
Importance Sampling in Rate-Sharing Networks

P. Lieshout
CWI

P.O. Box 94079
1090 GB Amsterdam, the Netherlands

lieshout@cwi.nl

M. Mandjes
∗

Kortweg-de Vries Institute
University of Amsterdam

Plantage Muidergracht 24
1018 TV Amsterdam, the Netherlands

mmandjes@science.uva.nl

ABSTRACT
We consider a network supporting elastic traffic, where the
service capacity is shared among the various classes accord-
ing to an alpha-fair sharing policy. Assuming Poisson ar-
rivals and exponentially distributed service requirements for
each class, the dynamics of the user population may be de-
scribed by a Markov process. We focus on the probability
that, given that the network is in some state n0 at time 0,
the network is in some set of states A at time T . In par-
ticular, we assume that the underlying event is rare, i.e.,
the probability of interest is small. As in general no explicit
expressions are known for this probability, an attractive ap-
proach may be to resort to Monte-Carlo (MC) simulation.
However, due to the rarity of the event under consideration,
MC simulation is infeasible. A natural approach to speed
up the simulation is to use Importance Sampling (IS). We
present an IS algorithm to accelerate the simulation that
is based on large deviations results. With extensive simula-
tion experiments we assess the performance of the algorithm;
under rather general conditions a considerable speed-up is
achieved.

Categories and Subject Descriptors
C.4 [Performance of systems]: Design Studies; D.4.8
[Performance]: Queueing Theory

General Terms
Design, Performance

Keywords
Alpha-fair sharing, Importance sampling, Rare events

1. INTRODUCTION
Over the past several years the Processor-Sharing (PS)

∗M. Mandjes is also affiliated with CWI, Amsterdam, the
Netherlands, and EURANDOM, Eindhoven, the Nether-
lands.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools, March 03-07, 2008, Marseille, France.
Copyright 2008 ACM 978-963-9799-20-2 ...$5.00.

discipline has been widely used for evaluating the flow-level
performance of elastic data transfers competing for band-
width on a single bottleneck link. In a multi-link setting,
bandwidth-sharing networks as considered by e.g. Massoulié
& Roberts [13] provide a natural extension for modeling the
dynamic interaction among competing elastic flows.

It is well-known that the queue length distribution in a
single-server PS system with Poisson arrivals has a simple
geometric distribution that only depends on the service re-
quirement distribution through its mean. The distribution
of the number of active users in bandwidth-sharing networks
with several nodes has, in contrast, remained generally in-
tractable, even for exponentially distributed service require-
ments. This already illustrates the complication of analyzing
these networks, which is also reflected by the fact that the
amount of available literature on this topic is scarce. Bonald
& Massoulié [5] established the crucial result that the wide
family of alpha-fair bandwidth-sharing policies as introduced
by Mo & Walrand [14] achieve stability under the simple
condition that no individual link is overloaded. The family
of alpha-fair policies covers several common notions of fair-
ness as special cases, such as max-min fairness (α → ∞),
Proportional Fairness (α → 1), and maximum throughput
(α ↓ 0). In [15] it has also been shown that the case α = 2,
with additionally class weights set inversely proportional to
the respective round trip times, provides a reasonable mod-
eling abstraction for the bandwidth sharing realized by TCP
(Transmission Control Protocol) in the Internet.

In this paper we consider a network operating under a
alpha-fair sharing policy. Since the service rate allocated to
a flow is restricted in practice, we impose class-dependent
access-link rate limitations, similar as in [2]. Assuming Pois-
son arrivals and exponentially distributed service require-
ments for each class, the dynamics of the user population
may be described by a Markov process.

An essential requirement of modern bandwidth-sharing
networks is their capability of providing a variety of Quality-
of-Service (QoS) guarantees, where QoS is usually expressed
in term of constraints on a set of performance measures, such
as mean transfer delays, but also the probability that there
are many flows (per class) active in the network. Typically,
such a probability is required to be below some small thresh-
old, as this can prevent flows from experiencing large delays.
Motivated by this, we analyze in this paper the probability
that, given that the network is in some specific state n0 at
time 0, the network is in some set of states A after some
predefined time T . In particular, we assume that the un-
derlying event is rare, i.e., this probability is small. As in

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.SIMUTOOLS 2008, March 03-07, Marseille, FranceCopyright © 2008 ICST 978-963-9799-20-2DOI 10.4108/ICST.SIMUTOOLS2008.2948

general no explicit expressions are known for the probabil-
ity of interest, an attractive approach may be to resort to
Monte-Carlo (MC) simulation. In general, one may say that
the number of runs needed to obtain an estimate with pre-
defined accuracy and confidence, is inversely proportional
to the probability to be estimated [10], implying that MC
simulation is infeasible due to the rarity of the event under
consideration. A natural method to accelerate the simula-
tion is to use Importance Sampling (IS). The idea underlying
IS is to simulate the system with a new set of input prob-
ability distributions, i.e., new interarrival and service time
distributions, such that the rare event becomes more likely,
and then to correct the simulation output with appropriate
likelihood ratios, in order to obtain an unbiased estimate.

To obtain promising new input distributions we first iden-
tify the most probable path (MPP) for the event to occur.
Informally speaking, given that this rare event occurs, with
overwhelming probability it will happen by a path close to
this MPP. For the M/M/1-PS queue the MPP is already
known [16], whereas this is not the case for a general alpha-
fair sharing network. We develop an approach for detecting
the MPP, that exploits the large deviations results of [16].
The underlying idea is that locally the flow-level dynamics
of a particular class in the network can be approximated
as a M/M/1-PS queue. It is noted that, in contrast to the
M/M/1-PS queue where the most likely path has a linear
shape, in case of a general alpha-fair sharing network the
MPP has a non-linear shape. The path is then subsequently
translated into new input distributions, that are such that
the event under consideration occurs by realizations close to
this MPP.

Extensive numerical experiments indicate that the above
approach is quite effective: we are able to estimate prob-
abilities up to 10−13 quickly. It is emphasized that we do
not prove that our IS technique is asymptotically optimal
or asymptotically efficient [6]. The numerical experiments,
however, suggest that the IS scheme is close is to being
asymptotically optimal.

The remainder of the paper is organized as follows. In
Section 2 we first provide a detailed model description, dis-
cuss the use of IS, and present a key large deviations the-
orem. Section 3 deals with the M/M/1-PS queue, which is
in fact a special case of our network. In Section 4 we de-
rive (that is, approximate, but the approximation can be
made arbitrarily close) the MPP for a rare event to occur
in a general alpha-fair sharing network, by exploiting the
results of the M/M/1-PS queue. Section 5 shows how one
can translate this MPP into new input distributions that
can be incorporated in an IS algorithm. The pseudo-code
of the IS algorithm is presented in an Appendix. Section 6
examines the performance of the IS algorithm for two spe-
cial networks, and shows that the IS scheme performs well.
Finally, Section 7 concludes with some final observations.

2. PRELIMINARIES
In this section we first describe our queueing model. Next

we discuss IS, a simulation technique designed for estimating
rare event probabilities. Finally, we briefly discuss some
large deviations results, which are needed in the analysis.

2.1 Queueing model
We consider a network consisting of L nodes, where node

j has capacity cj , j = 1, . . . , L. There are I classes of users

in the network, where each class corresponds to a specific
route in the network. We assume that class-i users arrive
according to a Poisson process of rate λi, and have i.i.d. ex-
ponentially distributed service requirements with mean µ−1

i ,
i = 1, . . . , I. The arrival processes and service distributions
are all assumed to be independent. The traffic load of class
i is then ρi := λi/µi, i = 1, . . . , I. If a user requires ser-
vice at multiple nodes, then we assume that it is served at
all nodes simultaneously. Let S(j) denote the set of classes
that require service at node j, j = 1, . . . , L. Finally, let
N(t) = (N1(t), . . . , NI(t)) ∈ N I

0 be a vector denoting the
state of the network at time t ≥ 0, with Ni(t) representing
the number of class-i users at time t ≥ 0.

The network operates under a so-called alpha-fair shar-
ing policy, as introduced in [14]. When the network is in
state n = (n1, . . . , nI) 6= 0, the service rate x∗i allocated to
each of the class-i users is obtained by solving the following
optimization problem:

max
PI

i=1 Ui(xi)

subject to
P

i∈S(j) nixi ≤ cj , j = 1, . . . , L

over xi ≥ 0, i = 1, . . . , I,

where the utility function Ui(xi) is defined by

Ui(xi) :=

(
κini

x1−α

i

1−α
if α ∈ (0,∞)\{1};

κini log xi if α = 1.

The κis are non-negative weights, and α ∈ (0,∞) can be in-
terpreted as a fairness coefficient. The cases α → 0, α → 1
and α → ∞ correspond to allocations which achieve maxi-
mum throughput, proportional fairness, and max-min fair-
ness, respectively. If α = 2 and κi is the reciprocal of the
square of the round-trip time on path i, then alpha-fair shar-
ing approximates the allocation that is achieved by the con-
gestion avoidance algorithm of TCP.

Let si(n) := nix
∗
i denote the total service rate allocated

to class i. Since the rate allocated to single flows is often
restricted in practice, we assume that the effective total rate
allocated to class-i users is [2]

di(n) := min {si(n), niri} ,

where ri can be thought of as the access-link rate limitation
for a class-i flow, i = 1, . . . , I.

Then it can be proven that N(t) is a Markov process with
state space N I

0 , equipped with transition rates:

q(n, n+ ei) = λi; q(n, n− ei) = ν(n), i = 1, . . . , I,

where νi(n) := µidi(n). Given that ri ≥ ci, i = 1, . . . , I, i.e.,
given that there are no access-link rate limitations, Bonald
and Massoulié [5] showed the plausible result that N(t) is
an ergodic Markov process ifX

i∈S(j)

ρi < cj , j = 1, . . . , L. (1)

Since the down rates of our system differ only for a finite
number of states from those in a similar system without rate
limitations, it follows from Proposition 1 in [11] that N(t) is
ergodic for all values of ri > 0, i = 1, . . . , I, given that (1)
holds. We emphasize that in general no explicit expressions
are known for the steady-state distribution of N(t).

In this paper our goal is to estimate

P := P(N(T) ∈ A|N(0) = n0),

i.e., the probability that, given that network is in state n0 at
time 0, the state of the network at time T > 0 is contained
in set A. For example, here n0 might be a state where the
network operates around most of the time, and A might be
an ‘overflow set’:(

(x1, . . . , xI) ≥ 0|

IX
i=1

xi > b

)
,

where b ≥ 0 is a scalar.

2.2 Importance Sampling
As in general no analytical expression for P is known, a

natural approach to obtain an estimate of P is to perform
simulation experiments. Let Ω = {fi, i = 1, 2, . . . } be the
set of all paths f in the evolution of the system, given that
the system is in state n0 at time t = 0, i.e., f(0) = n0. Let
1x be an indicator of the event x, and p(f) the probability
density function of the sample path f . Then we obtain that

P =

Z
Ω

1f(T)∈A p(f)df = Ep

�
1f(T)∈A

�
, (2)

where the subscript p indicates sampling from the density p.
An unbiased estimate of (2) can be obtained by performing
MC simulation, i.e., we run R independent simulations, with
the system starting in state n0, and we determine

PMC :=
1

R

RX
i=1

1fi(T)∈A,

where fi is the path obtained in the i-th run. In case n0 and
A are such that f(T) ∈ A occurs relatively often, then we
can accurately estimate P in a relatively small amount of
time by PMC. The number of runs needed to obtain an esti-
mate with predefined accuracy and confidence, is in general
inversely proportional to the probability to be estimated, see
e.g. [10].

If n0 and A are such that f(T) ∈ A is a rare event, then
the above properties entail that we need a large number
of simulations to provide an accurate statistical estimate of
P . In this case the simulation can be accelerated by using
IS. The idea underlying IS is to simulate the system with
a new set of input probability distributions, such that the
rare event becomes more likely. To this end, let us consider
a new probability measure p′. Then, (2) is equivalent to

P =

Z
Ω

1f(T)∈A
p(f)

p′(f)
p′(f)df

=

Z
Ω

1f(T)∈AL(f)p′(f)df

= Ep′

�
1f(T)∈AL(f)

�
, (3)

where L(f) := p(f)/p′(f) is called the likelihood ratio. Note
that (3) is valid for any density p′(·), given that p′(f) > 0
for all f that are such that f(T) ∈ A. Hence, an unbiased
IS estimator is given by

PIS :=
1

R

RX
i=1

1fi(T)∈AL(fi),

where fi is now simulated under the measure p′, with fi(0) =
n0, i = 1, . . . , R.

Clearly, the simulation can be accelerated considerably if
p′ is properly chosen, in the sense that the number of runs

needed to obtain an accurate statistical estimate of P with
IS, is less compared to the number of runs needed with MC
simulation. Hence, IS can be seen as a variance-reduction
technique. We note, however, that not every choice of p′ will
reduce the variance. In fact, if p′ is badly chosen, then this
may increase the variance, or even make it infinite.

In this paper we assume that n0 and A are such that
f(T) ∈ A is a rare event. As mentioned above, in this case
MC simulation is unattractive, and one may resort to IS
to obtain an estimate of P . We derive an IS scheme that
considerably speeds up the simulation. This scheme is based
on sample-path large deviations results, see e.g. Shwartz and
Weiss [16].

2.3 Large deviations
In this subsection we present large deviations results of

Shwartz and Weiss [16], which will be needed in the next
sections.

Let X(t) be a Markovian jump process with state spaceRd , equipped with transition rates:

q(x, x+ vi) = ψi(x),

where vi is a vector in Rd and ψi(x) is the rate of the jump
in that direction when the state is x, i = 1, . . . , k. Also, let
X

n
(t) := X(nt)/n, t ≥ 0, n ≥ 1, be the fluid scaled process,

which is obtained by making the jumps smaller, but faster.
Define the ‘local’ rate function

ℓ(x, y) := sup
θ

〈θ, y〉 −

kX
i=1

ψi(x)
�
e〈θ,vi〉 − 1

�!
,

where x, y and θ are in Rd , and 〈·, ·〉 denotes the usual

inproduct: 〈a, b〉 :=
Pd

i=1 aibi. Finally, define the rate func-
tion

IT (f) :=

� R T

0
ℓ(f(s), f ′(s))ds if f is absolutely continuous;

∞ otherwise,

where f is in Rd . The following sample-path large deviations
principle (LDP) now holds (see Theorem 5.1 in [16]).

Theorem 2.1. For any well-defined x0 and set F ,

− lim
n→∞

1

n
log P �Xn

(·) ∈ F |X
n
(0) = x0

�
= inf

f∈F, f(0)=x0

IT (f).

Remark: Intentionally, Theorem 2.1 has been formulated
slightly imprecise. In fact, the LDP consists of an upper
and lower bound, which apply to closed and open sets, re-
spectively, see Theorem 5.1 in [16]. However, for the purpose
of the paper, it is sufficient to state the theorem as above.
For more details we refer to Chapter 5 of [16].

Let us write g(x) ∼ h(x) when g(x)/h(x) → 1 if x → ∞.
Then it follows from the above thatP �Xn

(·) ∈ F |X
n
(0) = x0

�
≈ g(n, F, x0)e

−nIT (f∗), n→ ∞,

where f∗ is the optimizing path in Theorem 2.1, and
g(n, F, x0) is a subexponential function, i.e.,

lim
n→∞

log g(n, F, x0)

n
= 0.

From the above it follows that Theorem 2.1 only gives us the
logarithmic asymptotics. Therefore, in general Theorem 2.1

does not provide us with any information on the function
g(n, F, x0), which implies that we can only use it to obtain
a rough estimate of P �Xn

(·) ∈ F |X
n
(0) = x0

�
.

In the next section we apply Theorem 2.1 to the so-called
free M/M/1-PS process.

3. FREE M/M/1-PS PROCESS
We first assume thatX(t) corresponds to the free M/M/1-

PS process, i.e., the M/M/1-PS queue that is not reflected
at 0, meaning that the state space of X(t) is Z (whereas the
state space of a M/M/1-PS queue is N 0). We note that the
flow-level dynamics of the M/M/1-PS queue coincide with
those of the M/M/1-FIFO queue, which also follows from
the well-known property that both have the same steady-
state queue length distribution. This implies that the results
derived in this section in fact also hold for the free M/M/1-
FIFO process.

In this section we treat the free M/M/1-PS process, be-
cause this plays a key role in the analysis of a general alpha-
fair sharing network, as we will see in Section 4. This may
sound surprising, as the down rates corresponding to free
M/M/1-PS process are constant, whereas the down rates
corresponding to a general alpha-sharing network are vari-
able. The idea underlying this analysis is that we can locally
approximate the flow-level dynamics of a particular class in a
general alpha-fair sharing network by a free M/M/1-PS pro-
cess with class-specific arrival and service rate, which will be
exploited in the next sections to obtain an estimate of P .

Since X(t) corresponds to the free M/M/1-PS process,
we have that X(t) = Xup(t) − Xdown(t), where Xup(t) is a
Poisson process of rate λ and Xdown(t) is an independent
Poisson process of rate µ. Assume that λ < µ, such that
X(t) has a negative drift. The transition structure of X(t)
is then, in the terminology of Section 2.3,

v1 = +1; ψ1(x) = λ;

v2 = −1; ψ2(x) = µ,

with x ∈ Z. Then,

ℓ(x, y) = ℓ(y) = sup
θ

n
θy − λ

�
eθ − 1

�
− µ

�
e−θ − 1

�o
,

i.e., the local rate function is independent of the current
state x. Straightforward calculus shows that the optimizer
satisfies

eθ∗

=
y +

p
y2 + 4λµ

2µ
,

which yields

ℓ(y) = y log

y +

p
y2 + 4λµ

2λ

!
+ λ+ µ−

p
y2 + 4λµ

= : ℓ(y|λ, µ).

We now focus on the overflow probabilityP(Xn
(T) > k|X

n
(0) = k0),

with k > k0. Using Theorem 2.1, we have thatP(Xn
(T) > k|X

n
(0) = k0) ≈ e−nI∗

,

where

I∗ := inf
f∈G, f(0)=k0

IT (f), with G := {f : f(T) > k}.

In Lemma 5.16 of [16] it is shown that the MPP, i.e., the
path f∗ in set G that minimizes IT , is a straight line from
k0 to k in the interval [0, T], with cost

I∗ = IT (f∗) = T × ℓ

k − k0

T

�����λ, µ!
= T

k − k0

T
log

k − k0

2Tλ
+

1

2λ

r
(k − k0)2

T 2
+ 4λµ

!
+λ+ µ−

r
(k − k0)2

T 2
+ 4λµ

!
=: C (k − k0, T |λ, µ). (4)

We now show that (4) can also be obtained in another
way. First recall that the cost of a Poisson process of rate
λ behaving like a Poisson process of rate λ∗ is, during one
unit of time,

Ĩ(λ∗|λ) := λ∗ log

�
λ∗

λ

�
+ λ− λ∗,

see p. 20 of [16]. Note that Ĩ(λ∗|λ) is the Legendre transform
of the logarithmic Moment Generating Function (MGF) of a
random variable that has a Poisson distribution with mean
λ. Clearly, Ĩ(µ∗|µ) follows in the same way. Observe that

indeed Ĩ(p|p) = 0, p = λ, µ, as required. In order to have
X(T) > k, given that X(0) = k0, we should have that Xup

(Xdown) behaves as a different Poisson process of rate λ∗

(µ∗), where (λ∗−µ∗)T > k−k0. We thus get the minimiza-
tion problem:

T min
λ∗,µ∗

n
Ĩ(λ∗|λ) + Ĩ(µ∗|µ)

o
,

over all λ∗, µ∗ such that (λ∗−µ∗)T > k−k0. Straightforward
calculations yield that the optimizers are

λ∗ =
k − k0

2T
+

1

2

r
(k − k0)2

T 2
+ 4λµ;

µ∗ = −
k − k0

2T
+

1

2

r
(k − k0)2

T 2
+ 4λµ, (5)

and the corresponding objective function value indeed equals
(4).

4. MOST PROBABLE PATH
In the previous section we obtained an approximation for

the overflow probability in the M/M/1-PS queue (where we
assumed that there was no reflection at 0). In this section
we use the same ideas to derive an approximation for P in
a general alpha-fair sharing network.

We first consider the cost K (f, T) of a path f , with f(0) =
n0, in the interval [0, T]. We find thatK (f, T) =

IX
i=1

Z T

0

ℓ
�
f ′

i(t)|λi, νi(f(t))
�
dt.

From the logarithmic asymptotics stated in Theorem 2.1 it
then follows that the following approximation applies:

P = P(N(T) ∈ A|N(0) = n0)

≈ exp

�
− inf

f :f(T)∈A,f(0)=n0

K (f, T)

�
. (6)

Let f∗ denote the path that minimizes the cost, i.e., the
MPP. Since the down rates in our model are state-dependent,
in contrast to what is the case for the free M/M/1-PS pro-
cess, the MPP in general has a non-linear shape. In fact, in
general no closed-form expression is available for the path
that minimizes K (f, T). Equation (6) suggests that we should
try to find an accurate approximation of f∗ to obtain an es-
timate of P , which is done below.

Divide T into n (which is typically a large number) subin-
tervals of length ∆n := T/n. Consider the contribution to
a path of the k-th subinterval, i.e., the interval [k∆n, (k +
1)∆n), for k = 0, . . . , n−1, and assume that the down rates
are νi(f(k△n)), i = 1, . . . , I, in this subinterval. Then the
cost of this time interval, related to class i are given byC (fi((k + 1)∆n) − fi(k∆n),∆n|λi, νi(f(k∆n)).

Hence, we find that the total cost K n(f, T) are

IX
i=1

n−1X
k=0

C (fi((k + 1)∆n) − fi(k∆n),∆n|λi, νi(f(k∆n))).

Note that the higher the value of n, the more accurate the
approximation will be, i.e.,

lim
n→∞

K n(f, T) = K (f, T).

Using the above, we can approximate K (f, T), for given n ∈N , by K n(f, T). Also, the path that minimizes K n(f, T) can
be regarded as an approximation of f∗. In order to obtain
this approximating path, optimization should be performed
over all fi(j∆n), i = 1, . . . , I, j = 0, . . . , n, i.e., (n + 1)I
entries, given that f(0) = n0 and f(n∆n) = f(T) ∈ A.

Approximation (6) turns out not to be very accurate in
general. Clearly, this is no surprise, as in Section 2.3 we
already argued that Theorem 2.1 just gives us the logarith-
mic asymptotics, and that we therefore have only a rough
estimate of P .

5. NEW INPUT DISTRIBUTIONS
In the previous section we derived an approximation for

P that required the calculation of an optimizing path. This
path can be regarded as an approximation for the most likely
way for the event to happen. That is, given that the event
occurs, with overwhelming probability N(T) ∈ A is reached
by a path close to this optimizing path. In this section we
show how we can exploit the results of Section 4 to develop
methodology to obtain an accurate estimate of P .

Assume that we have (an accurate approximation of) the
MPP

f∗ := arg inf
f :f(T)∈A,f(0)=n0

K (f, T),

as discussed in the previous section. Suggested by (5), the
following change-of-measure at time t corresponds to f∗:

λ∗
i (t) :=

1

2
(f∗

i)′(t) +
1

2

q
((f∗

i)′(t))2 + 4λiνi(f∗(t));

ν∗i (t) := −
1

2
(f∗

i)′(t) +
1

2

q
((f∗

i)′(t))2 + 4λiνi(f∗(t)),

i = 1, . . . , I. When, at time t ≥ 0, the process is simulated
with arrival rates λ∗(t) and departure rates ν∗(t), given that
the process starts at n0 at t = 0, it is not hard to see that

the i-th coordinate of the expected position of the process
at time t is

n0,i +

Z t

0

λ∗
i (s)ds−

Z t

0

ν∗i (s)ds = f∗
i (0) +

Z t

0

(f∗
i)′(s)ds

= f∗
i (t),

i = 1, . . . , I, i.e., the process has the ‘correct’ expected po-
sition, under this change-of-measure.

In an Appendix we present an IS scheme that can be used
to obtain an estimate of P . The basic idea underlying this
scheme is to simulate the model with rates λ∗

i (t) and ν∗i (t),
i = 1, . . . , I. Typically, we only know these rates at n + 1
time points, as in general the MPP is not explicitly known,
but it is approximated, see Section 4. However, if one as-
sumes the rates to be constant between two consecutive time
points, i.e., in a subinterval, then each class essentially be-
haves as a free M/M/1-PS process with class-specific arrival
and service rate in this subinterval, which is easy to simu-
late. For more details we refer to the Appendix.

In the next section we show that, compared to MC simula-
tion, this scheme can considerably speed up the simulation,
given that the underlying event is rare. That is, the number
of runs that are needed to get some fixed level of confidence
with the IS scheme, is substantially less than the number of
runs needed with MC simulation.

6. SIMULATION RESULTS
In this section the performance of the IS algorithm is ex-

amined in case of a single-node network (shared by multiple
traffic classes) and a linear network, respectively. These are
the two simplest networks, and therefore of particular inter-
est to gain insight. We have performed extensive simulation
experiments for each of these two networks, and the results
are presented below. We mention that, besides the results
reported in this section, we have considered many other ex-
amples, in which usually a substantial speed-up is achieved

6.1 Single-node network
We first consider a single-node network with capacity c,

where capacity is shared between I classes. In order to ob-
tain the alpha-fair allocation we have to solve the following
optimization problem for state n 6= 0:

max
PI

i=1 Ui(xi)

subject to
PI

i=1 nixi ≤ c

over xi ≥ 0, i = 1, . . . , I,

where Ui(xi) is defined as before. It is a straightforward
exercise to show that the optimizers are such that

si(n) = nix
∗
i =

κ
1/α
i nicPI

j=1 κ
1/α
j nj

, i = 1, . . . , I. (7)

From (7) it follows that alpha-fair sharing in a single-node
network corresponds to sharing in a discriminatory-processor-

sharing fashion, with relative weights κ
1/α
i , i = 1, . . . , I,

see [8]. We find [2] that

di(n) = min

(
κ

1/α
i nicPI

j=1 κ
1/α
j nj

, niri

)
, i = 1, . . . , I.

The steady-state distribution of N(t) is only known in case
κi = κ and ri ≥ c, i = 1, . . . , I, i.e., if all weights are equal

and if the rate limitation for each flow is at least as large as
the capacity of the node, so that there is essentially no rate
limitation.

Then this model is equivalent to a processor-sharing model,
and it is straightforward to derive that the steady-state dis-
tribution of N(t) is [3]

π(n) =
c−

PI
i=1 ρi

c

(n1 + · · · + nI)!

n1! . . . nI !

IY
i=1

�ρi

c

�ni

, n ∈ N I
0 ,

given that the stability condition
PI

i=1 ρi < c holds.
The first part of the IS algorithm consists of finding a

MPP. We have performed numerical experiments to gain in-
sight on the typical shape of such a minimizing path. We
consider the setting with I = 2, λ1 = 0.75, λ2 = 1.5, µ1 = 2,

µ2 = 4, κ
1/α
1 = 1/3, κ

1/α
2 = 2/3, r1 = 0.9, r2 = 0.8, and

c = 1, and we let T , n0 and set A vary. The results are de-
picted in Figure 1, which are obtained by using an optimiza-
tion procedure in Mathematica 5.2. We solved the problem
for n = 2p, p = 1, . . . , 5, and we used the minimizing path
found for n = 2q−1 as starting path in the optimization
procedure for n = 2q, q = 2, . . . , 5 (for n = 2 we do not
have a nice starting path). Hence, the depicted paths are
associated with n = 25 = 32. We note that the above ap-
proach is much faster than solving the optimizing problem
directly for n = 32 (without an appropriate starting path).
We observed that the optimizing problem can be solved in a
relatively small amount of time if n ≤ 32. For higher values
of n the obtained path is almost similar to the one obtained
for n = 32, but the computation requires more time. In
the first, second and third column of Figure 1 we depict
(f1(i∆32), i∆32), (f2(i∆32), i∆32) and (f1(i∆32), f2(i∆32)),
i = 0, . . . , 32, respectively. We note that we have, besides
the ones depicted in Figure 1, considered many other scenar-
ios. Also in these cases, the minimizing paths do not seem
to be linear.

Although the shapes of the MPPs corresponding to sce-
narios (a)-(c) are not always trivial, the shape of the path
corresponding to scenario (d) perhaps requires some more
explanation. In particular, the shape of the path correspond-
ing to class 1 is surprising in this scenario: it first slightly
decreases, and then it starts to increase. A possible expla-
nation for this phenomenon may be the following. In [2] it
was shown that there exists a unique point n∗ = (n∗

1, n
∗
2)

such that λi = di(n
∗), i = 1, 2. This is the equilibrium

point of the so-called fluid limit: the system operates (most
likely) most of the time around this point. The fluid limit is
obtained by both speeding up the arrivals and service speed
by a fixed factor, and then letting this factor go to infinity.
It can be shown that the resulting normalized Markov pro-
cess converges to a deterministic limit. From Proposition 2.1
in [2] it follows that n∗

1 = 0.5625 and n∗
2 = 0.46875 in sce-

narios (a)-(d). Recalling that the path starts in n0 = (3, 0)
in scenario (d), we see that the MPP initially evolves in the
direction of the fluid limit, but then changes its direction to
make sure that f2(T) > 6. It remains, however, hard to fully
explain the shapes of the MPPs in general. One can expect
that the MPP from any n0 to any set A is more or less linear
if T is relatively small. In contrast, if T is relatively large,
then one can expect that the MPP first drifts to n∗, and
then changes its direction towards set A, see e.g. [12].

To quantify the performance of the proposed IS scheme
we take the same parameter values as above, where we let

T , n0 and set A vary. We consider three structures for A:
(i) {f |f1(T) > a}, (ii) {f |f2(T) > a} and (iii) {f |f1(T) +
f2(T) > a}, with a > 0. The results are presented in Ta-
bles 1-4. These results (and also the ones in the next sub-
section) are obtained with Mathematica 5.2 and are tested
on a personal computer with an AMD Athlon 64 3500+
processor (2.2 GHz). In the tables #IS (#MC) denotes the
number of runs needed with IS (MC) simulation to obtain a
confidence of 95% and a relative efficiency (i.e., the ratio of
the confidence interval half-length to the estimated value)
of 10%, and τIS (τMC) denotes the time needed with IS (MC
simulation). Note that τIS consists of two parts: (a) finding
the optimal path and (b) performing the simulation with the
new input distributions.

Table 1 compares IS with MC simulation. The MC esti-
mator is obtained by simulating independent runs of the
original model (starting in n0) until time T , and subse-
quently determining the fraction of the runs that are such
that f(T) ∈ A. The table shows that for a relatively large
value of P (larger than 0.01), MC simulation yields an accu-
rate estimate much faster than the IS scheme does. In con-
trast, for a relatively small value of P (smaller than 0.01), IS
significantly outperforms MC simulation. Clearly, this is no
surprise: the IS scheme presented in the Appendix is based
on large deviations results, and therefore one expects this
scheme to perform well in case the underlying event is rare,
i.e., if P is relatively small.

Tables 2, 3 and 4 show the performance of our scheme in
case of rare events. As mentioned in Section 2.2, in this case
MC simulation is infeasible. Therefore, we have decided not
to compare the performance of the IS scheme with that of the
MC simulation. These tables show that our scheme works
remarkably well for rare events: we are able to estimate
probabilities up to 10−13 in a fast way.

The results also show that the performance of the IS
scheme decreases as T increases (for fixed other model pa-
rameters), i.e., more runs are needed to achieve the required
efficiency. This can be explained as follows. As T increases
and n (the number of subintervals) remains constant, the
approximation of the minimizing path becomes less accu-
rate, and therefore the performance of the IS algorithm is
also negatively affected.

We also empirically observed that, for fixed arbitrarily
chosen n0 and T ,

lim
k→∞

log E p′

�
1f(T)∈A·kL

2(f)
�

log Ep′

�
1f(T)∈A·kL(f)

� , (8)

is close to (but smaller than) 2, where p′ is the IS-distribution
and A · k := {n : n/k ∈ A}. It is noted that one can esti-
mate both denominator and numerator in (8) by using the
simulation output. The above suggests that our IS scheme
is nearly asymptotically optimal [6], which we can, however,
not formally prove.

6.2 Linear network
We next consider a linear network that consists of L nodes,

where node i has capacity ci. There are I = L + 1 classes
of users: each class corresponds to a specific route in the
network. Class-i users require service at node i only, i =
1, . . . , L, whereas class-(L + 1) users require service at all
L nodes simultaneously. In order to obtain the alpha-fair
allocation we have to solve the following optimization prob-

(a)

0.5 1 1.5 2 2.5 3

2

4

6

8
f∗
1 (t)

t
0.5 1 1.5 2 2.5 3

1

2

3

4
f∗
2 (t)

t
2 4 6 8

1

2

3

4

n1

n2

(b)

1 2 3 4 5 6

2

4

6

8

f∗
1 (t)

t 1 2 3 4 5 6

1

2

3

4

f∗
2 (t)

t

2 4 6 8

1

2

3

4

n1

n2

(c)

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3
f∗
1 (t)

t
0.5 1 1.5 2 2.5 3

2

4

6

8

10

12
f∗
2 (t)

t

0.5 1 1.5 2 2.5 3

2

4

6

8

10

12

n1

n2

(d)

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

f∗
1 (t)

t

0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

f∗
2 (t)

t
0.5 1 1.5 2 2.5 3

1

2

3

4

5

6

n1

n2

Figure 1: Single-node network: The minimizing paths of K 32(f, T) in four scenarios. Scenario (a): T = 3,
A = {f |f1(n) > 8} and n0 = (1, 4). Scenario (b): T = 6, A = {f |f1(T) > 8} and n0 = (1, 4). Scenario (c): T = 3,
A = {f |f2(T) > 12} and n0 = (1, 4). Scenario (d): T = 1, A = {f |f2(T) > 6} and n0 = (3, 0). The left panel shows
f∗
1 (·) as function of time t. The middle panel shows f∗

2 (·) as function of time t. The right panel shows the
parametric plot of (f∗

1 (·), f∗
2 (·)). Since we only know both f∗

1 (·) and f∗
2 (·) at n+ 1 = 33 time points, we linearly

interpolate between consecutive points.

T a n0,1 n0,2 PIS #IS τIS PMC #MC τMC

1 6 1 4 6.1 · 10−4 1559 12.4 6.2 · 10−4 622085 341.1
1 6 1 0 3.0 · 10−4 3312 16.4 2.7 · 10−4 1468866 523.4
3 6 1 4 1.5 · 10−2 2441 17.2 1.4 · 10−2 27518 35.9
3 6 1 0 5.1 · 10−3 22745 91.4 4.9 · 10−3 78851 77.7
6 6 1 4 4.0 · 10−2 12821 80.4 3.7 · 10−2 9397 23.4
6 6 1 0 2.0 · 10−2 74237 390.1 1.8 · 10−2 22397 44.9

Table 1: Simulation results for structure (i): comparison with MC simulation (times in seconds).

T a n0,1 n0,2 PIS #IS τIS

1 10 1 0 3.3 · 10−8 3509 18.9
1 14 1 0 5.1 · 10−13 4744 24.4
2 10 1 0 2.9 · 10−6 6762 33.9
2 14 1 0 7.3 · 10−10 8123 40.7
3 10 1 0 2.6 · 10−5 12439 59.2
3 14 1 0 2.5 · 10−8 12526 63.7
1 10 1 4 4.2 · 10−8 2861 17.5
1 14 1 4 7.8 · 10−13 3349 20.6
2 10 1 4 6.0 · 10−6 2680 19.5
2 14 1 4 1.2 · 10−9 4686 28.5
3 10 1 4 6.2 · 10−5 4173 25.8
3 14 1 4 5.6 · 10−8 5847 37.4

Table 2: Simulation results for structure (i): rare events (times in seconds).

lem for state n 6= 0:

max
PI

i=1 Ui(xi)

subject to nixi + nL+1xL+1 ≤ ci

over xi ≥ 0, i = 1, . . . , L+ 1.

Only in case ci = c, i = 1, . . . , L, i.e., if all nodes have
the same capacity, there exist explicit expressions for the
optimizing x∗i s. In that case the optimizers are such that

sL+1(n) = nL+1x
∗
L+1 =

(κL+1n
α
L+1)

1/α

(κL+1nα
L+1)

1/α + (
PL

j=1 κjnα
j)1/α

;

si(n) = nix
∗
i = (1 − sL+1(n))1ni>0, i = 1, . . . , L.

Therefore, we find that dL+1(n) equals

min

(
(κL+1n

α
L+1)

1/α

(κL+1nα
L+1)

1/α + (
PL

j=1 κjnα
j)1/α

, nL+1rL+1

)
,

and di(n), for i = 1, . . . , L, equals

min

(
(
PL

j=1 κjn
α
j)1/α

(κL+1nα
L+1)

1/α + (
PL

j=1 κjnα
j)1/α

!
1ni>0, niri

)
.

The steady-state distribution of N(t) is only tractable if α =
1, κi = κ, cj = c, and ri ≥ c, i = 1, . . . , L+ 1, j = 1, . . . , L.
Under the stability condition max1≤i≤L ρi + ρL+1 < c, the
steady-state distribution ofN(t) is such that π(n) equals [13]QL

i=1(c− ρi − ρL+1)

c(c− ρL+1)L−1

(n1 + · · · + nL+1)!

(n1 + · · · + nL)!nL+1!

L+1Y
i=1

�ρi

c

�ni

,

n ∈ NL+1
0 .

We test the performance of our IS scheme in case L = 2,
λ1 = 1, λ2 = 1.75, λ3 = 2, µ1 = 2, µ2 = 4, µ3 = 5, r1 = 0.6,
r2 = 0.3, r3 = 0.8, g1 = 2, g2 = 1, g3 = 0.5, α = 1, and
starting state (1, 2, 1). Furthermore, we assume ci = c = 1,

i = 1, 2, such that we have a closed-form expression for
di(n), i = 1, 2, 3, and we let T and A vary. We assume that
A has structure {f |f1(T)+f3(T) > a1, f2(T)+f3(T) > a2},
with a1, a2 > 0. The results are given in Tables 5-6.

The results again show that the rare event probabilities
can be estimated rather efficiently. Compared to the single-
node network, it now takes much more time to find the MPP
(which in general has a non-linear shape), as one needs to
optimize over more entries.

7. CONCLUSION
We analyzed a network where classes share capacity ac-

cording to an alpha-fair sharing policy. We focused on the
probability P that, given that the network is in some state
n0 at time 0, the network is in some set of states A at time
T , i.e., P = P(N(T) ∈ A|N(0) = n0). In particular, we
assumed that n0 and A are such that P is small, i.e., the
underlying event is rare. As no analytical expressions are
known for P , we devised an IS scheme for quick and accu-
rate estimation.

In this paper we studied the transient behavior, but a
topic for further research is the derivation of an approxima-
tion of π(A), where π(·) denotes the steady-state distribu-
tion of N(t). Using regenerative arguments, one can obtain
π(A) by dividing the expected time that the process spends
in set A during a cycle from n0 to n0, by the associated ex-
pected cycle time, see e.g. Corollary 1.4 in [1]. One may use
specific measures to estimate both numerator and denom-
inator, so-called measure specific dynamic IS, see e.g. [9].
Dynamic refers to the fact that per run the IS is turned on
until the event of interest occurs and turned off thereafter.

Acknowledgments
This research has been funded by the Dutch BSIK/BRICKS
(Basic Research in Informatics for Creating the Knowledge
Society) project.

T a n0,1 n0,2 PIS #IS τIS

1 10 1 0 5.4 · 10−7 2702 15.3
1 14 1 0 1.0 · 10−10 3624 21.5
2 10 1 0 3.1 · 10−5 8958 40.4
2 14 1 0 8.4 · 10−8 4756 28.6
3 10 1 0 1.6 · 10−4 10423 51.0
3 14 1 0 1.7 · 10−6 18663 94.6
1 16 1 4 5.5 · 10−9 2776 16.2
1 20 1 4 7.2 · 10−13 3580 21.1
2 16 1 4 1.1 · 10−6 2613 17.6
2 20 1 4 1.7 · 10−9 3792 24.4
3 16 1 4 8.0 · 10−6 3517 24.6
3 20 1 4 6.2 · 10−8 4152 25.9

Table 3: Simulation results for structure (ii): rare events (times in seconds).

T a n0,1 n0,2 PIS #IS τIS

1 20 1 0 2.3 · 10−13 4396 67.6
2 25 1 0 5.1 · 10−13 6605 80.8
3 30 1 0 1.2 · 10−13 12017 107.1
1 20 1 4 9.6 · 10−10 3281 52.1
2 25 1 4 3.5 · 10−10 5156 60.4
3 30 1 4 4.0 · 10−11 8483 86.2

Table 4: Simulation results for structure (iii): rare events (times in seconds).

8. REFERENCES
[1] S. Asmussen. Applied probability and queues.

Springer-Verlag, New York, USA, 2003.

[2] U. Ayesta and M. Mandjes. Bandwidth-sharing
networks under a diffusion scaling. Accepted for
publication in Annals of Operations Research, 2008.

[3] F. Baskett, K.M. Chandy, R.R. Muntz, and
F. Palacios-Gomez. Open, closed and mixed networks
of queues with different classes of customers. Journal
of the ACM, 22:248–260, 1975.

[4] J. Blanchet, P.W. Glynn, and J.C. Liu.
State-dependent importance sampling and large
deviations. In Proceedings of ValueTools 2006, Pisa,
Italy, 2006.

[5] T. Bonald and L. Massoulié. Impact of fairness on
Internet performance. In Proceedings of ACM
SIGMETRICS 2001, pages 82–91, Boston MA, USA,
2001.

[6] J. Bucklew. Large deviation techniques in decision,
simulation and estimation. Wiley, New York, USA,
1990.

[7] P. Dupuis and H. Wang. Dynamic importance
sampling for uniformly recurrent Markov chains.
Annals of Applied Probability, 15:1–38, 2005.

[8] G. Fayolle, I. Mitrani, and R. Iasnogorodski. Sharing a
processor among many classes. Journal of the ACM,
27:519–532, 1980.

[9] A. Goyal, P. Shahabuddin, P. Heidelberger, V. Nicola,
and P.W. Glynn. A unified framework for simulating
Markovian models of highly dependable systems.
IEEE Transactions on Computers, 41:36–51, 1992.

[10] P. Heidelberger. Fast simulation of rare events in
queueing and reliability models. ACM Transactions on
Modeling and Computer Simulation, 5:43–85, 1995.

[11] L. Leskelä. Stabilization of an overloaded queueing
network using measurement-based admission control.

Journal of Applied Probability, 43:231–244, 2006.

[12] M. Mandjes. Rare event analysis of the state
frequencies of a large number of Markov chains.
Stochastic Models, 15:577–592, 1999.

[13] L. Massoulié and J. Roberts. Bandwidth sharing and
admission control for elastic traffic.
Telecommunication Systems, 15:185–201, 2000.

[14] J. Mo and J. Walrand. Fair end-to-end window-based
congestion control. IEEE/ACM Transactions on
Networking, 8:556–567, 2000.

[15] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose.
Modeling TCP Reno performance: A simple model
and its empirical validation. IEEE/ACM Transactions
on Networking, 8:133–145, 2000.

[16] A. Shwartz and A. Weiss. Large deviations for
performance analysis. Chapman & Hall, Londen, UK,
1995.

APPENDIX
Below we present the pseudocode of an IS scheme that can
be used to estimate rare event probabilities.

IS Algorithm

Compute (or approximate) the minimizing path f∗.
Divide T into n subintervals of length ∆n := T/n.
FOR j = 1 TO R

Ñi(0)← n0,i, i = 1, . . . , I.
Set the likelihood ratio equal to 1: Lj ← 1.
FOR k = 1 TO n

Ñi(k∆n)← Ñi((k − 1)∆n), i = 1, . . . , I.
Simulate Arrivals of type i as Poisson process of

rate λ∗
i (k∆n).

Simulate Departures of type i as Poisson process of
rate ν∗

i (k∆n).
Thus K events are generated, with inter-event

times t1, . . . , tK.
FOR ℓ = 1 TO K

T a1 a2 PIS #IS τIS PMC #MC τMC

1 6 6 6.1 · 10−2 2308 126.9 6.5 · 10−2 5527 8.8
1 8 8 7.8 · 10−3 2102 140.3 7.7 · 10−3 49912 78.5
2 8 8 4.6 · 10−2 5045 145.2 4.6 · 10−2 7908 23.4
2 10 10 8.5 · 10−3 4573 172.5 8.9 · 10−3 40859 121.3
3 10 10 2.8 · 10−2 9722 274.2 3.0 · 10−2 12010 52.6
3 12 12 6.7 · 10−3 19131 306.3 6.8 · 10−3 53159 232.3

Table 5: Simulation results for the linear network: comparison with MC simulation (times in seconds).

T a1 a2 PIS #IS τIS

1 15 15 1.6 · 10−7 6481 191.3
1 20 20 7.0 · 10−12 10782 199.7
2 20 20 3.7 · 10−8 10994 175.1
2 25 25 1.1 · 10−11 19255 272.7
3 25 25 3.0 · 10−9 19326 312.0
3 30 30 2.0 · 10−12 48310 631.5

Table 6: Simulation results for the linear network: rare events (times in seconds).

IF Event(ℓ) = Arrival of type i
THEN

Update likelihood:
Lj ← Lj × exp((λ∗

i (k∆n)−λi)tℓ)× (λi/λ∗
i (k∆n)).

Ñi(k∆n)← Ñi(k∆n) + 1.

IF Event(ℓ) = Departure of type i AND Ñi(k∆n) > 0
THEN

Update likelihood:

Lj ← Lj × exp((ν∗
i (k∆n)− νi(Ñ(k∆n)))tℓ)

×(νi(Ñ(k∆n))/ν∗
i (k∆n)).

Ñi(k∆n)← Ñi(k∆n)− 1.

IF Event(ℓ) = Departure of type i AND Ñi(k∆n) = 0
THEN

Set the likelihood ratio equal to 0: Lj ← 0.
Abort current simulation run and proceed with

the next run.
END
Set tK equal to 0 when K = 0.
FOR i = 1 TO I
Update likelihood:

Lj ← Lj × exp((λ∗
i (k∆n)− λi)(∆n − tK))

× exp((ν∗
i (k∆n)− νi(Ñ(k∆n)))(∆n − tK)).

END
END
Put Ij ← 1 if N(n∆n) ∈ A, and 0 else.

END

Estimator PIS ← R−1
·
PR

j=1 LjIj .

Justification of the IS algorithm: We simulate the process
Ñ(t) = (Ñ1(t), . . . , ÑI(t)) during a time period of T units,

given that Ñ(0) = n0, where

Ñi(t) := Ñi,up(t) − Ñi,down(t), i = 1, . . . , I,

with Ñi,up(t) being a Poisson process of rate λ∗
i (k∆n) and

Ñi,down(t) being a Poisson process of rate ν∗i (k∆n) if t ∈
[(k − 1)∆n, k∆n), k = 1, . . . , n. Clearly, this corresponds
to the process described in Section 2.1, but with different
input distributions and with a different state space, as the
state space of Ñ(t) is ZI , whereas that of N(t) is N I

0 ⊂ ZI .

Since Ñ(t) can take any vector in ZI (and thus in N I
0) with

positive probability, it follows from Section 2.2 that we can
obtain an unbiased IS estimator of P by simulating Ñ(t)
and by keeping track of the likelihood ratio in each run.

We use that the interarrival times are exponentially dis-

tributed with mean 1/λ∗
i (k∆n) (1/λi) under the new (old)

measure if t ∈ [(k − 1)∆n, k∆n). Also, we exploit that
the service requirements are exponentially distributed with
mean 1/ν∗i (k∆n) (1/νi(Ñ(t)), with Ñi(t) > 0) under the
new (old) measure, if t ∈ [(k − 1)∆n, k∆n). Clearly, if

Ñi(t) = 0 and a departure of class i occurs, then we reach
a state that is infeasible in our model (that is, under the
original probability measure), so that we set L equal to zero
when this occurs. Since the likelihood ratio will stay zero
once it has reached zero, one can abort the current simula-
tion run. By simulating R independent runs, adding all the
likelihood ratios at time n∆n = T of the runs that are such
that Ñ(T) ∈ A, and dividing this sum by R, we obtain an
unbiased estimator of P .

Remark: The obvious advantage of the above algorithm is
that the change-of-measure has to be computed just once,
and can be applied in all runs. The drawback is that there is
no control within the run: if the process happens to deviate
from the minimizing path, it is not directed back towards
this path. These considerations may lead to the following
approach. Denote by f∗(·|n0, A, T) the minimizing path cor-
responding to the probability P . Define

g(s) := f∗(s|Ñ(t), A, T − t),

i.e., suppose that we find ourselves in state Ñ(t) at time t,
and we wish to reach set A at time T , then g(s) defines the
most likely position at time s + t. Note that this implies
that g(0) = f∗(t). This gives rise to use the rates

λ̃i(t) :=
1

2
g′i(t) +

1

2

q
(g′i(t))

2 + 4λiνi(Ñ(t));

ν̃i(t) := −
1

2
g′i(t) +

1

2

q
(g′i(t))

2 + 4λiνi(Ñ(t)),

i = 1, . . . , I. It can be checked that also for these rates the
expected position at time t is f∗(t), but the difference with
the first algorithm is that the process evolution is better
controlled, cf. [4, 7]. In practice the interval [0, T] is again

split into n subintervals, and the rates λ̃i(k∆n) and ν̃i(k∆n)
are used in the k-th interval. Unfortunately, this approach
is very time-consuming, as it requires the calculation of a
minimizing path in each of the n subintervals.

