (nseq,ll,ul), where :

• nseq: represents the sequence number of the next packet
to be transmitted.

• ll represents the lower limit of the window.

• ul represents the upper limit of the window.

The initial marking (state) of place Sender_Window is (0,0,
MaxBufSize-1), which means the first sequence number to be
transmitted is zero, the window starts from sequence number
zero and the upper limit is given by MaxBufSize minus one.
Thus up to the window of packets can be sent initially.

After a packet is transmitted it is placed on a retransmis-
sion queue represented by place Retrans_queue. Packets re-
main in this queue until they have been acknowledged. The
place is typed by Retrans (line 9) which is a list of sequence
numbers. Initially the retransmission queue is empty, rep-
resented by the empty list [].

Place Count represents the retransmission counter and the
retransmission mode. The counter is an integer, represent-
ing the number of times the retransmission timer expires for
a particular packet. The counter can never exceed the max-
imum retransmission value (MaxRetrans). The retransmis-
sion mode, RM (line 7), indicates which retransmission pol-
icy the sender is employing (either First only or Batch). The

place Count is thus typed by the product of an integer and
RM (line 8). The initial marking of Count indicates which
retransmission mode is used, e.g. for the Batch-retransmit
policy, the initial marking is (0,Batch).

4.1.2 Transitions
When Transmit occurs the packet to be transmitted (nseq

from place Sender) is appended to the channel list of pack-
ets and the next sequence number is incremented modulo
MaxSeqNo+1 by using function nxt. The guard of Trans-

mit is the function nxtsnd(nseq,ul) which ensures that the
transmitted packet is not outside the window of the sender.
Receive_Ack processes acknowledgements received by the

sender. Acknowledgments comprise an acknowledgement
number (ack) and the amount of credit (number of free
buffers) available at the receiver. Firstly, it determines if
the ack is valid or not. An ack is valid if it falls in the range
[ll,nseq] (taking sequence number wrap modulo (MaxSeqNo+
1) into account). If the ack is not valid, then the acknowl-
edgement packet is removed from the channel and discarded.
When ack=ll, the acknowledgement is a duplicate. In this
case, it is the credit value that is important, and is used to
calculate the new value of the upper limit of the window (ul).
This is done by setting ul=(ack+(credit−1)) mod (MaxSe-
qNo + 1), which is implemented in updateSW(nseq,ack,cr-

edit,ll,ul). No other action is taken apart from removing
the packet from the channel. The final case is for ack in
the range [ll+1,nseq], when packets are acknowledged. The
acknowledged packets (those in the range [ll, ack−1]) are
removed from the head of the retransmission queue, the up-
per limit of the window is also updated according to the
credit received (as indicated in the previous case) and the
retransmission counter is reset to zero. These actions are im-
plemented using the remove, updateSW and nxtct functions
respectively.
Retransmit models retransmission differently for the two

retransmission modes. When the sender is using the First-
only policy (rm=first), only the first item on the retransmis-
sion queue is appended to the list of packets in the channel,
however, for the Batch policy (rm=batch), the whole of the
retransmission queue is appended. It also increments the re-
transmission counter by one. The inscription on the double
arc between Retrans_queue and Retransmit has been cho-
sen to be“seqd::retrans” (with the corresponding if-then-else
statement on the arc leading to the channel) to ensure that
retransmission does not occur if the queue is empty. The
number of retransmissions is limited to MaxRetrans by the
guard.

4.2 Communication Channel
Communication channels between the Sender and Receiver

(Pkt_channel and Ack_channel) are implemented as lossy
FIFO queues in the usual way. The channel contents are
treated as a list of packets (or acknowledgements), the con-
catenation operator (ˆˆ) is used to add packets (or a list of
packets corresponding to the retransmission buffer) to the
end of the current queue and the cons operator (::) allows
the first item of the queue to be served. Without loss of gen-
erality, loss of packets is considered to occur from the front of
the queue, and is implemented by the transitions Pkt_loss

(for packets) and Ack_loss (for acknowledgements). Pack-
ets are just represented by their sequence number (the data
is irrelevant) whereas acknowledgements are modelled as a

pair (see line 19, Fig. 3) comprising the acknowledgement
number (which is the next expected sequence number) and
the credit corresponding to the number of free buffers in the
receiver. Initially both channels are empty represented by
an empty list [].

4.3 Receiver
The model of the receiver would be simple if we just imple-

mented the in-order acceptance policy, i.e. a non-buffering
receiver. However, we are interested in the behaviour of flow
control protocols where a buffering receiver may also be im-
plemented. We therefore chose to model both behaviours.
To do this we define two acceptance modes that we call or-
der (in-order policy) and buffered (in-window policy). These
are defined in the AM set in the declarations (see line 13,
Fig. 3) The particular policy is chosen via the CPN model’s
initial marking. To cater for the buffering receiver we need to
define some data structures which allow us to characterise
and manage the buffers. Firstly we define the parameter
MaxBufSize to represent the number of buffers that the op-
erating system has allocated to the receiver. We consider
that this number is fixed for the duration of the connection.
Now we define the following data structures:

• Buffers (line 14) represents the number of buffers that
are currently being used;

• Missing (line 15) is a list of sequence numbers of all
the packets that are required to fill any gaps in the re-
ceiver’s buffers. For example, if the receiver has stored
packets 1, 3 and 6 in its buffers then the missing pack-
ets would be the list [2,4,5]; and

• Status (line 12) indicates whether the last received
packet has been acknowledged or not.

The type of the place Receiver_Window (representing the
state of the Receiver) is determined as the product of 6
sets: AM, Buffers, Seq, Missing, Seq and Status (line 16).
The third component represents the next expected sequence
number from the sender, whereas the 5th component rep-
resents the sequence number of the last received packet.
The initial marking for a non-buffering receiver would be
(order,0,0,[],MaxSeqNo,acked), where order indicates a non-
buffering mode; all the buffers are available; the next ex-
pected sequence number is 0; there are no missing packets in
the buffer (because it is empty); given that the next expected
packet has sequence number 0, then the last packet received
is initialised to MaxSeqNo (the previous sequence number);
and finally acked indicates that the last received packet has
been acknowledged, so that the receiver does not send a gra-
tuitous acknowledgement initially. The initial marking of
place Receiver_Window in Fig. 2 is for a buffering receiver.

4.3.1 Transitions
Transition Receive_packet models receiving of data pack-

ets by the receiver. Its operation depends on the accept pol-
icy of the receiver. For an in-order policy, Receive_packet
accepts only in-order packets and discards all out of order
packets. For the in-window accept policy, all the packets
that are within the receive window need to be buffered. This
operation is complex and requires variables to store informa-
tion about missing packets and out of order buffered packets.
Transition Receive_packets uses the function updateRW to
implement both policies.

Figure 4: Buffering process in the Receiver

In-order Accept policy.
Transition Receive_packet calls function updateRW(am,

usedbuf,rn,lost,lr,seq,status) on its output arc to the
place Receiver_Window. If am=order, it checks if the re-
ceived packet is in order (seq=rn) and also if there are free
buffers available at the receiver to store the received pack-
ets (usedbuf < MaxBufSize). When both the conditions are
satisfied, it increments the value of usedbuf and rn by one
and updates the value of the last received packet to seq. It
sets status to notacked, allowing the receiver to send an ac-
knowledgement, if it wants to. If the packet arrived out of
order (seq<>rn) or there were no buffers available then the
state of the receiver remains unchanged,except that status
is set to notacked, so that the receiver can send an acknowl-
edgement.

In-window Accept policy.
Before going into the implementation of the in-window ac-

cept policy, we firstly discuss its principles in more detail.
When an out-of-order packet arrives, which is still within
the receive window, it is stored in the buffer leaving enough
buffer space for the missing packets. When the missing pack-
ets arrive, they are stored in the reserved buffers. When all
the buffers are occupied, all the data is delivered to the user,
freeing up all the buffers to receive further packets.

Figure 4 illustrates the buffering process where the re-
ceiver has allocated ten buffers for the connection. These
ten buffers form the receive window. The sequence number
which the receiver is expecting, plus the next nine sequence
numbers, are within the receive window and can be buffered,
if they arrive out of sequence. When the first three pack-
ets arrive (in sequence), they are stored in the first three
buffers and an acknowledgment is sent along with the credit.
The acknowledgement indicates that all packets have been
received up to and including the packet with sequence num-
ber 4 and the credit is for seven buffers (as three out of ten
buffers are occupied). When the next packet arrives, its se-
quence number is out of sequence. The receiver learns that
two packets are missing and stores the received packet af-
ter reserving two buffers for missing packets. The receiver
does not count out-of-order buffered packets as occupying
buffers. Therefore after receiving the out of order packets
(see Fig. 4) the number of used buffers is still considered
to be three. Therefore the receiver sends a packet with ac-
knowledgement number 5 and credit 7, even though only
two buffers are unoccupied. Now the missing packets (5
and 6) arrive, and the receiver stores them in their reserved
buffers. It has now received packets with sequence number
(up to and including) ‘11’ in sequence and all its buffers are
full, so it sends an acknowledgement (12) with zero credit.
Once all the buffers are full, all the data is delivered to the
user and the buffers are available, so the receiver sends a
new credit of 10 buffers.

Transition Receive_packet uses variables miss and lr to

implement the in-window accept policy. The buffering re-
ceiver procedures are implemented when the variable am is
bound to ‘buffered’, which will be the case for Fig. 2. When
am=buffered, function updateRW first checks if the received
sequence number is the expected sequence number (rn) or
one of the sequence numbers which it did not receive ear-
lier, i.e. is in miss. If either of these two conditions is true
and it still has free buffers (usedbuf < MaxBufSize) then it
changes the state of the receiver in the following way:

• updateRW uses total(usedbuf,lost,seq,lr) to calcu-
late the total number of used buffers. If the received
packet is expected (seq=rn) and miss is empty then it
simply increments usedbuf by one. If the packet is one
of the missing ones then it uses the following logic to
calculate usedbuf:

1. If the received packet sequence number is at the
head of the missing packet list (miss), increment
usedbuf by the difference between the received
packet sequence number and the second packet
of the list.

2. If the missing list has just one packet which is
equal to the received packet, increment usedbuf
by the difference between the sequence number of
the received packet and the last out of sequence
received packet (lr).

3. If the received packet is not the head of the list,
do not update usedbuf as there are still missing
packets ahead of it.

• The received packet is removed from the missing pack-
ets list.

• If miss is the empty list, the last received number is
set to the received sequence number, otherwise it is
not changed.

• When a packet is received the status is changed from
acked to notacked.

If the received sequence number is not the expected sequence
number and it is not among the missing numbers, updateRW
checks if the sequence number is within the receive win-
dow by calling valid(rn,seq,MaxBufSize−usedbuf). If in
range, it changes the state of the receiver as follows:

• Since an out of sequence packet is buffered, there are
some packets missing. updateRW calls add(rn,seq,lr,
miss,usedbuf) which calculates the missing sequence
numbers and appends them to the current missing
packet list.

• The last received sequence number is updated to the
new received sequence number.

• When a packet is received the status is changed from
acked to notacked.

• None of the other receiver state variables are changed.

• Finally, if the received sequence number is not in the
receive window, the packet is discarded.

Send_Ack models the generation of acknowledgements as
well as credit for the sender. When it occurs, it creates an
acknowledgement with ‘rn’ as the acknowledgement num-
ber and the difference between MaxBufSize and usedbuf

(MaxBufSize-usedbuf) as the credit. The pair is appended
to the list of acknowledgements in the Ack channel. Our
assumption that the receiver waits for its buffers to be full
before it delivers data to the user is implemented in this
transition. When usedbuf is equal to MaxBufSize (i.e. all
the allocated buffers are now occupied), usedbuf is set to
zero and credit, equal to MaxBufSize, is sent to the sender.
The transition’s guard [status = notacked] ensures the re-
ceiver only sends acknowledgements after it receives a data
packet.

5. ANALYSIS OF OCCURRENCE GRAPHS
Exhaustive simulation of the CPN model was performed

using CPN tools [4, 10]. This was done by generating the
set of all states and state changes known as the Occurrence
Graph (OG), for a range of parameter values, as the OGs
depend on three model parameters: MaxBufSize, MaxSeqNo
and MaxRetrans.

Table 1 shows the results obtained for a set of OGs for
the sender having a batch-retransmit policy and the receiver
having in-order reception. The OGs were generated having
a lossy FIFO communication channel over a range of values
of the parameters.

Since parameter MaxBufSize determines the initial win-
dow size at the Sender, we use W (window) as a short-
hand for MaxBufSize. In Table 1, the first three columns
record the values of the parameters (R for MaxRetrans,
S for MaxSeqNo and W (window) for MaxBufSize). The
next three columns give the number of nodes, arcs and dead
markings (DMs) in each OG. The last column indicates the
bounds for each communication channel (CB).

5.1 Number of Dead Markings
In the following we derive the number of dead markings

of the CPN model, for an In-order Receiver, as a function of
MaxBufSize and MaxSeqNo. A dead marking is a terminal
state of the model in which there is no state change. Dead
markings for the CPN model of Fig. 2 are those in which all
7 transitions of the model are not enabled. The following
summarizes the conditions under which all 7 transitions will
not be enabled.

• Transmit is not enabled only when its guard, nxtsnd(
nseq, ul), is false because in every marking in [M0〉
(the set of reachable markings, from the initial marking
M0)), the input arc expressions for Transmit will be
satisfied by the places Sender_Window, Retrans_queue
and Pkt_channel. The variables nseq and ul take their
values from the marking of Sender_Window. Thus all
the reachable markings of Sender_Window satisfying
nxtsnd(nseq,ul)=false will contribute to dead mark-
ings if all the other transitions are not enabled. Note
that nxtsnd(nseq,ul)=false implies that nseq= nxt(ul)
(i.e. the next packet to send is outside the window).

• Retransmit is not enabled when“ct=MaxRetrans”due
to the guard expression. Retransmit is also not en-
abled when M(Retrans queue)= 18 [] but M(Retrans
queue) =18[] will never be true in a dead marking. If

R S W Nodes Arcs DMs CB
0 1 1 12 12 4 (1,1)
0 2 1 18 18 6 (1,1)
0 3 1 24 24 8 (1,1)
0 4 1 30 30 10 (1,1)
0 5 1 36 36 12 (1,1)
0 6 1 42 42 14 (1,1)
0 7 1 48 48 16 (1,1)
0 8 1 54 54 18 (1,1)
0 9 1 60 60 20 (1,1)

1 1 1 82 206 4 (3,3)
1 2 1 123 309 6 (3,3)
1 3 1 164 412 8 (3,3)
1 4 1 205 515 10 (3,3)
1 5 1 246 618 12 (3,3)
1 6 1 287 721 14 (3,3)
1 7 1 328 824 16 (3,3)
1 8 1 369 927 18 (3,3)
1 9 1 410 1030 20 (3,3)

2 1 1 270 902 4 (5,5)
2 2 1 405 1353 6 (5,5)
2 3 1 540 1804 8 (5,5)
2 4 1 675 2255 10 (5,5)
2 5 1 810 2706 12 (5,5)
2 6 1 945 3157 14 (5,5)
2 7 1 1080 3608 16 (5,5)
2 8 1 1215 4059 18 (5,5)
2 9 1 1350 4510 20 (5,5)

0 2 2 84 132 15 (2,2)
0 3 2 56 88 10 (2,2)
0 4 2 140 220 25 (2,2)
0 5 2 84 132 15 (2,2)
0 6 2 196 308 35 (2,2)
0 7 2 112 176 20 (2,2)
0 8 2 252 396 45 (2,2)
0 9 2 140 220 25 (2,2)

1 2 2 1467 5202 15 (7,7)
1 3 2 978 3468 10 (7,7)
1 4 2 2445 8670 25 (7,7)
1 5 2 1467 5202 15 (7,7)
1 6 2 3423 12138 35 (7,7)
1 7 2 1956 6936 20 (7,7)
1 8 2 4401 15606 45 (7,7)
1 9 2 2445 8670 25 (7,7)

2 2 2 7557 31380 15 (12,12)
2 3 2 5038 20920 10 (12,12)
2 4 2 12595 52300 25 (12,12)
2 5 2 7557 31380 15 (12,12)
2 6 2 17633 73220 35 (12,12)
2 7 2 10076 41840 20 (12,12)
2 8 2 22671 94140 45 (12,12)
2 9 2 12595 52300 25 (12,12)

0 3 3 360 756 36 (3,3)
0 4 3 450 945 45 (3,3)
0 5 3 180 378 18 (3,3)
0 6 3 630 1323 63 (3,3)
0 7 3 720 1512 72 (3,3)
0 8 3 270 567 27 (3,3)
0 9 3 900 1890 90 (3,3)
0 10 3 990 2079 99 (3,3)
0 11 3 360 756 36 (3,3)

1 3 3 14376 57124 36 (12,12)
1 4 3 17970 71405 45 (12,12)
1 5 3 7188 28562 18 (12,12)
1 6 3 25158 99967 63 (12,12)
1 7 3 28752 114248 72 (12,12)
1 8 3 10782 42843 27 (12,12)
1 9 3 35940 142810 90 (12,12)
1 10 3 39534 157091 99 (12,12)
1 11 3 14376 57124 36 (12,12)

Table 1: OGs for Batch-retransmit sender and in-

order receiver for a range of parameter values.

all the outstanding packets are acknowledged, nseq=ll
and as ul≥ll, seq 6=nxt(ul) and Transmit will be en-
abled. Hence there will be only one marking of place
Count (18(MaxRetrans, First) or 18(MaxRetrans, Batch
)) depending on the initial marking) that contributes
to dead markings.

• Receive_Ack and Ack_loss are not enabled only when
M(Ack Channel) = 18[]. Hence the Ack_channel is
empty in all dead markings.

• Likewise Pkt_channel is empty in all dead markings.

• Finally, Send_Ack is not enabled only when “status =
acked”.

For each reachable marking of Sender_Window in which “seq
=nxt(ul)” (and the other places have markings as discussed
above), all reachable markings for Receiver_Window in which
the last component of the token is acked, will give the num-
ber of dead markings.

The initial marking of Sender_Window depends upon the
parameter, MaxBufSize. For MaxBufSize=W, the window
will be W and Sender_Window will have W reachable mark-
ings in which condition“nseq=nxt(ul)”is satisfied. For W=4,
we have 4 such reachable markings

• Sender Window0(S W0): The sender has transmitted
and retransmitted all the packets within the window
and has received no acknowledgements for packets wit-
hin the window, so that (“nxtsnd(nseq,ul)=false”).

• Sender Window1(S W1): The sender has transmitted
and retransmitted all the packets within the window
and has received an acknowledgement for the first trans-
mitted packet.

• Sender Window2: The sender has transmitted and re-
transmitted all the packets within the window and has
received acknowledgements for the first two transmit-
ted packets.

• Sender Window(W−1)(S W(W−1)) or Sender Window3

(S W3): The sender has transmitted and retransmit-
ted all the packets within the window and has not re-
ceived an acknowledgement for the last transmitted
packet.

Now for each reachable marking of Sender_Window (which
has Transmit not enabled) we have the following correspond-
ing reachable markings for Receiver_Window in which Send-

_Ack is not enabled.
The corresponding reachable markings of Receiver_Win-

dow for marking Sender Window0; which have status=acked
are given by:

1. Receiver Window00(R W00): All the transmitted and
the corresponding retransmitted packets were lost so
no packets were received.

2. Receiver Window01(R W01): The first packet was re-
ceived and all other packets were lost; Receiver sents
an acknowledgement which was also lost.

3. Receiver Window02(R W02): The first two packets w-
ere received and the last two packets were lost; Re-
ceiver sents acknowledgements for the first two pack-
ets, which were also lost.

4. Receiver Window0(W−1)(R W0(W−1)) or Receiver W-
indow03(R W03): The first three packets were received
and the last packet was lost; Receiver sents acknowl-
edgements, which again were also lost.

5. Receiver Window0W (R W0W) or Receiver Window04

(R W04): All packets were received but all the ac-
knowledgements were lost.

Hence, for reachable marking Sender Window0 we have
W+1 or 5 reachable markings for place Receiver_Window.
Using similar arguments, we obtain the Table 2 of reachable
markings for Receive_Window for each of the Sender_Window
markings.

M(Sender Window) M(Receiver Window) Number of
Markings

S W0 {R W0i| i ∈ {0,w}} W+1
S W1 {R W1i| i ∈ {0,w-1}} W
.

S WW−1 {R W(W−1)i| i ∈ {0,1}} 2

Table 2: Number of Dead Markings

The total number of dead markings is therefore given by
the sum of all the reachable markings of Receive_Window:

2 + . . . + (W − 1) + W + (W + 1) (1)

= (1 + 2 + . . . + (W − 1) + W) + W (2)

=
W (W + 1)

2
+ W =

W (W + 3)

2
(3)

Equation(3) gives the dead markings only for the first
window. Because of the credit mechanism, the window at
the Sender is MaxBufSize. Because of the delivery policy
at the receiver (Assumption 4), the window at the sender
moves across the sequence numbers in discrete steps of size
equal to the MaxBufSize (W). The window moves m-number
of times over n-sequence number spaces (sequence number
space={0,1. . .MaxSeqNo}) before the states of Sender Win-
dow start repeating. For example, for W=2 and sequence
number space=3 (MaxSeqNo=2), m=3 and n=2. This is
shown in Fig. 5. In Fig. 5, the window moves three times

Figure 5: Movement of the window over several se-

quence number spaces

before the sender’s states start repeating. The starting and
ending sequence numbers of W1, W2 and W3 (W1. . .W6 are
here called window state classes) are equal to the starting
and ending sequence numbers of W4, W5 and W6 respec-
tively. Also W1, W2 and W3 run over two sequence number
spaces together, therefore in Fig. 5, m=3 and n=2.

We define the Window State Class (WSC), which records
the number of different window state classes (m) that occurs
as the window runs over n sequence number spaces. WSC
may also be defined as the number of different window state
classes which are possible for a given sequence number space
(SS) and MaxBufSize (W). Table 3 gives the statistics for
WSC for different values of MaxSeqNo (S) and MaxBufSize.
Some interesting trends appear in Table 3. The number of
state classes for the sender, WSC, is obtained by dividing the

W S SS n WSC W S SS n WSC
2 2 3 2 3 4 14 15 4 15
2 3 4 1 2 4 15 16 1 4
2 4 5 2 5 5 5 6 5 6
2 5 6 1 3 5 6 7 5 7
2 6 7 2 7 5 7 8 5 8
2 7 8 1 4 5 8 9 5 9
2 8 9 2 9 5 9 10 1 2
2 9 10 1 5 5 10 11 5 11
3 3 4 3 4 5 11 12 5 12
3 4 5 3 5 5 12 13 5 13
3 5 6 1 2 5 13 14 5 14
3 6 7 3 7 5 14 15 1 3
3 7 8 3 8 5 15 16 5 16
3 8 9 1 3 6 6 7 6 7
3 9 10 3 10 6 7 8 3 4
3 10 11 3 11 6 8 9 2 3
3 11 12 1 4 6 9 10 3 5
4 4 5 4 5 6 10 11 6 11
4 5 6 2 3 6 11 12 1 2
4 6 7 4 7 6 12 13 6 13
4 7 8 1 2 6 13 14 3 7
4 8 9 4 9 6 14 15 6 15
4 9 10 2 5 6 15 16 3 8
4 10 11 4 11 6 16 17 6 17
4 11 12 1 3 6 17 18 1 3
4 12 13 4 13 6 18 19 6 19
4 13 14 2 7 6 19 20 3 10

Table 3: WSC for a range of values of MaxBufSize

and MaxSeqNo

sequence number space by the greatest common divisor of
the sequence number space and MaxBufSize; and n is given
by the quotient: MaxBufSize divided by the same greatest
common divisor. Therefore WSC is given by

WSCWS =
MaxSeqNo + 1

gcd(MaxBufSize, MaxSeqNo + 1)
(4)

where gcd finds the greatest common divisor of its two argu-
ments. WSCWS is defined as the number of sender window
state classes which are possible for a given maximum se-
quence number (S) and maximum window size (W) which
corresponds to MaxBufSize. As equation (3) gives the dead
markings for the first window, the total number of dead
markings would be the sum of dead markings in every win-
dow. As the number of markings in each state class is the
same the total number of dead markings for the In-order
receiver is:

DM(In − O)WS = WSCWS ×

„

W (W + 3)

2

«

(5)

Using similar arguments, we derived the following expression
for number of dead markings for the In-window receiver.

DM(In−W)WS = WSCWS×(2W +
W−1
X

i=1

(W −i)×2i) (6)

The results obtained from equation (5) are consistent with
those provided in Table 1.

5.2 Channel Bounds
We now consider the maximum number of packets that

can be in either the Packet Channel or Acknowledgement
Channel for the Batch retransmit policy.

The bounds on the number of packets in both the forward
and reverse channels are given in Table 1 for small values of
the protocol’s parameters when the sender implements the
Batch retransmit policy. If we examine the first marking
of place Pkt_Channel, when the list is at its maximum for

the case when MaxRetrans=2, MaxBufSize=2 and MaxSe-
qNo=7, we obtain the following result (assuming the first
packet to be transmitted has SN=0):

M(Pkt channel)max = 18 [0 1 0 1 1 1 2 3 2 3 2 3]

Examining the structure of this result we can see that the
first full window (01) has been retransmitted twice, then (1)
has been retransmitted twice, given the successful receipt
and acknowledgement of (01). This then allows the next
window (23) to be transmitted and then retransmitted twice
(MaxRetrans=2). At this stage, no further packets can be
transmitted.

If we now chose MaxRetrans=2, MaxBufsize=3 and Max-
SeqNo=7, we obtain:

M(Pkt channel)max = 18 [0 1 2 0 1 2 1 2 1 2 2 2 3 4 5 3 4

5 3 4 5]

We can see that the first full window of packets (012) has
been retransmitted twice, then one less than the full win-
dow (12) has been retransmitted twice, then the last packet
of the window (2) has been retransmitted twice. The first
transmission of (012) has been successfully received and ac-
knowledged, allowing the next window of packets (345) to
be transmitted and then retransmitted twice (the limit of re-
transmission). Given this structure, and noticing that there
can only be packets in the channel from two consecutive
windows (due to the flow control mechanism) we can now
generalise this result as follows. Let R = MaxRetrans, and
W=MaxBufSize, then

MaxPackets(Batch) PCR,W

= R(W + . . . + 2 + 1) + (R + 1)W

=
R(W + 1)W

2
+ (R + 1)W

=
1

2
RW 2 +

1

2
(3R + 2)W (7)

Since the receiver can receive and acknowledge packets one
at a time, all the packets in the Pkt_channel can be con-
verted into their corresponding acknowledgements in the
Ack_channel. Thus the above result also applies to the
Ack_channel. These results have been confirmed for the
range of parameter settings given in Table 1. Based on sim-
ilar arguments the bound on both communication channels
for the First-only retransmit policy is given by:

MaxPackets(First) PCR,W = (R + 1)W + R (8)

The channel bounds given in equations (7) and (8) are inde-
pendent of the Receiver’s accept policy. These results show
that the channel bound is quadratic in MaxBufSize, when
the Batch retransmit policy is used, and linear when the
First-only retransmit policy is used. Both are linear in the
maximum number of retransmissions.

5.2.1 Comparison with the Stop-and-Wait Protocol
When MaxBufSize= 1, the results presented here should

be the same as those for the Stop-and-Wait protocol inves-
tigated in [7] where it was proved that the channel bounds
were given by 2MaxRetrans + 1. If we substitute W=1 in
equations (7) and (8) we obtain the same results:

MaxPackets(Batch) PCR,1 = (4R + 2)/2 = 2R + 1
and

MaxPackets(First) PCR,1 = R + 1 + R = 2R + 1

6. CONCLUSIONS AND FUTURE WORK
This paper has modelled, for the first time, a class of

credit-based flow control data transfer protocols operating
over a lossy in-order medium using Coloured Petri Nets.
The model is quite general and incorporates 3 main proto-
col parameters (maximum number of retransmissions (R),
maximum sequence number (S) and maximum credit (W))
and policies regarding the behaviour of the sender (2 retrans-
mission policies) and receiver (two acceptance policies). The
model was analysed using exhaustive simulation for a range
of parameter and policy settings. From these results we were
able to obtain general expressions for the number of terminal
states of the protocol as a function of two parameters: maxi-
mum sequence number and maximum credit (which also cor-
responds to the maximum number of buffered packets in the
receiver and the maximum window size for packet transmis-
sion in the sender). Different expressions were derived for
the two different acceptance policies used by the receiver,
both of which demonstrated that the number of terminal
states is independent of the retransmission limit. In order
to obtain these expressions we have defined the notion of the
number of window state classes. This depends on the size
of the sequence number space and greatest common divisor
of the sequence number space and the maximum credit. We
believe it is the first time that this observation has been
made.

Further we have obtained two different general expressions
for the channel bounds for the both the batch and first only
retransmit policies. These expressions only involve two pa-
rameters: maximum buffer size and maximum number of
retransmissions. These expressions show that the bounds
are quadratic in W for batch retransmission, while linear in
W for first only retransmission, while both are linear in R.
These results are validated using multiple exhaustive simula-
tions for small values of the parameters. The channel bounds
are also compared with those obtained for the simpler Stop-
and-Wait protocol class and are shown to be consistent.

In the future we would like to prove the results for the
number of terminal states and the channel bounds, and de-
rive expressions in this protocol’s parameters for the whole
state space. This paper thus derives preliminary results that
provide insight into the much more difficult task of obtain-
ing expressions for the infinite family of state spaces in the
three parameters. We would also like to explore the effect
of reordering channels on these results, starting with the
Stop-and-Wait class (W=1).

7. ACKNOWLEDGMENTS
The authors thank their colleagues, Guy Gallasch and

Nimrod Lilith for their valuable suggestions and the referees
for their constructive comments that have helped to improve
the quality of this paper.

8. REFERENCES
[1] J. Billington and G. E. Gallasch. How Stop and Wait

protocols Can Fail Over the Internet. In Proceedings of
FORTE’03, volume 2767 of Lecture Notes in
Computer Science, volume 2000, pages 209–223.
Springer-Verlag, 2003.

[2] J. Billington, G. E. Gallasch, and B. Han. A Coloured
Petri Net Approach to Protocol Verication. In
Lectures on Concurrency and Petri Nets, Advances in

Petri Nets, volume 3098 of Lecture Notes in Computer
Science, pages 210–290. Springer-Verlag, 2004.

[3] D. Chkliaev, J. Hooman, and E. Vink. Verification and
Improvement of the Sliding Window Protocol. In Tools
and Algorithms for the Construction and Analysis of
Systems, volume 2619 of Lecture Notes in Computer
Science, pages 148–163. Springer-Verlag, 2004.

[4] CPN Tools Online.
http://www.daimi.au.dk/CPNTools/.

[5] W. Fokkink, J. F. Groote, J. Pang, B. Badban, and
J. Pol. Verifying a Sliding Window Protocol in µCRL.
In Tools and Algorithms for the Construction and
Analysis of Systems, volume 2619 of Lecture Notes in
Computer Science, pages 113–127. Springer-Verlag,
2003.

[6] G. E. Gallasch and J. Billington. Using Parametric
Automata for the Verification of the Stop-and-Wait
Class of Protocols. In Proceedings of the 3rd
International Symposium on Automated Technology
for Verification and Analysis (ATVA 2005), Taipei,
Taiwan, Volume 3707 of Lecture Notes in Computer
Science, pages 457–473. Springer.

[7] G. E. Gallasch and J. Billington. A Parametric State
Space for the Analysis of the Infinite Class of
Stop-and-Wait Protocols. In 13th International SPIN
Workshop on Model Checking of Software, volume
3925 of Lecture Notes in Computer Science. Springer,
May 2006.

[8] J.Billington, M.Diaz, and G.Rozenberg, editors.
Application of Petri Nets to Communication
Networks. volume 1605 of Lecture Notes in Computer
Science. Springer, 1999.

[9] K. Jensen. Coloured Petri Nets: Basic Concepts,
Analysis Methods and Practical Use, volume 1-3.
Springer, 1997.

[10] K. Jensen, L. Kristensen, and L. Wells. Coloured Petri
Nets and CPN Tools for modelling and validation of
concurrent systems. International Journal on Software
Tools for Technology Transfer, 9(3-4):213–254, June
2007. Available via
http://dx.doi.org/10.1007/s10009-007-0038-x.

[11] J. Postel. Transmission Control Protocol. IETF,
September 1981.

[12] M. Smith and N. Klarlund. Verification of a sliding
window protocol using IOA and MONA. In Formal
methods for distributed system development, pages
19–34. Kluwer Academic Publishers, 2000.

[13] K. Stahl, K. Baukus, Y. Lakhnech, and M. Steffen.
Divide, Abstract and Model-Check. In Theoretical and
Practical Aspects of SPIN Model Checking, volume
1680 of Lecture Notes in Computer Science, pages
57–76. Springer-Verlag, 1999.

[14] W. Stallings. Data and Computer Communications.
Prentice Hall, 8 edition, 2007.

[15] N. Stenning. A Data Transfer Protocol. Computer
Networks 1, pages 99–110, 1976.

[16] A. Tanenbaum. Computer Networks. Prentice Hall, 4
edition, 2003.

