
Real-time emulation of networked robot systems
Razvan Beuran

National Institute of Information and
Communications Technology,

Hokuriku Research Center

Japan Advanced Institute of Science
and Technology

razvan@nict.go.jp

Junya Nakata
National Institute of Information and

Communications Technology,
Hokuriku Research Center

Japan Advanced Institute of Science
and Technology

jnakata@nict.go.jp

Takashi Okada
Japan Advanced Institute of Science

and Technology

National Institute of Information and
Communications Technology,

Hokuriku Research Center

tk-okada@jaist.ac.jp

Yasuo Tan
National Institute of Information and

Communications Technology,
Hokuriku Research Center

Japan Advanced Institute of Science
and Technology

ytan@jaist.ac.jp

Yoichi Shinoda
National Institute of Information and

Communications Technology,
Hokuriku Research Center

Japan Advanced Institute of Science
and Technology

shinoda@jaist.ac.jp

ABSTRACT

In this paper we present a methodology for the evaluation of

networked systems communicating using WLAN technology. We

show a case study of goal-oriented cooperating robots, for which

our approach is particularly useful. Developing robots is

expensive; hence emulation can be employed in the first part of

the development cycle to study robot software implementations in

realistic conditions at a reduced cost. Our methodology is based

on the emulation of both the robots and the WLAN

communication technology. The robots we consider cooperate in

order to efficiently reach a destination while avoiding collisions

with obstacles and other robots. The WLAN communication

emulation engine QOMET is deployed in the emulated robots to

recreate network conditions similar to those occurring in a real

WLAN environment. The experiments are run on a large-scale

network experiment environment, StarBED, using the support

software RUNE. Currently, over one hundred emulated robots can

be run simultaneously during an experiment on our testbed.

Categories and Subject Descriptors

I.6.3 [Simulation and Modeling]: Applications.

General Terms

Measurement, Performance, Design, Experimentation,

Verification.

Keywords

Real-time system emulation, networked robots, WLAN emulation,

large-scale testbed.

1. INTRODUCTION
The study of networked systems through real-world tests is often

hard to perform. The reasons for this can be one or more of the

following:

1. The networked systems are expensive, hence difficult to

obtain in a sufficient number, or they are still in

development phase, therefore impossible to obtain at

all;

2. The networked systems are complex, hence their

behavior and motion are hard to manage with sufficient

precision for obtaining reproducible results;

3. The network used by the systems under study is in itself

difficult to control, either because it is shared with other

users (e.g., the Internet), or because it is a shared

environment by nature (such as a wireless medium, in

which undesired interferences can perturb experimental

results at any time).

As a consequence, analytical modeling and, often, simulation are

extensively used to study networked systems. However, analytical

modeling is an abstract technique that doesn’t allow objective

measurements, but only rough predictions of general system

behavior. Simulation is very popular because of its low cost, and

the fact that algorithm implementations can be studied. Although

closer to reality, simulation is still relatively abstract, given that

during a simulation experiment only models of real systems

interact with each other in logical time.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIMUTools 2008, March 3–7, 2008, Marseille, France.

Copyright TBA

fezzardi
Text Box

create-net
Typewritten Text

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTOOLS 2008, March 03-07, Marseille, France
Copyright © 2008 ICST 978-963-9799-20-2
DOI 10.4108/ICST.SIMUTOOLS2008.2946

A solution for the study of network systems in general, and

wireless systems in particular, which gained popularity in recent

years is that of emulation. Network emulation combines the

advantages of real-world experiments and simulation. As in the

case of real-world tests, emulation allows researchers to use the

same implementations that are already or will be deployed on

target systems. Hence, their observations are readily applicable to

practical situations. Moreover, problems that may occur in real

environments can be detected in the early stages of development,

before the expensive deployment on real systems. This is possible

since a wide range of controllable conditions can be studied

through emulation, similar to the case of simulation. Only the

need to run real applications on a potentially large number of

computers may be considered as a disadvantage of emulation

when compared to simulation. Nevertheless, the ability to study

realistic conditions usually compensates this disadvantage.

So far network emulation was mainly used in conjunction with

traditional network applications, such as network protocols. We

adapted this methodology to the study of complex systems, such

as networked robots cooperating in order to accomplish a task. In

our approach the robot behavior implementation runs on standard

PCs and the emulated robots are located in a virtual space. Hence

it becomes easy to manage the conditions of the experiment and

the motion of the robots in this virtual space. A specific

requirement of such an approach is to also emulate the virtual

environment in which the emulated robots are situated, so that

they can “behave” in this virtual space as they would do in reality.

For example, a GPS emulator will provide to the software

implementation the robot position in the virtual space, just as a

GPS card would do so in the real world. Concerning the network

aspects, through the use of WLAN emulation the wireless medium

effects can be fully controlled, so as to study the desired scenarios

with ease and free of interferences.

Researchers implementing or evaluating autonomous robots have

the choice of simulation, by using a product such as Webots [1],

co-developed by the Swiss Federal Institute of Technology in

Lausanne, Switzerland. Software simulators model robot

components, sensors and surrounding environment. Such

simulators require writing simulator-specific modules, and the

results obtained may differ with respect to those that would be

observed in a real system. Special small-size robot testbeds also

exist, such as the free-flying robot testbed at the Stanford

Aerospace Robotics Laboratory [2], which uses up to three robots

moving on an air bearing over a 3x4 m flat surface. Although

realistic, this testbed doesn’t allow studying interactions between

a larger number of robots and obstacles, which is essential for

projects such as motion-planning development. Other researchers

use real-world tests, as reported in [3]. However, using real

environments is not a feasible approach at all times, for reasons of

high costs, system unavailability, management difficulties. The

approach of emulation that we envisage allows testing the real

robot implementations in an emulated environment (including

inter-robot communication), and therefore bridges the gap

between software simulation and real-world tests for complex

co-operating robot systems.

Robots are by their nature mobile; therefore, in order to

communicate they must use a wireless network technology such as

Wireless LAN (WLAN). Using real WLAN testbeds such as that

at Emulab [4] for experiments is not a valid choice for robot

research, since interferences cannot be controlled, and motion

effects are not taken into account. As a consequence, emulating

WLAN communication is mandatory in our approach. A survey of

existing WLAN-related real-world and simulation testbeds is

available in [5]. Previous approaches to WLAN emulation are

oversimplified in general. Some emulators, for instance Seawind

[6] or Empower [7], introduce network layer effects, such as

bandwidth limitation, delay, packet loss. However these effects

are directly provided by the user who configures the emulator; this

means that the connection between these effects and reality is the

user’s task, and may not be accurate. There are also attempts to

develop emulators that recreate by themselves network conditions

that correspond to real events. Such is the case, for example, of

W-NINE [8] and the wireless-network emulation extension of

SDNE [9]. These two implementations both start from a

description of node positions and movements. However the

accuracy of the conditions they recreate is relatively low because

of the simplicity of the employed models. For example, W-NINE

uses tables to associate IP throughput to received signal levels,

packet loss probability is considered to be either 0 or 1, etc.

MobiNet [10] is another wireless network emulator; it focuses on

ad hoc routing, but the detail level of the wireless communication

emulation itself is still reduced.

In order to cope with these problems we developed QOMET

(Quality Of applications in transforMing network Environments

Testbed), which is intended to be a versatile WLAN emulator that

accurately reproduces in a wired network the WLAN conditions

that correspond to a user-defined scenario. Our approach is

inspired by [8] and [9] in the sense that QOMET is a two-stage

scenario-driven design. Therefore it can be run on top of any

wired-network emulator. Our implementation can be used either

standalone, to study predefined user scenarios, or in a library

form, integrated into more complex systems, such as the

networked-robot case study discussed in this paper. Moreover

QOMET’s modular architecture makes it possible to easily extend

its functionality to other wireless environments.

The evaluation methodology we present in this paper is not

limited to robots, but can be applied to the extended case of

ubiquitous networked systems. There are already a number of

implementations of emulators and testbeds for ubiquitous

networks. TOSSIM [11] is a TinyOS [12] simulator implemented

in Java which aims to simulate TinyOS applications in a virtual

environment. ATEMU [13] too is able to emulate TinyOS

applications, and has a flexible architecture to support other

platforms. However, none of these tools provides the user with a

method to describe the surrounding environment, or an interface

with real nodes, which would allow tested systems to interact with

real environments. This is of great use, especially in the final

phases of system development.

Our methodology addresses these needs through the use of the

software tool nicknamed RUNE (Real-time Ubiquitous Network

Emulation environment). RUNE’s role is to enable running tests

involving a large number of nodes in a flexible and efficient

manner. Currently, RUNE is being developed as an experiment-

support software for StarBED and its successor StarBED2 [14],

the large-scale network experiment environment at the National

Institute of Information and Communications Technology

(NICT), Hokuriku Research Center in Ishikawa, Japan. Using

RUNE is an integral part of our experiment methodology.

2. METHODOLOGY OVERVIEW
Our general experimentation approach is to use software

implementations of networked systems, such as robots, running on

ordinary PCs, in order to evaluate them. A virtual environment is

created for these systems, so that they can operate in quasi-real

conditions. The overall system architecture of our methodology,

shown for the particular case of networked robot systems, is

depicted in Figure 1.

Figure 1. Overall system architecture.

The networked robots in our approach are considered to be

equipped with various sensors, GPS equipment, and

communication devices based on WLAN technology. Although

running on standard PCs, the emulated systems are seen as located

in a virtual space, whose topology and conditions are defined by

the user. The characteristics of the virtual space are taken into

account by the robot implementation, for example in the motion-

planning algorithm. This allows testing algorithms before

deployment in various realistic scenarios, including obstacles and

large-scale topologies. For this purpose, some aspects of the

virtual environment need to be emulated. A GPS module, for

instance, will provide the software implementation with the robot

position in the virtual space (see Section 3 for more details).

The emulated robots use a virtual WLAN connection to exchange

information related to the accomplishment of their task. In

practice they communicate through the “Experiment network” for

the entire duration of the test. An additional network is available,

the “Control network”, which is used for management purposes.

To make this possible, all experiment PCs are equipped with at

least two network cards (100 Mbps or 1 Gbps type). By creating

such a separation between the experiment network and the control

network we ensure that control traffic does not interfere with

experimental results.

In the case study we describe, the access to the experiment

network is mediated by the use of the QOMET WLAN emulator,

for which an overview is provided in Section 4. The WLAN

communication emulation library is integrated into the software

running on the experiment PCs, and allows recreating conditions

similar to those that would occur in a real WLAN environment.

The characteristics of the virtual space in which the emulated

systems are located (topology of the area, distance between

robots, etc.) are taken into account during WLAN emulation. This

process is assisted by the module “Map Manager” that runs on a

different PC than the systems under test, and communicates with a

special module on those systems using the control network. The

function of Map Manager is to keep an up-to-date robot system

status, including robot positions and trajectories. This

information, communicated through the control network, is used

by the WLAN emulation module of each robot to calculate in real

time the network conditions that correspond to the given virtual-

environment configuration.

In order to perform such complex experiments we use the network

testbed called StarBED, as mentioned in Section 1. StarBED has a

large number of PCs (currently around 700) interconnected by a

high-speed network. To simplify the manner in which users

perform experiments on StarBED, an experiment-support software

is available, called SpringOS. We currently develop an extension

to SpringOS, named RUNE (Real-time Ubiquitous Network

Emulation environment), which provides additional functionality,

and is targeted at large-system emulation, such as that of sensor

systems. RUNE was used in this paper for experiment integration

and the “RUNE Master” module in Figure 1 manages the entire

system we describe, as it will be detailed in Section 5.

3. ROBOT EMULATION
In disaster areas or office buildings autonomous robots can act

instead of human beings. Rescue robots are able to accomplish

many tasks in dangerous places where humans cannot enter, such

as sites where harmful gases or high temperatures are present.

Cleaning robots can save costs by performing various routine

tasks. In all these examples robots have to move to their

destination in order to perform their task. For this purpose they

need to be able to recognize the environment around them, and

use a motion-planning method in order to avoid collision with

obstacles or other robots.

The experiments for evaluating such research are difficult to

perform, since the cost of these real autonomous robots is high.

This is particularly true if researchers want to experiment with

more than a few robots, and need to test systems with tens or even

hundreds of robots. The solution of simulation is a quick way to

perform experiments or evaluate algorithms. However, the results

obtained from simulators may not always be reliable, since during

simulation only models of the systems and their components

interact with each other in logical time. This difference is

important, for instance, when testing algorithms for robots that co-

operate with each other using communication protocols. In such a

case it is preferable to study in real time the performance of

software implementations, in which realistic order of events and

timing takes place.

3.1 General Architecture
In this paper we propose a methodology that can be used for the

evaluation of large-scale autonomous networked robot systems.

The core of this methodology is the idea of emulation. In this

approach the robot behavior implementation, including aspects of

motion planning and communication with other robots, is run on a

standard PC. Various modules are connected to this

implementation with the goal of allowing it to “behave” as it

would do in a real-world environment (see Figure 2). For

example, a WLAN emulation module ensures that a robot can

communicate with other robots using a real protocol

implementation in conditions similar to those that would occur in

a real WLAN environment. A GPS emulation module provides

the current coordinates in a virtual space to the robot behavior

implementation, exactly as a GPS card would do so in a real

environment. The robot can be equipped with various other

sensors, each requiring a specific emulator to be present. For

instance, we can use a thermal field emulation module to recreate

temperature variation in the virtual space; to enable the use of

visual sensors, a visual environment emulation module is

required, and so on.

Figure 2. General architecture for robot emulation.

One important aspect of the general architecture we propose is

that the robots we emulate are able to communicate realistically,

in this case by means of emulated 802.11 wireless networks

(WLAN). Mobile robots equipped with WLAN transceivers can

transfer point-to-point information to each other, and thus

cooperate. If an ad hoc protocol is used, such as those of MANET

(Mobile Ad hoc NETworks), several robots can autonomously

form a network and exchange data over larger distances. In order

to fulfill their different individual tasks, robots have to move to

different locations and accomplish their missions. Based on the

initial information, robot trajectories are pre-planned. However, if

the robots are able to communicate and share information, they

can also respond to unexpected changes in the topology, and

avoid the other robots in a dynamic and intelligent manner. Such

autonomy is essential for various tasks, including safety-critical

and mission-critical ones, such as tactical operations, rescue

missions, national security, and so on. WLAN capabilities also

make it possible for human users to remotely control robots, so as

to coordinate them in the field, provide new tasks, etc.

3.2 Motion Planning
In this paper we shall illustrate the use of our experiment

methodology by studying a motion-planning algorithm through

emulation. Many path-planning algorithms have been proposed to

date. The performance of a motion-planning algorithm can be

characterized by the following three main properties: speed,

completeness, and optimality. In a dynamic and unknown

environment, robots must re-plan their motion many times,

because the environment changes. Therefore, when robots need to

continuously replan on-the-fly their trajectory, algorithm speed is

one of the most important properties.

3.2.1 Probabilistic Roadmap Planner
The probabilistic roadmap (PRM) planner is a very popular

motion-planning algorithm because of its speed. A PRM planner

randomly samples the set of locations where a robot can move.

PRM then registers the collision-free locations as possible

milestones. Next it tries to connect pairs of these milestones, and

saves the collision-free connections as possible robot trajectories.

In the context of PRM, “probabilistic roadmap” signifies the

undirected graph composed of collision-free connections, in

which the edges are the trajectories of robots, and the nodes are

the milestones. The planner uses Dijkstra’s algorithm to find the

optimal path. For this purpose weights can be assigned to edges.

The PRM method that we use is based on the “Path Planning in

Expansive Configuration Spaces” algorithm [15]. This algorithm

iteratively and alternately executes two basic steps, expansion and

connection, until either a path is found or the maximum number

of iterations is reached. The main idea of this PRM planner is

illustrated in Figure 3.

Figure 3. Probabilistic roadmap motion planning.

The algorithm in [15] uses trees instead of graphs. In what follows

we use the standard notation for trees, T = (V,E), where V and E

are the sets of vertices and edges of the tree T, respectively.

Expansion is the first step of the algorithm, by which the planning

method builds two trees: TSource = (VSource, ESource), and TDestination =

(VDestination, EDestination), starting from the robot initial position

(source) and the robot destination, respectively. When building

each of these trees, the planner picks from the existing milestones

a node x, which is chosen with a probability proportional to

1/w(x). The value w(x) represents the weight of node x, and is

equal to the number of neighbor milestones of x plus 1 (the node x

itself). Then the planner samples the neighborhood of x to

determine a number of points effectively reachable from x, and

adds them to the tree.

Connection is the second step of the algorithm, in which PRM

tries to connect the two previously built trees, TSource and

TDestination. For every node in the set of vertices of the

corresponding trees, VSource and VDestination, PRM checks whether

they “see” each other, i.e. one is reachable from the other on a

straight-line trajectory which is not obstructed by obstacles or

other robot trajectories. Given that some nodes were already

checked in the previous iteration, only newly-added nodes in

VSource are checked against all the nodes in VDestination, and only

newly-added nodes in VDestination are checked against old nodes in

VSource. When finding the first pair of milestones which are

reachable from each other, and which are separated by a distance

inferior to DConnection, the milestones are used to connect the two

trees and the algorithm ends. Otherwise the expansion step is

repeated.

3.2.2 PRM for Dynamic Environments
In the case study we show in this paper, robots are considered to

be placed in environments that are unknown or change in a

dynamic manner. The PRM method described above is not well

suited for such a case. For example, the previous PRM planner

cannot predict whether there are any collisions or not in the tree

built from destination, TDestination. This is because the planner has

no way to know the time when the robot will reach the milestones

in this tree. Hence the planner cannot at all expand TDestination in

this case.

To cope with the conditions of unknown and dynamic

environments, we adapted the PRM planner as follows:

1. In the expansion phase, the only tree that is grown is

TSource. For this tree the planner can detect collisions

with known robots or obstacles. Collision checking is

dynamic. This means that the robot can avoid collisions

not only with static obstacles, but also with moving

robots and obstacles;

2. In the connection phase, the planner uses only the

newly-added milestones to the (unique) tree TSource to

check whether there is a connection between the

milestones and the destination. As a collateral advantage

this reduces significantly the number of comparisons.

Moreover, to speed up trajectory finding, the parameter

DConnection is not used anymore. The first milestone from

which the destination is reachable is the solution of the

algorithm, and the search ends;

3. Given that the environment is dynamic, as soon as a

robot becomes aware of a change in the known

conditions (position of obstacles, positions and

trajectories of other robots), the PRM for dynamic

environment is restarted. The “source” for the new

motion planning is the future position of the robot after

the time interval TThink, the time estimated as necessary

to find a new path to destination (since the robot doesn’t

stop moving while thinking).

While building the TSource tree, our algorithm selects K points from

the set Ndist(x), where Ndist(x) is given by the formula:

{ }maxmin),(|)(dxqdistdCqxN Cdist <<∈= . (1)

In Equation (1) C represents the space in which the robot is

located; dmin and dmax represent the minimum and maximum

distances at which a point can be selected. Of the selected K

points, only those which are effectively reachable are selected and

added to the tree TSource.

4. WLAN EMULATION: QOMET
The scenario-driven architecture we propose for WLAN

emulation has two stages. In the first stage, from a real-world

scenario representation we create a network quality degradation

(∆Q) description that corresponds to the real-world events (see

Figure 4).

Figure 4. Two-stage WLAN emulation.

By quality degradation we mean the change in network service

quality between two measuring points; we denote this degradation

by the shorthand ∆Q. Since the ∆Q description represents the

varying effects of the network on application traffic, the WLAN

emulator’s function is to reproduce it. The ∆Q description

calculated in the first stage is therefore converted into an emulator

configuration that is used during the effective emulation process

to replicate the user-defined scenario in a wired network. This

makes it possible to study the effects of the scenario on the real

application under test.

The following is a summary of the features of the current QOMET

implementation. QOMET enables emulation of 802.11a/b/g

WLANs [16-19] using a model based on receive-sensitivity

thresholds available from most manufacturers, and that includes

effects of background noise. Support exists for 802.11g stations

operating in compatibility mode (i.e., when in the presence of

802.11b stations). Our model also takes into account interference

between neighboring nodes, either resolved through the

CSMA/CA (Collision Sense Multiple Access with Collision

Avoidance) mechanism, or regarded as noise if the interfering

signal is too weak to be detected.

The QOMET experiment scenario consists of an XML-based

description of the WLAN nodes, topology elements, motion

patterns, and communication environment properties. For WLAN

nodes one can specify the WLAN adapters and their properties

(transmitted power, antenna gain, etc.). The virtual environment

topology and objects are defined by the user, and the

communication environment is computed depending on the

varying node positions, either off-line or dynamically.

The WLAN emulation model that we propose is an aggregation of

several models used at the various steps of the conversion of the

scenario representation to the network ∆Q description which is

needed to recreate those scenario conditions. QOMET models

were initially presented in detail in [20]. Since then some

improved models were designed that supersede those in [20], and

that we shall describe in this paper. For brevity purposes, at times,

we skip here some modeling details; please refer to [20] for a

more complete description of QOMET. The following subsections

describe the main aspects of QOMET models at each level of the

conversion: real world scenario to physical layer, physical layer to

data link layer, and, finally, data link layer to network layer.

Modeling stops at network layer because it is at this level that we

introduce the quality degradation using a wired network emulator.

4.1 Real-World Scenario to Physical layer
In order to calculate the effects of real-world scenario events on

the physical layer of a WLAN station, it is necessary to determine

first the signal attenuation due to the distance between the

communicating stations, interposed obstacles, etc.

For this purpose we use the log-distance path-loss model [21].

This model gives the received power, Pr, expressed in dBm

(decibel-milliwatt), as function of the received power at the

distance of 1 m, Pr0, and the distance, d, between receiver and

transmitter. The communication environment is described by the

parameters α (the path-loss coefficient), σ (shadowing parameter;

the standard deviation of the zero centered Gaussian distributed

random variable Xσ), and W (wall attenuation; considered equal to

zero for indoor environments):

σα XWdPdP rr +−⋅⋅−=)(log10)(100
. (2)

The following step is computing the frame error rate (FER)

corresponding to a received power strength. For this purpose we

created a model that doesn’t rely on theoretical or manufacturer-

measured bit error rate (BER) versus signal-to-noise ratio (SNR)

dependencies. Theoretical dependencies are too abstract if one

wishes to study a realistic case, and measured BER data is only

available from a small number of manufacturers (e.g., Intersil

[22]). Using it in our approach would strongly limit the number of

real adapters we can emulate.

As a consequence we decided to use a model that is based on

receive sensitivity, information that is provided by most

manufacturers as part of the specifications of WLAN adapters. We

also included noise in our model, since such interference has a

significant effect of WLAN performance. For modeling we used

the information in [16, 23] regarding the procedure of measuring

receive sensitivity. Based on a negative exponential model, we

can determine the frame error rate (FER) corresponding to a

received power strength. This Pr-threshold-based model computes

FER as function of the adapter-specific receive sensitivity

threshold for the current operating rate, S, the received power, Pr,

the background noise, N, and the thermal noise N
th
, as follows:

))((thr NNPS

S eFERFER
−−−

⋅=
γ

, (3)

where γ is a constant to be determined by calibration for each

adapter (at the moment we use the default value 1), and FERS is

the frame error rate when Pr reaches the threshold S. According to

[16, 17], FERS equals 0.08 for 1024-byte frames for the DSSS

encoding used by 802.11b/g, and 0.1 for 1000-byte frames for the

OFDM encoding used by 802.11a/g.

Note that the difference (P
r
–N) in Equation (3) actually represents

the connection SNR. N
th
 is the thermal noise at room temperature,

and approximately equals –100 dBm if considering the 22 MHz

operating frequency bandwidth of 802.11a/b/g networks. Note

that the FER given by Equation (3) must be limited at 1, since the

result represents a probability.

The background noise N in Equation (3) has two sources. One is

the man-made electro-smog from devices operating in the same

frequency band (for instance microwave ovens or cordless phones

when speaking about the 2.4 GHz band of 802.11b/g). This

parameter can be configured by the QOMET user. The other noise

source is represented by the signals generated by other WLAN

devices. Such signals are treated as noise if the signal strength of

the received power is inferior to the lowest receive-power

sensitivity threshold of the emulated adapter. This interference

type can cause frame errors at reception that will lead to

retransmissions, hence delays, and possibly packet loss. In the

opposite case the signal is considered to be properly detected by

the receiver, and therefore induces transmission delays due to the

use of the CSMA/CA mechanism. This is the second effect of

interference, and it is dealt with separately (see Section 4.3).

In order to determine the power of the received signal from

interfering WLAN sources we use Equation (2) as well. However,

interfering sources can transmit on different channels that the

channel on which the receiver listens. In this case the inter-

channel attenuation must be computed. For this purpose we used

the requirements in the IEEE 802.11 specifications regarding the

transmit spectral mask [16, 17]. Figure 5 shows our model’s

attenuation characteristics depending on channel distance (i.e., the

absolute difference between channel ids). Note that in 802.11a

networks effectively-used channels are at a minimum distance of 4,

which reduces considerably interferences, since attenuation will

always exceed 30 dB. For 802.11b/g WLANs, distance between

different channels can be 1, making it a more difficult situation.

Subsequently this attenuation is subtracted from the computed

power of interfering signals; the result is then compared to the

receive sensitivity level, as discussed in the previous paragraph.

Figure 5. Inter-channel attenuation model.

4.2 Physical Layer to Data Link Layer
The frame error rate computed in the previous section will have

various effects on the behavior of the 802.11 MAC layer. One of

them is related to operating rate adaptation, which for most

WLAN adapters is based on the ARF (Auto-Rate Fallback)

mechanism [24]. This features makes it possible to dynamically

determine the operating rate of the WLAN adapters, and is taken

into account by QOMET.

The next step is to use a delay model for determining the delay, D,

and the jitter, J, introduced at data link layer by the interaction

between the MAC retransmission mechanism and the frame error

rate. The formula we propose below computes the delay as the

weighted average of the delays induced to frames undergoing a

number of i retransmissions before being received, Di, with i from

0 to r, where r is the maximum number of retransmissions (in

addition to the initial first transmission of a frame). Default values

for r are 6 and 3, depending whether the RTS/CTS (Request To

Send/Clear To Send) mechanism in IEEE 802.11 MAC is

disabled, or enabled, respectively [16].

.;

;10

,

)1(

)1(

100

0

0

∞==

≠∧≠

⋅−

⋅⋅−

=

==

=

=

∑

∑

FERFER

r

i

i

r

i

i

i

DDD

FERFER

FERFER

DFERFER

D

(6)

The weights included in Equation (6) represent the probabilities

for a frame to undergo i retransmissions. Delay values, Di, are

computed as described in [20] using TSIFS, TACK, TDIFS, TFrame,

which represent the time needed for SIFS (Short Inter Frame

Space), the ACK (acknowledgement) frame, DIFS (Distributed

coordination function Inter Frame Space), and the frame payload

itself, respectively. Note that if the RTS/CTS mechanism is

enabled, additional terms must be considered, namely TRTS and

TCTS, which represent the time needed to transmit an RTS and a

CTS frame, respectively, as well as twice more TSIFS.

Jitter is computed using a similar weighted average formula with

that for delay. The jitter values for frames undergoing a number of

i retransmissions before being received, Ji, can be computed using

the following formula:

10,,0, ≠∧≠=−= FERFERriDDJ ii
. (7)

4.3 Data Link Layer to Network Layer
After data link layer parameters are computed, we can proceed to

the last step: calculating the network layer parameters. These

parameters are the output of the first stage of the emulator, and

they can be used to configure a wired-network emulator so as to

reproduce the WLAN conditions associated to the given scenario.

Packet loss rate, PLR, is computed from FER by taking into

account the 802.11 MAC retransmission mechanism:

1+
=

r
FERPLR . (8)

The delay and jitter at network layer are the same with those

discussed in Section 4.2.

The other important parameter at network layer is bandwidth. The

bandwidth model we propose to determine the effectively

available bandwidth, B, as “perceived” at network layer is given

by the equation:

R
D

T
B Frame ⋅= , (9)

where R is the current operating rate of the WLAN station.

Note that the formulas given here for the computation of delay

and bandwidth only take into account the environment effects on

communication. However, if multiple users share the wireless

media, additional quality degradation occurs because of the use of

the CSMA/CA (Collision Sense Multiple Access with Collision

Avoidance) mechanism of 802.11. To account for these effects we

use an equation inspired by the analytical model given in [25], as

discussed in [20].

5. EXPERIMENT INTEGRATION: RUNE
Our goal is to develop a methodology for performance assessment

of networked systems in general, not just computer networks.

Networks composed of heterogeneous elements, usually called

ubiquitous networks, have different properties than computer

networks in many aspects, such as: high node variability and

network media variety, huge number of nodes, importance of the

interaction with the surrounding environment, as well as that of

geographical information, changing network topology, etc.

For these reasons testbeds for ubiquitous network emulation must

meet the following requirements:

1. Emulate the surrounding environments and provide an

interface between the emulated nodes and these

environments;

2. Provide an interface between the physical space and the

logical space, so as to make possible virtual and real

mixed setups;

3. Support the numerous nodes of ubiquitous networks;

4. Emulate the various architectures of nodes and networks

that form typical heterogeneous networks (processors,

middleware, etc.);

5. Provide a multi-level emulation layer;

6. Provide an emulation support system that enables

execution of experiments in a controlled manner

through an automated-execution mechanism.

5.1 General Description
In order to meet the aforementioned requirements on the

StarBED2 testbed, the experiment-support software RUNE is

being currently developed. A detailed account of RUNE

architecture and implementation is given in [26]; we outline here

only its main features. RUNE provides an API set for controlling

experiments. The fundamental goal of RUNE is to implement a

test environment in which a number of “spaces” that emulate each

experiment target can run on either single or multiple nodes.

RUNE provides a reasonably abstracted interface for easily

implementing emulation targets as spaces without much concern

about the interaction between emulation nodes. RUNE has the

following roles: (i) experiment environment setup/cleanup and

progress management; (ii) procedure invocation; (iii) interaction

between spaces; (iv) time synchronization; (v) mutual exclusion

(not implemented yet).

Figure 6 shows the structure of an experiment implemented using

RUNE. The “RUNE Master” module manages the configuration

of each experiment, and controls the progress of the experiment.

The execution of all spaces deployed on multiple nodes is

initiated by RUNE Master via modules called “RUNE Manager”.

The RUNE Manager is deployed on every emulation node, and

mediates communication between spaces through objects called

“conduits”. Spaces implementing emulation targets exist on

emulation nodes in the form of shared objects, loaded dynamically

by the RUNE Manager.

5.2 Emulation Process
The emulation process performed by RUNE takes place as

follows. First of all RUNE Master is compiled with the

experiment definition file, which includes the information

regarding spaces and conduits. When run, RUNE Master sends

the instruction “attach process” to the RUNE Managers executed

on each node. A space then returns its entry point information to

the RUNE Manager, which includes pointers to the available

functions.

When the RUNE Manager notifies the RUNE Master of the

completion of the “attach” process, the latter indicates the

“initialize” process of all spaces to RUNE managers on each

node. After the initialization of all spaces is finished, the RUNE

Master instructs the managers to start the iterated invocation of

the “step” function, which represents the main body of a space.

Accordingly, spaces start to execute the emulation step-by-step,

and inform the corresponding RUNE Master of execution status.

At the end of the experiment, the RUNE Master starts the

“finalization” process by notifying all nodes. Subsequently,

spaces release the work area allocated in the initialization process.

Figure 6. Structure of experiments using RUNE.

6. EXPERIMENTAL RESULTS
The range of applications that we can emulate using the two tools

we described above, QOMET and RUNE, is very large, both in

indoor and outdoor environments. VoIP experiments with

reference to rescue worker communication in emergency

conditions were presented in [20]. The emulation of ubiquitous

home environments with application to room temperature control

was described in [26, 27]. At the moment we pay particular

attention to emulation of robots that cooperate using wireless

communication in order to achieve various tasks. The

implementation of such robot systems in reality incurs high costs

since they need to be equipped with sensors, motors, WLAN

cards. These costs become prohibitive if systems with tens or

hundreds of robots are to be tested, and it is useful to employ

emulation environments such as ours in the initial design and

implementation phases.

In what follows we present an experiment carried out using our

networked-system evaluation methodology. In this experiment we

study through emulation a motion-planning algorithm that we

designed for the case of dynamic environments. The setup used

for the experiments described here is the same with that shown

previously in Figure 1. RUNE controls the start of experiment, its

execution and finalization on all the participating nodes, including

the Map Manager.

The virtual space in which the robots are considered to be located

is the basement of a building in which 10 robots are assigned

some tasks at various locations. They must travel from the initial

starting position to their individual destination while making sure

no collisions occur with the obstacles present (building pillars) or

with the other robots. The virtual topology is depicted in Figure 7.

Note that we can perform experiments with over 100 emulated

robots, but we show here only a small-scale example for the sake

of clarity.

In the emulated environment robots are initially located at 15

meters with respect to their neighbors. For Robot #n, with n from

1 to 10, its source and destination are denoted by S#n and D#n,

respectively. Robots are considered to have a radius of 1 m and a

constant speed of 0.5 m/s. Obstacles also have a radius of 1 m;

they are represented by dark discs in Figure 7. The robots are

assigned priorities equal to their id; the robot with the highest

priority is Robot #10. The range of visual sensors (represented by

an omni-directional camera) is considered to be 10 m; this is the

maximum distance from which robots can visually detect

obstacles and other robots. The time in which robots assume to be

able to find a trajectory, TThink, has an initial value of 1 s. If it is

determined that this time is not sufficient, the value is gradually

increased.

We considered that robots are equipped with 802.11b

transceivers, which consequently must be emulated. In the

experiment, the QOMET WLAN communication emulation

library computes in real time the characteristics of WLAN

communication between robots at each processing step (currently

250 ms). Then network degradation is enforced using dummynet

[28], by applying to the wired network the WLAN characteristics

calculated previously. This takes place in real time on the testbed.

The emulated WLAN environment used in our experiment had the

following main parameter values: α = 5.6, σ = 3.1, N = −100. This

corresponds to bad propagation conditions, and gives a

communication range of approximately 18 m.

Figure 7. Robot initial positions and trajectories.

In Figure 7, for simplicity reasons, we emphasized only the

trajectories of three robots, those with ids 8, 9, and 10. Analyzing

the trajectories of Robot #8 and Robot #10, one can notice that

their initial trajectories starting at S#8 and S#10, respectively,

lead them to collision at position (30,15). However, when Robot

#8 approaches the point of coordinates (22,7) it enters in the

communication range of Robot #10. As a consequence, they are

able to exchange information about each other’s trajectory. This

leads to the fact that Robot#8 (the lower priority robot) re-plans

its trajectory to avoid collision. The higher priority robot, Robot

#10, continues moving on the initial trajectory all the way to its

destination at (15,30). Assuming the robots would not have been

able to communicate, the trajectory change would have occurred

later (when robots enter each other’s visual range), and probably

for both robots, since no priority mechanism could have been

enforced.

Another remark about Figure 7 concerns Robot #9. This robot

followed the simplest trajectory from its starting point S#9,

located at (30,0), to the destination D#9 at (30,30). The fact that it

could communicate with the other robots in its neighborhood

made it possible for Robot #9 to know their intended trajectory

and predict when they will arrive at the conflict location, (30,15).

Consequently the robot decided correctly to continue its route

without unnecessary detours. In this case too a different decision

may have been taken if only visual sensor information was used,

since in the absence of communication one robot has no way to

know whether a robot trajectory will conflict with its own.

We shall not discuss here the trajectories of all robots, but one can

see in Figure 7 how the obstacles and other robots’ trajectories

influence the path of each robot. For example Robot #3, starting

at (30,30) needs to change its trajectory from the initially planned

one when it observes the obstacle located at (40,10).

Sometimes a robot trajectory may interfere with the trajectories of

other robots, and the robot must stop to “think” in order to find a

trajectory. In our initial tests this triggered a motion-planning

algorithm implementation bug. We managed to identify the cause

of this problem, and fixed it, which would have been difficult to

accomplish without running large-scale real-time experiments.

When robots interact with each other in real time and in complex

scenarios, implementation issues may be revealed, issues that

would otherwise go unnoticed. In Figure 8 we show (for

illustration purposes only) a caption of our experiment

visualization interface for the case of 100 simultaneously

emulated robots. From this figure one can understand the

complexity of the situations that can be encountered in

experiments of this scale.

Figure 8. Emulation experiment with 100 robots.

7. CONCLUSIONS
The approach we propose for the assessment of networked

systems through real-time emulation makes it possible for users to

objectively evaluate software implementations of such networked

systems under realistic conditions. The software implementations

are afterwards readily deployable on real target systems; therefore

their evaluation through emulation is an essential way of reducing

the development cost of networked systems. This is especially true

for the case of robot systems, which are particularly expensive.

The two tools that enable the usage of the proposed methodology

are the QOMET WLAN emulator, and the RUNE emulation

environment, all running on the large-scale network experiment

testbed, StarBED. QOMET allows the transformation of a user-

meaningful real-world representation of a WLAN environment

(termed “scenario representation”) into a network quality

degradation description (termed “∆Q description”). The ∆Q

description obtained is sufficient to subsequently configure a

wired-network emulator and effectively reproduce in real time an

environment that corresponds accurately at network level to the

emulated WLAN scenario. RUNE is a flexible experiment-support

environment that can be used to perform ubiquitous network tests

on StarBED in a straight-forward manner.

We illustrated the practical use of our approach on the particular

case of networked robot emulation, for which we designed and

implemented a specific framework. We provided a detailed

analysis of a case study of robot motion planning for an algorithm

we developed based on Probability Roadmap Planner, and

adapted to dynamic environment conditions. The experimental

results showed how one can assess the properties of such an

algorithm through emulation in complex scenarios. Our

experiments helped us identify and correct several implementation

issues.

Our methodology proved very effective, and we are now in the

process of using it to support the development of a pedestrian

localization system using active tags in collaboration with

Panasonic System Solution Company. As future work regarding

the development of QOMET we intend to add features to it so as

to make it possible for users to define scenarios in a more realistic

way, including streets and buildings. More advanced ad hoc

network features, such as routing will also be included in future

versions. Concerning RUNE, a high priority is given to adding

support for processor and middleware emulation, since RUNE is

intended for the general case of ubiquitous network emulation.

Other desired features are, for example, more strict

synchronization and mutual exclusion.

8. ACKNOWLEDGMENTS
We would like to acknowledge the contribution to the ideas

presented in this paper of Lan Tien Nguyen, Khin Thida Latt,

Toshiyuki Miyachi, Saber Zrelli, Assoc. Satoshi Uda, and Assoc.

Ken-ichi Chinen.

9. AFFILIATION INFORMATION
National Institute of Information and Communications

Technology (NICT), Hokuriku Research Center, 2-12 Asahidai,

Nomi, Ishikawa, 923-1211 Japan. Tel: +81-761-51-8118.

Japan Advanced Institute of Science and Technology (JAIST),

1-1 Asahidai, Nomi, Ishikawa, 923-1292 Japan. Tel: +81-761-51-

1111.

10. REFERENCES
[1] Webots. Fast Prototyping and Simulation of Mobile Robots.

http://www.cyberbotics.com

[2] Stanford Aerospace Robotics Laboratory.

http://arl.stanford.edu

[3] Chaimowicz, L., et al. 2005. Deploying Air-Ground Multi-

Robot Teams in Urban Environments. In Proc. of the 2005

International Workshop on Multi-Robot Systems

(Washington DC, U.S.A., March 2005). 223-234.

[4] University of Utah, School of Computing. Emulab –

Network Emulation Testbed. http://www.emulab.net

[5] Kropff, M., Krop, T., Hollick, M., Mogre, P.S., Steinmetz,

R. 2006. A Survey of Real-World and Emulation Testbeds

for Mobile Ad hoc Networks. In Proc. of TridentCom 2006

(Barcelona, Spain, March 2006).

[6] Kojo, M., Gurtov, A., Manner, J., Sarolahti, P., Alanko, T.,

Raatikainen, K. 2001. Seawind: A Wireless Network

Emulator. In Proc. of 11th Conference on Measuring,

Modelling and Evaluation of Computer and Communication

Systems (MMB) (Aachen,Germany, September 2001).

[7] Zheng, P., Ni, L.M. 2003. EMPOWER: A Network Emulator

for Wireline and Wireless Networks. In Proc. of IEEE

Infocom 2003 (San Francisco, U.S.A., April 2003)

[8] Perennou, T., Conchon, E., Dairaine, L., Diazet, M. 2004.

Two-Stage Wireless Network Emulation. In Proc. of

WCC2004 (Toulouse, France, August 2004).

[9] Bateman, M., Allison, C., Ruddle, A. 2003. A Scenario

Driven Emulator for Wireless, Fixed and Ad Hoc networks.

In Proc. of PGNet2003 (Liverpool, U.K., June 2003). 273-

278.

[10] Mahadevan, P., Rodriguez, A., Becker, D., Vahdat, A. 2005.

MobiNet: A Scalable Emulation Infrastructure for Ad hoc

and Wireless Networks. In Proc. of the International

Workshop on Wireless Traffic Measurements and Modeling

(WiTeMe 2005).

[11] Levis, P., Lee, N., Welsh, M., Culler, D. 2003. TOSSIM:

Accurate and Scalable Simulation of Entire TinyOS

Applications. In Proc. of the First ACM Conference on

Embedded Networked Sensor Systems (SenSys 2003).

[12] TinyOS embedded networked sensor operating system.

http://www.tinyos.net

[13] Polley, J., Blazakis, D., McGee, J., Rusk, D., Baras, J.S.

2004. ATEMU: A Fine-grained Sensor Network Simulator.

In Proc. of the First IEEE Communications Society

Conference on Sensor and Ad Hoc Communications and

Networks (SECON 2004).

[14] Miyachi, T., Chinen, K., Shinoda, Y. 2006. StarBED and

SpringOS: Large-scale General Purpose Network Testbed

and Supporting Software. In Proc. of International

Conference on Performance Evaluation Methodologies and

Tools (Valuetools2006) (Pisa, Italy, October 2006).

[15] Hsu, D., Latombe, J.-C., Motwani R. 1997 Path Planning in

Expansive Configuration Spaces. International Journal of

Computer Geometry and Applications, Vol. 9, No. 4/5

(1997). 495-512.

[16] ANSI/IEEE Standard 802.11. 2003. 1999 Edition,

Reaffirmed 2003.

[17] ANSI/IEEE Standard 802.11a. 1999.

[18] ANSI/IEEE Standard 802.11b. 1999.

[19] ANSI/IEEE Standard 802.11g. 2003.

[20] Beuran, R., Nguyen, L.T., Latt, K.T., Nakata, J., Shinoda,Y.

2007. QOMET: A Versatile WLAN Emulator. IEEE

International Conference on Advanced Information

Networking and Applications (AINA-07) (Niagara Falls,

Ontario, Canada, May 21-23, 2007). 348-353.

[21] Rappaport, T.S. 2002. Wireless Communications: Principles

and Practice. Prentice Hall PTR, 2nd edition. (2002)

[22] Intersil. 2002. HFA3861B: Direct Sequence Spread

Spectrum Baseband Processor. Intersil data sheet. (February

2002)

[23] Intersil. 2000. Measurement of WLAN Receiver Sensitivity.

Intersil technical brief. (February 2000)

[24] Kamerman, A., Monteban, L. 1997. WaveLAN-II: A high-

performance wireless LAN for the unlicensed band. Bell Lab

Technical Journal (1997). 118-133.

[25] Gupta, P., Kumar, P.R. 1999. Capacity of wireless networks.

Technical report, University of Illinois, Urbana-Champaign.

(1999)

[26] Nakata, J., Miyachi, T., Beuran, R., Chinen, K., Uda, S.,

Masui, K., Tan, Y., Shinoda, Y. 2007. StarBED2: Large-

scale, Realistic and Real-time Testbed for Ubiquitous

Networks. TridentCom 2007 (Orlando, Florida, U.S.A., May

21-23, 2007).

[27] Beuran, R., Nakata, J., Okada, T., Miyachi, T., Chinen, K.,

Tan, Y., Shinoda, Y. 2007. Performance Assessment of

Ubiquitous Networked Systems. 5th International

Conference on Smart Homes and Health Telematics

(ICOST2007) (Nara, Japan, June 21-23, 2007, pp. 19-26).

[28] Rizzo, L. Dummynet FreeBSD network emulator.

http://info.iet.unipi.it/~luigi/ip_dummynet.

