
Application-level simulation for network security

Rainer Bye, Stephan Schmidt
Katja Luther and Sahin Albayrak1

DAI-Labor, Technische Universität Berlin
{rainer.bye, stephan.schmidt, katja.luther, sahin.albayrak}@dai-labor.de

ABSTRACT
We introduce and describe a novel network simulation tool called
NeSSi (Network Security Simulator). NeSSi incorporates a vari-
ety of features relevant to network security distinguishing it from
general-purpose network simulators. Its capabilities such as profile-
based automated attack generation, traffic analysis and interface
support for the plug-in of detection algorithms allow it to be used
for security research and evaluation purposes. NeSSi has been uti-
lized for testing intrusion detection algorithms, conducting network
security analysis, and developing distributed security frameworks
at the application level. NeSSi is built upon the agent component-
ware framework JIAC [5], resulting in a distributed and easy-to-
extend architecture. In this paper, we provide an overview of the
NeSSi architecture and briefly demonstrate its usage in three exam-
ple security research projects. These projects comprise of evalu-
ation of stand-alone detection unit performance, detection device
deployment at central nodes in the network and comparison of dif-
ferent detection algorithms.

Categories and Subject Descriptors
I.6.3 [Simulation and modeling]: Applications

General Terms
Security, Design

Keywords
Network simulation, network security

1. INTRODUCTION
In contemporary communication infrastructures, IP-based com-

puter networks play a prominent role. The deployment of these
networks is progressing at an exponential rate as different kinds
of participants such as corporations, public authorities and indi-
viduals rely on sophisticated and complex services and communi-
cation systems. With regard to information security, this leads to
new challenges as large amounts of data, which may hold mali-
cious content such as worms, viruses, or Trojans, are transferred

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools March 03 - 07, 2008, Marseille, France
Copyright 2008 ACM ISBN 978-963-9799-20-2 ...$5.00.

over open networks. Network security measures dealing with these
threats can be implemented in the network itself as well as at hosts
connected to access routers of the network. The host-based ap-
proach has its merits, especially with respect to the scalability of a
resulting security framework; for example, placing security capa-
bilities such as firewalls or virus scanners on individual hosts does
not inhibit the traffic travelling through the network. However, as
the hosts are generally not under the control of network operators,
there is no way of ensuring a certain network-wide security policy.

A consequence for network service providers (NSPs) striving
to offer improved security features to their customers as a value-
adding feature is to devise a security framework in which detec-
tion devices are placed within the network. Before doing so, the
NSP must take into account that it is not desirable to make frequent
changes or experiment with various security feature deployments
in the network infrastructure of a production system. For this rea-
son, network operators can greatly profit from a network simula-
tion tool in which various features of the security architectures can
be tested in order to ensure maximum attack detection efficiency
before the actual physical deployment. The advantage over con-
ventional testbeds is the low cost and ease at which tests can be
carried out. The presented Network Security Simulator NeSSi (see
Figure 1) allows NSPs to experiment with different network-centric
security framework setups and algorithms in order to evaluate and
compare intrusion detection efficiency and operational costs. In
this fashion, a devised security framework can be tested in a real-
istic simulation environment before the actual detection units are
physically deployed in the network.

In the following section, we provide an overview of existing net-
work simulation tools with focus on security evaluation capabili-
ties. We then describe the general software architecture of NeSSi
in Section 3, focus on the security features in Section 4 and subse-
quently demonstrate how it can be used for the setup and execution
of realistic attack scenarios. Finally, an outlook on future exten-
sions of NeSSi is given in Section 6.

2. CONTRIBUTION
In recent years, the research community has used various net-

work simulation tools for the verification of new algorithms, the
investigation of design and interaction behavior of newly devel-
oped protocols as well as the examination of performance issues
encountered in large-scale network architectures. The most popu-
lar general-purpose software tool in the research community is the
open-source network simulator ns2 [15]. Ns2 performs network
simulation using a discrete event model. This approach has sev-
eral advantages regarding application performance and scalability.
These important issues are discussed for example in [10] and [8].
Discrete simulation allows very cost-efficient exploration and ex-

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.SIMUTOOLS 2008, March 03-07, Marseille, FranceCopyright © 2008 ICST 978-963-9799-20-2DOI 10.4108/ICST.SIMUTOOLS2008.2961

perimentation with real-life network topologies and architectures.
In many areas involving network analysis, ns2 is a powerful tool;
however, it also poses certain limitations to the user. Concerning
the aspect of simulation efficiency for large networks, ns2 does not
out-of-the-box support a parallel execution model. It does not sup-
port generic sockets, but protocols have to be rewritten for the us-
age in ns2. Moreover, the script language interface is not intuitive
to use for novice users. Alternatives to ns2 are for example the
QualNET simulator [13] or the Georgia Tech Network Simulator
GTNetS [12], which, in contrast to ns2, also offers parallel execu-
tion support for large-scale simulation.

However, all these simulators have limitations in standard sup-
port of real-world network security evaluation. A lot of work has
been done in the limited area of worm simulation, as described ex-
tensively by Wei et al. [16]. In this work, the authors note that
existing simulators are mostly single-machine tools and hence do
not scale to model realistic attack mechanisms in real-world large-
scale networks. They propose a distributed approach termed PAWS,
which is nevertheless not a comprehensive tool but limited to worm
simulation only. Another security evaluation tool is RINSE, which
is described by Liljenstam et al. in [7]. It focuses on support-
ing real-time large-scale simulations and allows for realistic emu-
lation of CPU and memory effects within the simulation. However,
there is no mention of application-level simulation capabilities in
RINSE. The same drawback exists in the solution presented in [17],
although it allows model-driven attack tree-based simulation in a
reusable object-oriented software architecture.

With NeSSi, we aim to provide a network simulation tool specif-
ically tailored to meet the needs of security experts and network
administrators. This target group will be able to test and evaluate
the performance of commonly available security solutions as well
as new research approaches. As a distinguishing feature to the pre-
vious tools described above, NeSSi provides extensive support of
complex application-level scenarios on top of a faithful simulation
of the TCP/IP protocol stack. Simulated networks are modeled to
reflect real-world network topologies by supporting subnet-layer
modeling and different node types with varying capabilities (Core
and Access subnets, wireless networks etc.). In particular, NeSSi
follows a strict object-oriented design pattern and fosters the inte-
gration of third-party applications via a standardized socket inter-
face. Furthermore, it provides a comprehensive Detection API for
the integration and evaluation of predefined as well as external de-
tection units. In particular, special common attack scenarios are
supported and can be simulated, for example worm-spread scenar-
ios, botnet-based DDoS attacks (see Figure 4) and many more. In
addition, customized profiles expressing the node behavior can be
applied within the simulation.

The application layer simulation capabilities in NeSSi are pro-
vided by distributed software agents, introducing another layer of
complexity. In order to maintain scalability, a parallel execution
model is used in conjunction with a discrete event model. In this
context, the agent platforms are running on multiple parallel ma-
chines and connect independently to a central database module. A
graphical user front-end allows for real-time inspection and config-
uration of scenarios.

3. THE FEATURES OF NESSI
NeSSi is designed to extend conventional network simulation

tool features by supporting detailed examination and testing op-
portunities of security-related network algorithms, detection units
and frameworks. The main focus of NeSSi is to provide a realistic
packet-level simulation environment as a testbed for the develop-
ment of new detection units as well as existing ones. We use de-

tection unit as an abstract term for any algorithm or tool employed
for the purpose of detecting malicious activity such as intrusion or
service degradation attempts. As a foundation for the simulation of
security scenarios, we first describe in this section the key features
of NeSSi related to general network simulation tasks.

3.1 JIAC agent framework
NeSSi is built upon the JIAC framework [5]. JIAC is a service-

centric middleware architecture based on the agent paradigm. With-
in NeSSi, agents are used for modeling and implementing the net-
work entities such as routers, clients, and servers. The underlying
JIAC agent framework provides a rich and flexible basis for im-
plementing and testing of various security deployments and algo-
rithms in NeSSi. Moreover, building upon an agent framework al-
lows combining the partial knowledge of the agents residing in the
network in a cooperative approach for identifying and eventually
eliminating IP-based threats. For example, this may be achieved by
monitoring the structure of the encountered IP traffic and the be-
havior of potentially compromised target systems. For an illustra-
tive example where we successfully utilized the agents’ cooperative
features, refer to Section 4.

Although the software agents provide powerful application-level
capabilities, their complexity unfortunately also affects the scala-
bility of the simulation. Notwithstanding, we mitigate this prob-
lem by building upon a parallel-execution model (cf. Section 3.4).
Additionally, in the distributed simulation context the agents are
employed as managing entities of different parts of the simulated
network domain.

3.2 Network Simulation Capabilities
At the foundation of NeSSi are standard network simulation fea-

tures such as network and traffic generation. We will introduce the
network model features in the next section, followed by a descrip-
tion of the traffic generation capabilities in NeSSi.

3.2.1 Network Model Features
Network topologies can be created by choosing network ele-

ments such as routers and different kinds of end devices such as
web clients, mail servers etc. and adding them to the network edi-
tor tab via drag-and-drop (cf. Figure 1). In the simulation, agents
realize the behavior of the nodes. The node modeling occurs in
two layers; the first layer reflects their role in the network (client,
server, switch or router). This is further refined according to their
application-level role (such as web clients, mail clients, IRC server
etc.) and inherent functionality.

The network is hierarchically structured by dividing it into sub-
nets. For example, a large-scale network usually consists of a core
area, a number of distribution networks (for example university or
metropolitan area networks) and access networks, i.e. company
networks. In the central network editor window of Figure 1, such
a network with a hierarchical structure is displayed. It is also pos-
sible to automatically generate networks by specifying various pa-
rameters such as the number of individual subnets and their types,
node degree, topology (star, ring etc.), average link bandwidth in
the core, distribution and access subnets and many more.

These subnets and their individual network elements such as
routers and links and their properties, i.e. routing tables, network
interfaces etc., are modeled using the Eclipse Modeling Framework
(EMF1) which also allows automated source code generation. Con-
sequently, the model can easily be extended to include new features
or adapted to match new requirements. Supported standard de-
vice properties are processing speed, packet queuing mechanisms
1http://www.eclipse.org/emf

Figure 1: Graphical user interface of NeSSi

and supported routing protocols; link properties include delay and
bandwidth.

NeSSi supports static and dynamic routing protocols which can
be selected by the user. At the moment, static and dynamic proto-
cols are implemented. A static routing protocol based on the Di-
jkstra algorithm centrally computes the shortest paths as the net-
work is loaded and each time the topology changes. The result-
ing routing tables are subsequently loaded onto the individual net-
work nodes. On the other hand, IS-IS (Intermediate-System-to-
Intermediate-System) has been implemented which relies on a de-
centralized algorithm during which routers exchange information
about their link states and gather topology information locally. In
an iterative fashion, the routing tables at the individual nodes are
updated through control message exchange.

3.2.2 Traffic Generation
Network traffic in form of IP packets, complete with header and

body, can be generated by different means. A straightforward way
is to simply select a client and request a web page to be transferred
(web client), or an e-mail to be sent (mail client) from a specified
server. Implementing the TCP/IP protocol stack, NeSSi features an
application layer module which is based on standard Java socket

implementations. In this fashion, NeSSi can easily be extended to
support a variety of other applications (see Section 3.3). In addi-
tion, the concept of node profiles is incorporated in NeSSi. Node
profiles allow the customization of network node behavior in order
to automatically generate traffic adhering to well-defined charac-
teristics and using various distribution models (standard, binomial
etc). According to a virtual system-wide timer, so-called profile el-
ements can be scheduled for one-time or repeated execution. Pro-
file elements are elementary actions, like sending single UDP pack-
ets or issuing HTTP requests. Each action contains a time stamp as
well as specific context information depending on the used proto-
col. For example, for a HTTP request the name of the web server
and the requested URL are stored in the profile element. Figure 2
shows the creation of a profile containing a HTTP request profile
element.

After defining a profile, it can easily be attached to several clients
by enabling it in the respective clients’ context menu. This concept
allows representing inherent system behavior or explicit user ac-
tions and results in the automatic generation of traffic. This also
includes automated attack generation for the purpose of examin-
ing security-related network features. Several adversary models
are supported, among others worm spread and DDoS attack mod-

Figure 2: Detailed behavior of attached clients for custom traffic generation can be configured and scheduled

els. Automated attack generation has been successfully employed
for the generating simulation data in the research of the cooperative
detection approach (cf. Section 4). In the resulting paper [9], traffic
statistics of captured real traffic data were mapped to node profiles.

3.3 Protocol Stack and Socket-based API
The TCP/IP reference model is the de-facto standard for Internet

communication. Due to its importance, NeSSi also offers an im-
plementation for it. The routers as well as the end devices in the
simulation contain a Network Layer; end devices also exclusively
have a Transport and an Application Layer.

At the Network Layer, IPv4 is realized with the key features
global addressing, routing and fragmentation support. Moreover,
TCP/IP model implementation allows containing several protocols
in each layer; hence, we also provide IPv6 support in NeSSi. For
the fault management, TTL (Time to live) and header checksums
supported and the ICMP protocol has been implemented for failure
notification. Network Layer communication is realized directly on
the drop-tail queues that are located at the network interfaces.

On the next level, the Transport Layer is comprised of UDP and
TCP. TCP in NeSSi offers a reliable and in-order delivery of data.
Sockets represent the interface to the Application Layer, i.e., appli-
cations can set up several stream sockets as well as the correspond-

ing server sockets. In this fashion, third-party Java libraries can
easily be integrated in the simulation by substituting Java sockets
with NeSSi sockets. As a proof-of-concept, the JavaMail API 2 has
been successfully adapted in NeSSi.

All applications that are run in NeSSi follow a common interface
that abstracts from their specific behavior but allows a standardized
way of executing them. Currently, the HTTP, SMTP and IRC pro-
tocols are integrated in NeSSi. Furthermore, the Application Layer
offers an environment allowing the simultaneous execution of sev-
eral application instances.

Generated traffic in NeSSi can also be exported to files in the
pcap3 format in order to inspect the data with standard traffic in-
spection tools such as wireshark4. Several tests have been con-
ducted with the traffic exported from NeSSi, verifying that the gen-
erated traffic is well-formed. Wireshark is able to reconstruct the
application data stream without errors if all corresponding IP pack-
ets are in the exported file. The generated traffic can be analyzed
either offline, for example with the aforementioned tools, or online
within the application itself, for example by displaying a graphical

2http://java.sun.com/products/javamail
3http://www.tcpdump.org
4http://www.wireshark.org

summary (cf. Figure 1).

3.4 Parallel-execution model
Simulations in large-scale networks are very costly in terms of

processing time and memory consumption. Therefore, NeSSi has
been designed as a distributed simulation, allowing the subdivision
of tasks to different computers and processes in a parallel-execution
model. NeSSi introduces an additional layer of abstraction at the
level of network design by explicitly modeling subnets 1, which in
turn contain the end devices or routers (for example seen in Fig-
ure 2). In NeSSi, the handling of subnets is distributed to several
processes on different individual machines, allowing the simula-
tion to scale better with increasing network size. Figure 3 shows
the architecture of the distributed simulation. On the agent level,
the simulation workload distribution is as follows:

Subnet Agent (SA) A subnet agent is responsible for managing an
individual subnet. During execution, the SA receives events
from the PCA (see below) indicating that a new tick has
started. It performs all relevant operations such as packet
forwarding and application handling that need to be executed
for the current tick (an atomic time frame in the discrete event
model). Once all events have been handled, the SA reports
back to the PCA that the tick has been successfully executed.

Platform Coordination Agent (PCA) On a single platform, dif-
ferent subnet agents are created, configured and controlled
by a platform coordination agent (PCA). A platform is meant
as a software environment for agents running on one compu-
ter. The number of subnet agents handled by the PCA is
dependent on the available computing resources. The PCA
receives events from the NCA and relays them to all the SAs
residing on its platform. As soon as all SAs have reported
back that a tick has been executed successfully, the PCA is
responsible for forwarding the packets traveling from one
subnet to another subnet on a different platform to the re-
spective target PCA. Subsequently, it informs the NCA that
the platform has finished the requested task. The platform
also sustains a connection to the database, where simulation
results and history can be stored (see Section 3.5).

GUI Agent The GUI agent acts as a mediator between the soft-
ware agent environment and the graphical user interface. It
transmits control information from the GUI to the agents and
in turn receives data from the agents which can be displayed
in the GUI, for example statistical data on traffic and encoun-
tered malware.

Network Coordination Agent (NCA) The entire network simu-
lation is controlled by the network coordination agent (NCA).
The NCA coordinates the distribution of the subnets at the
beginning of a simulation as well as the synchronization of
the platforms. The NCA receives its network model data
from the GUI agent. The GUI can also trigger the beginning
and determine the end of the simulation, but the NCA does
not depend on a GUI agent to be present once it has been
started. This architecture allows the distributed network sim-
ulation. In addition, the graphical user interface can be dis-
connected from the simulation environment and later recon-
nect to it even from another computer. Figure 3 is a graphical
representation of the distributed agent architecture.

3.5 Persistent Session Management
In NeSSi, we refer to a scenario where we generate traffic via

pre-defined profiles (cf. Section 3.2.1) on a single network over a

certain amount of time as a session. The accurate reproduction of a
session enables users to use different detection methods or various
deployments of detection units for the same traffic data set. This
allows the comparison of performance and detection efficiency of
different security framework setups.

For these purposes, we use a distributed database in which the
traffic generated during a session is stored. The database design
is based on the session concept; each session consists of all traffic
data that occurs in a simulated scenario between a start and end time
using a dedicated network model. The network model is saved in a
XML file. This network file is stored and annotated with a version
number based on its hash code in order to link a network uniquely
to a session. Additionally, attack related events can be stored in the
data base for evaluation purposes. Those events are explained more
in detail in section 4.3.

3.6 Graphical User Interface
The graphical user interface is a Rich Client Platform (RCP) ap-

plication based on the Eclipse framework. It comprises of a main
network editor window grouped with a variety of different views
which provide additional information pertaining to the element cur-
rently selected in the network editor. A selection of these views is:

Console Here, network status information and logged events are
displayed. The desired level of verbosity can be configured.

Browser The browser view serves for displaying HTML resources
which were manually retrieved by executing the respective
command in the network editor.

Routing Table When a network node, i.e. a client, server or router,
is selected, the respective routing table is displayed. For each
reachable target machine, it contains the IP addresses of the
gateway, the subnet mask and the hop count.

Properties Displays and allows editing a number of properties for
the selected element. Among other information, device name
and device type are displayed for nodes; for links, bandwidth,
latency and maximum transfer unit (MTU) is available.

Chart The Chart View serves as a graphical depiction of aggre-
gated statistical data collected on the network traffic for the
selected link. This data is received from the PCA’s databases
and updated periodically.

Sniffed Packets Supplementing the chart view, individual packets
can be displayed in a separate Sniffed Packets View. Packets
are color-coded according to their protocol type and sorted
by the link they were captured on. Furthermore, a summary
of important information is given, such as source and desti-
nation IP address and fragmentation offset.

The user interacts with the application via context-sensitive ac-
tions. For more complex operations, the user is supported by wiz-
ards. For example, when an IRC server is drag-and dropped on the
network editor, a context-menu action is dynamically created for
this node which allows executing a pre-defined IRC exploit sce-
nario. When the user selects it, a wizard appears, describing the
scenario and guiding the user through the process.

Simulation execution can be started, paused and stopped at any
time. Once a scenario was run successfully, the user can start a
new scenario, opt to replay the same traffic with different detection
units or deployments. When a scenario is not running, the user can
also change the network topology by adding and deleting links and
nodes.

Figure 3: Architecture for distributed Simulations with NeSSi

4. SECURITY FEATURES
In the previous sections, we described the basic network model

and traffic generation features of NeSSi as well as other aspects re-
garding general network simulation. The distinguishing feature of
NeSSi is the focus on network security framework and algorithm
evaluation. Figure 5 provides a conceptual view on NeSSi the Net-
work Security Simulator. The bottom layer shows some of the im-
portant technologies that NeSSi uses. This includes the JIAC agent
framework used for representation of the different entities in the
simulation, EMF for the network data model and Eclipse RCP for
the plug-in-based NeSSi application. On top of the bottom layer,
several concepts realized in NeSSi can be found. These are the
aforementioned general network simulation components like traf-
fic modeling via node profiles, a parallel execution model, discrete
event simulation and the visualization. Additionally, tailored to the
needs of security experts, NeSSi incorporates the modeling of at-
tacks and the security infrastructure (c.f. Section 4.2). Moreover,
the Detection Unit API presented in section 4.1 offers the integra-
tion of detection algorithms and the applied Reporting Engine and
Meta Event model enable the user to generate sophisticated statis-
tical evaluations.

4.1 Detection Unit API
Foremost, NeSSi provides a Detection Unit API for the devel-

opment of new detection algorithms as well as the integration of
existing ones. The architecture for this purpose is shown in figure
6. It consists of four main components whose activation depends
on the configuration of the detection approach; the Packet Captur-
ing component is mandatory and processes incoming traffic from a
data source. This is usually a link in the NeSSi simulation but can
also be file system streams or a database connection. Here, pack-
ets are selected according to filter rules and a sampling policy (like
“every tenth packet”) to narrow down the processing overhead. Ac-
cordingly, the packets are associated with time stamps.

Several detection algorithms, e.g. behavior based approaches,

do not only process packets but also generate related statistical in-
formation. As an example, the well-known SYN Flood attack is
characterized by a massive amount of open TCP connections. In
this case, the Packet Processing component offers the construction
of IPFIX5 data flows based on the packet data. The flow specifi-
cation is open to the developer by configuration files. To this end,
a tree structure of the flow is defined by providing key attributes
and optional data fields. A data flow representing distinct TCP ses-
sions must have at least a source IP address, destination IP address,
source port, destination port and a protocol flag as key attributes.

Moreover, the Packet Post Processing component generates the
actual input to the detection units. This input can also be specified
by a detection unit which ranges from raw packets for signature-
based schemes like virus scanners, to complex ratios of traffic statis-
tics based on the flow data; for example in the case of a SYN Flood
attack, the ratio of half-open TCP connections to all TCP connec-
tions can be specified.

Finally, the detection units may be well-known security solu-
tions as contemporary commercial virus scanner software or new
tools developed in scientific research projects. In NeSSi, both can
be incorporated as long as they adhere to a specified interface. The
configuration of a detection unit and the required components are
stored in a template. Furthermore, additional properties like Inlin-
ing, i.e. synchronous packet processing, can be set. This allows
the application of counter measures. A processing interval for a
detection algorithm is another option that can be set here.

4.2 Attack and Security-Infrastructure
The simulation setup in NeSSi is not only comprised of network

creation (c.f. section 3.2.1) and attachment of traffic profiles (c.f.
section 3.2.2), but additionally security related settings can be con-
figured. When a security framework composed of several detection
units is to be tested, profiles can also be used in NeSSi to simulate

5http://www.ietf.org/html.charters/ipfix-charter.html

Figure 4: Simulating a DDoS attack in an IRC scenario

attacker behavior and attack patterns. Accordingly, NeSSi provides
out-of-the box support for various attack scenarios such as bot net-
works initiating DDoS attacks. Here, infected end device nodes,
“zombies”, are controlled by the bot net commander via the Inter-
net Relay Chat application. The commander is capable of initiating
different kinds of DDoS attacks like the SYN Flooding or UDP
Storm. To this end, the attacker connects to an IRC communication
server and sends attack commands to a chat channel all the bots are
listening to. As a result, the bots execute the desired attack.

Besides, worm propagation schemes are supported. Here, the
behavior of the SQL Slammer worm and the Blaster worm has
been realized exemplarily in NeSSi. In general, a worm propaga-
tion scheme as well as the SIR model (Susceptible Infected Recov-
ered) as an epidemiological model is included in NeSSi. The worm
propagations scheme can be configured in different ways: on the
one hand there exist configuration files defining the number of ini-
tial propagators and where in the network the outbreak should take
place. Additionally, the spreading scheme, i.e. which IP addresses
to attack and delays in between, can be set.

On the other hand, the worm application model itself can either
be extended or a new one can seamlessly be integrated via the ap-
plication interface provided in NeSSi (cf. 3.3). In the second step,
newly developed or pre-configured detection units can be deployed
on a set of links in the simulation. Therefore, analogous to the
traffic profiles, detection profiles can be created. Those detection
profiles consist of one or more detection units and can be deployed

on end devices, links or routers. Details of how these deployments
are evaluated with regard to their efficiency can be found in Sec-
tion 5.2. The tools used for these evaluation tasks are described in
the next section.

4.3 Reporting and Evaluation
NeSSi allows the simulation of various security scenarios. Ad-

ditionally, there is a huge diversity in network security evaluation
metrics. Here, the developer of a detection algorithm respectively
of a special security infrastructure set-up may not only be inter-
ested in detection rates, but also in the economical assessment of a
scenario.

Hence, the gathering of simulation results and the evaluation has
to be very flexible. Here, we apply an event-based approach, the
so-called Meta Attack Events. Already included events incorporate
dropped packets, infected flows, compromised machines, unavail-
able services etc. Those events are stored in the database at run-
time. Events belonging to the same attack refer to a global ID to
differentiate between the impacts of different attacks. The database
associates those events with a time stamp in the simulation as well
as a device and/or transmitted packets related to that specific event.

Furthermore, we apply BIRT6 (Business Intelligence and Re-
porting Tools) for visualization and analysis of results. BIRT is
comprised on the one hand of a graphical report designer capa-
ble of creating report templates. In those templates, different input
6http://www.eclipse.org/birt/phoenix

NeSSi- Network Security Simulator

Design Environment Simulation Core Evaluation of Results

Attack Modelling

Network and Security
Infrastructure

Traffic Modelling Distributed Simulation

Eclipse RCP JIAC EMF

Visualization

Statistical Evaluation
Component

Reporting EngineDiscrete Event Simulation

Detection Unit API

Figure 5: NeSSi, the Network Security Simulator is comprised of several components presented in the middle layer. The concepts
characterizing NeSSi as a security simulation environment are accented. The bottom layer depicts some of the main used technolo-
gies.

sources like databases, simple Java objects or XML files can be de-
clared. Additionally, BIRT allows standard statistical operations on
the data and enables the choice of several chart types to display the
resulting data series. More complex preprocessing can easily be
carried out by adding Java or JavaScript code.

On the other hand, BIRT offers an environment for the gener-
ation of the reports at runtime. In this case, a report template is
loaded and the actual selected data source, in the example of NeSSi
usually a simulation session is bound to the report. Subsequently,
an HTML document containing the desired report is generated and
can be shown in any Internet Browser. Figure 7 shows an exam-
ple report created in the NeSSi environment. It compares detection
rates of different algorithms; the detection rate is measured as de-
tected number of infections in comparison to the total number of
infections (sensitivity). In the following section, practical relevance
of the presented concepts is shown in some examples.

5. CASE STUDIES
NeSSi has already demonstrated its value in recent research and

was employed as a test framework for various network-centric se-
curity approaches.

5.1 Artificial Immune System
For example, a distributed and collaborative Artificial Immune

System (AIS) was implemented in NeSSi for testing an anomaly-
based detection algorithm [9]. In this scenario, anomaly detection
units on different hosts compute the probability of an anomaly by
an AIS component. The idea of AIS is to compute the possibility
of an anomaly by comparing the actual status of the system to a set
of detectors created by negative selection [4]. This algorithm is a
metaphor of the biological negative selection taking place during
the maturation of the immune cells. The detectors are produced
nearly randomly and compared to the normal data; if a detector

is similar to a normal feature vector, it is deleted and a new one
is created, this is done until no detector is similar to the normal
feature vector set (training set).

The data processed by the AIS is statistical in nature and ob-
tained by a monitoring component on the host agent. Here, the
probability of an anomaly constitutes the status of a client. The
cooperation between the clients takes place by sharing these sta-
tus levels and computing new status level information based on the
incoming status of others and its own status. The tests results, ver-
ified in NeSSi, indicated a very good performance of the AIS in
general while the false positive rate (the main problem of anomaly
detection systems) was lowered significantly. The communication
between the AIS clients described in [9] has been implemented in
NeSSi via a customized peer-to-peer protocol to avoid the single
point-of-failure of a central server. This peer-to-peer protocol al-
lows the combination of AI Systems into detection groups.

As an extension, a scheme for the decentralized detector set gen-
eration was presented by Bye et al. [3]. Here, the overall feature
space is partitioned in several sub spaces administrated by AIS-
enabled nodes. As a result, the individual computational load for
each node is decreased. Nevertheless, by the application of com-
binatorial design techniques like Symmetric Balanced Incomplete
Block Design or Generalized Quadrangles a controlled level of
overlap between the detector sets is realized and sets are exchanged
deterministically via a peer-to-peer system. Finally, this results in
a trade-off between the aforementioned computational task on the
one hand and a guaranteed level of redundancy on the other hand.

5.2 Detection Device Placement
As a second use-case scenario, we studied various detection de-

vice placement approaches. To this end, we used a number of iden-
tical detection units in order to ensure comparability. The type
of detection unit to use can be selected prior to starting the de-

Detection Units

ANOMALY-BASED
DU

SIGNATURE-
BASED DU

CLASSIFICATION

AGGREGATION

Packet ProcessingPacket Post Processing

SELECTION

DU-DATA-
GENERATION

FILTERING

FILTERING

SELECTION

Packet Capturing

TIMESTAMP

INLINING
Input Source

Figure 6: The components of the Detection API and the
packet/data flow between them. The Packet Processing com-
ponent is not necessary for all detection algorithms.

vice placement scenario in NeSSi. Furthermore, the configuration
dialog allows selecting how many total detection devices may be
placed, representing a total sampling budget. The objective is then
to maximize the detection efficiency subject to the budget con-
straints. Several algorithms are supported for computing sensi-
ble deployment strategies, for example Betweenness Centrality [2],
Traffic Betweenness Centrality [1] or a selection of game-theoretic
approaches [6, 14].

In NeSSi, we have already successfully evaluated two of these
approaches, namely node selection algorithms using the Between-
ness Centrality paradigm as well as a monitor placement game de-
scribed in [14]. The Betweenness Centrality algorithm originates
from social network theory and indicates the importance of a node
in the overall network communication. It is run in NeSSi in an Ex-
ecutorService after a change to the network topology occurs and
returns a numerical value for every node indicating its centrality
index. Subsequently, detection devices are placed on the devices
corresponding to the nodes with the largest values as an optimal de-
ployment. We then ran a test with default traffic generation profiles
on all clients for a fixed number of execution cycles. For compari-
son, we subsequently fed the same traffic in the same network but
deployed the detection units randomly. The results indicate the su-
periority of deploying on nodes with high Betweenness Centrality
index. We assume that in case traffic is not uniformly distributed in
the network, i.e. there are clients who generate considerably more
traffic than others, the Traffic Betweenness Centrality [1] approach
would be even more suitable.

In the second study, a game-theoretic approached was employed
where the attackers and the IDS are modeled as adversaries in a
two-person game. We were able to demonstrate the existence of a
mixed-strategy saddle-point equilibrium and computed its value for

Figure 7: Reporting in NeSSi: This report shows an evaluation
of the detection ratio (sensitivity) of different detection algo-
rithms

two example networks. The adversaries are modeled as Runnables
in NeSSi. Upon starting the simulation, the respective threads are
started simultaneously, and elementary player actions from the stra-
tegy matrix are selected using a random number generator. It was
possible to verify the game-theoretic optimality and measure the
performance of the obtained strategies to the devised network se-
curity game.

5.3 Detection Algorithm Evaluation
In a university graduate class, NeSSi was used to produce data

for evaluating detection algorithms implemented by students with-
out any knowledge of the simulator. When it is not required to an-
alyze simulation data at runtime, NeSSi allows to store simulation
data, e.g. the IP packets, in the database. In the anomaly detection
class, NeSSi was used to simulate "normal" traffic, a DDoS attack
and a worm attack. The students were tasked with implementing
an anomaly detection algorithm and comparing detection results
between different algorithms, attack types and detector placements
within in NeSSi. All these different experiments were based on the
simulation data stored in the NeSSi database.

6. CONCLUSION AND OUTLOOK
We have presented and described the Network Security Simula-

tor NeSSi. Based on agent technology and discrete event simula-
tion, it is a highly-scalable, platform-independent network simula-
tion tool with special features for evaluating security solutions. In
particular, the plug-in-based API allows security experts to write
their own detection unit plug-ins and test them in NeSSi.

Network simulation is a very wide and complex area in software
engineering. There is an abundance of features existing in real-
life networks; moreover, standards are changing and new standards
are introduced continuously at a rapid rate. Hence, keeping NeSSi
up-to-date with the latest trends in network technology is a great
challenge. The following is a list of features we plan to focus on in
the further development of NeSSi. For comparison, a list of features

for the next generation of ns-2 (some of them are already supported
in NeSSi) can be found in [11].

Usability In order to appeal to a greater audience, the usability of
the simulator can be improved. This includes role-based user
interface perspectives dependent on experience level (novice
or expert).

Scenarios More default attack scenarios will be supported. We
will extend the already realized Bot Net infrastructure capa-
ble of executing DDoS-attacks (cf. Figure 4) by peer-to-peer
principles. Peer-to-peer bot nets are regarded as an emerging
important threat in Network Security.

Open-source We plan to publish NeSSi under an open-source li-
cense.

Acknowledgement: The authors would especially like to thank
their scientific advisors Ahmet Camtepe and Tansu Alpcan for their
invaluable support and their fellow colleagues Thorsten Rimkus,
Sebastian Linkiewicz, Marcus Lagemann and Joël Chinnow for
their dedicated work on this project.

7. REFERENCES
[1] M. Bloem, T. Alpcan, S. Schmidt, and T. Başar. Malware

filtering for network security using weighted optimality
measures. In Proc. of 2007 IEEE Multi-conference on
Systems and Control. IEEE, 2007. to appear.

[2] U. Brandes. A faster algorithm for betweenness centrality.
Journal of Mathematical Sociology, 25(2):163–177, 2001.

[3] R. Bye, K. Luther, S. A. Çamtepe, T. Alpcan, Şahin
Albayrak, and B. Yener. Decentralized Detector Generation
in Cooperative Intrusion Detection Systems. In
S. Masuzawa, Toshimitsu; Tixeuil, editor, Stabilization,
Safety, and Security of Distributed Systems 9th International
Symposium, SSS 2007 Paris, France, November 14-16, 2007
Proceedings, Lecture Notes in Computer Science , Vol.
4838. Springer, 2008.

[4] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri.
Self-nonself Discrimination in a Computer. In Proceedings
of the IEEE Symposium on Research in Security and Privacy,
pages 202–212. IEEE Computer Society Press, 1994.

[5] S. Fricke, K. Bsufka, J. Keiser, T. Schmidt, R. Sesseler, and
S. Albayrak. Agent-based telematic services and telecom
applications. Communications of the ACM, 44(4):43–48,
April 2001.

[6] M. Kodialam and T. Lakshman. Detecting network intrusions
via sampling: A game theoretic approach. In Proceedings
IEEE INFOCOM 2003. Twenty-Second Annual Joint
Conference of the IEEE Computer and Communications
Societies, volume 3, pages 1880–1889, Apr. 2003.

[7] M. Liljenstam, J. Liu, D. Nicol, Y. Yuan, G. Yan, and
C. Grier. Rinse: The real-time immersive network simulation
environment for network security exercises. PADS,
00:119–128, 2005.

[8] B. Liu, D. Figueiredo, Y. Guo, J. Kurose, and D. Towsley. A
study of networks simulation efficiency: Fluid simulation vs.
packet-level simulation. In INFOCOM 2001. Twentieth
Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, volume 3,
pages 1244–1253, 2001.

[9] K. Luther, R. Bye, T. Alpcan, S. Albayrak, and A. Müller. A
Cooperative AIS Framework for Intrusion Detection. In

Proceedings of the IEEE International Conference on
Communications (ICC 2007), 2007.

[10] D. M. Nicol, M. Liljenstam, and J. Liu. Advanced concepts
in large-scale network simulation. In M. E. Kuhl, N. M.
Steiger, F. Armstrong, and J. A. Joines, editors, Winter
Simulation Conference, pages 153–166. ACM, 2005.

[11] ns-3 project. NS-3 network simulator.
http://www.nsnam.org/docs/architecture.pdf.

[12] G. F. Riley. The Georgia Tech Network Simulator. In
Proceedings of the ACM SIGCOMM workshop on Models,
methods and tools for reproducible network research, pages
5–12. ACM Press, 2003.

[13] Scalable Network Technologies Inc. Qualnet.
http://www.scalable-networks.com.

[14] S. Schmidt, T. Alpcan, S. Albayrak, and A. Müller. A
Monitor Placement Game for Intrusion Detection. In Proc. of
CRITIS, 2nd International Workshop on Critical Information
Infrastructures Security, Lecture Notes in Computer Science.
Springer, 2007. to appear.

[15] USC Information Sciences Institute. NS-2 network simulator
2.31. HTTP://WWW.ISI.EDU/NSNAM/NS/DOC/NS_DOC.PDF.

[16] S. Wei, J. Mirkovic, and M. Swany. Distributed worm
simulation with a realistic internet model. PADS, 00:71–79,
2005.

[17] J. B. Yun, E. K. Park, E. G. Im, and H. P. In. A scalable,
ordered scenario-based network security simulator. In
Systems Modeling and Simulation: Theory and Applications,
volume 3389/2005 of Lecture Notes in Computer Science
(LNCS), pages 487–494. Springer-Verlag, 2005.

