
PDST: A Peer Database Simulation Tool for Data Sharing
Systems

Md Mehedi Masud
SITE, University of Ottawa

800 King Edward Road
Ottawa, Canada

mmasud@site.uottawa.ca

Iluju Kiringa
SITE, University of Ottawa

800 King Edward Road
Ottawa, Canada

kiringa@site.uottawa.ca

ABSTRACT
At present there are many simulation tools developed in or-
der to simulate a peer-to-peer (P2P) system. All the tools
are dedicated to P2P content distribution systems, simu-
late network systems for measuring the efficiency of the net-
works, and file sharing systems. In the last few years, steady
progress has been made in research on various issues related
to peer database systems. However, there is no software
tool for evaluating a peer database system in a large P2P
network. In this paper, we present a software tool that can
simulate a peer database system in a large P2P network.
The tool provides different facilities, for example, gener-
ates peers, databases with synthetic data, acquaintances,
and mappings between peers. The tool also provides a gen-
eral framework for executing queries and updates in a peer
database system.

Categories and Subject Descriptors
H.2.4 [Database Management]: System-Distributed
databases; I.6.3 [Simulation and Modeling]: Applica-
tions

General Terms
Experimentation

1. INTRODUCTION
In the past few years, the P2P technology has emerged

as a new paradigm for distributed data sharing systems. In
this technology, all participating computers (or peers) have
equivalent capabilities and responsibilities, and exchange re-
sources and services through pair-wise communication, thus
eliminating the need for centralized servers. Until now,
there are many domain specific P2P systems (e.g. Freenet,
Gnutella, SETI@home, ICQ, etc.) that have already been
deployed. With a few notable exceptions, currently im-
plemented P2P systems lack data management capabilities

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2008, March 3-7, 2008, Marseille, France.
Copyright 2008 ACM ISBN 978-963-9799-20-2 ...$5.00.

that are typically found in a database management system
(DBMS), such as query and transaction processing.

A peer database system combines both P2P and database
management system functionalities. In the last few years,
steady progress has been made in research on various issues
related to peer database systems, such as peer database me-
diation methods [4], coordination mechanisms between peer
databases [7], mapping data between peers [1]. The majority
of the peer data management systems do not provide exper-
imental results considering a large P2P network. Most of
the systems are evaluated with few numbers of peers where
databases, acquaintances, and mappings are created manu-
ally. Therefore, it takes time for evaluating a system with a
large setting. Hence, there is a need to develop a software
tool that can serve the peer database research community
in order to simulate a system in a large P2P network.

In practice, there has been a clear separation between
a simulation model of a P2P system and a real P2P sys-
tem that operates with real resources (e.g. databases, map-
pings, queries, etc.). Simulation models are simplified ab-
stractions of real systems that are formalized with the lan-
guage and modeling concepts that a particular simulation
paradigm and environment offers [11]. Particularly, a simu-
lation model in a P2P system is developed in order to val-
idate the scalability of the system. However, sometimes it
is necessary to experiment the system with real peers in or-
der to validate the functionalities of the proposed system.
The functionalities of a real P2P system is usually provided
by P2P applications that are formalized by means of appli-
cation programming and that include every details of the
intended system.

The main objective of this paper is to present a software
tool developed for modeling the peer database systems. The
tool provides facilities for experimenting peer database sys-
tems in a large P2P network. In brief, the tool has the
following features.

• combines both the database systems and the P2P func-
tionalities.

• automatically generates databases for each peer and
populates databases with data. The tool also generates
mappings (coordination rules, mappings [1]) between
peers automatically.

• automatically creates acquaintances among peers
based on the data in the peers.

The paper is structured as follows. Section 2 briefly de-
scribes some of the peer database systems. Section 3 ex-
plains the architecture of a peer and describes the framework

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.SIMUTOOLS 2008, March 03-07, Marseille, FranceCopyright © 2008 ICST 978-963-9799-20-2DOI 10.4108/ICST.SIMUTOOLS2008.2936

Figure 1: Peers with coordination rules

of the peer database simulation tool (PDST). In Section 4,
we show the evaluation of the tool by modeling a trans-
action processing mechanism. Finally, the paper concludes
with some future directions.

2. PEER DATABASE SYSTEMS
A peer database system (PDBS) is a decentralized sys-

tem which consists of autonomous heterogeneous database
sources, where the integration of databases is performed in
a peer-to-peer fashion. That is, a network of peer databases
is created either directly or indirectly integrated through a
path of peer databases that are basically pairwise integrated.
The decentralized nature of a PDBS is not transparent to
the users. Moreover, a PDBS does gracefully handle the
joining or leaving of sources. This decentralized and dy-
namic approach is in contrast to the traditional distributed
and multidatabase systems, where a rigid global schema is
used by all the underlying sources. This integration requires
a prior knowledge of the schemas of all the databases to be
integrated. In the following, we briefly describe some of the
peer database systems for which the tool may be useful.

2.1 Piazza System
In Piazza [5], global-as-view and local-as-view map-

pings [6] are used to relate the schema of each peer with
the schemas of other (acquainted) peers. Figure 1 shows
an example of the system where peers correspond to major
universities, each storing information about students. We
assume that we access the network through our local UO
peer. The mappings between the UO peer and the CU peer
is formed by the global-as-view mapping, and the mappings
between the UO peer and the SU peer is formed by the local-
as-view mapping. During query answering, a query over the
schema of a peer is rewritten to a query over the schemas of
acquainted peers, where the nature of the rewriting process
depends on the type of mappings available. In general, for
global-as-view mappings, the rewriting is performed through
view expansion, while for local-as-view mappings, an algo-
rithm for answering queries using views is used. Piazza ex-
tends the above rewriting techniques by the combination
of both types of mappings during the rewriting process [4].
The placement of mappings between two peers Pi and Pj

creates an acquaintance between them. Here, Pj is called
the acquaintee of Pi.

2.2 Hyperion
Hyperion [3] addresses heterogeneity by means of

instance-level mappings. The instance-level mappings are
created by mapping tables. This mapping is used where
the establishment of coordination rules is not feasible. Sit-
uations like this arise when the contents of the acquainted

peers, although related, belong in disjoint worlds. As a mo-
tivating example, consider the two peer sources: one storing
information about genes and another storing information
about proteins. The contents of the sources are related,
since, in real life, genes produce proteins. However, the
contents of the sources cannot be related as such using a
coordination rule. In brief, Hyperion introduces a mapping
table to associate attributes from the schemas of the two
peers, and attribute values that appear in the instances of
these schemas. The placement of mapping tables between
two peers Pi and Pj creates an acquaintance between them.
Here, Pj is called the acquaintee of Pi. In terms of query an-
swering, Hyperion offers the mechanisms [2, 10] that rewrite
queries between peers by considering the mapping tables.

2.3 coDB
coDB [13] introduces a general logical and computational

characterization of peer database systems. In coDB, a net-
work of databases, possibly with different schemas, are inter-
connected by means of GLAV mappings [14] or coordination
rules. coDB mainly analyzed a distributed procedure for the
problem of local database update in a network of database
peers. In coDB, the answer to a local query may involve
data that is distributed in the network, thus requiring the
participation of all nodes at query time to propagate in the
direction of the query node the relevant data for the answer,
taking into account the (possibly cyclic) coordination rules
bridging the nodes. Each node can be queried in its schema
for data, which the node can fetch from its neighbors, if a
coordination rule is involved.

2.4 Discussion
From the above discussion, we observe that PDBSs require

databases and some forms of mappings between peers. Fur-
ther, we notice that each system shows experimental results
with a small size of network. For example, Hyperion con-
sidered only six to twelve peers, and coDB considered small
number of peers to validate their systems. Unfortunately,
none of the systems provides experimental results consid-
ering a large network since it is practically impossible and
time consuming to create databases, mappings, and acquain-
tances manually for the large number of peers. Therefore, it
is necessary to develop a tool that can create databases for as
many peers as needed, and generate mappings and acquain-
tances, automatically. Moreover, the tool should provide the
basic functionalities for developing a P2P network (e.g. cre-
ate peers, communication between peers, provide statistics,
etc.). If all the resources and functionalities are ready, then
the users only need to incorporate the services they want to
evaluate. In this paper, we present such a tool that creates
databases for each peer automatically, and builds mappings,
acquaintances, and topology for a large P2P network. More-
over, the tool provides the basic underlying framework for
evaluating different services (e.g. query, update, etc.) in a
peer database system.

3. DESCRIPTION OF PDST
PDST, developed using Java, is a simulation toolkit with

a library of Java classes. It is developed using Java program-
ming language for the portability and ease of extensibility.
Each peer in PDST is a separate Java thread. The tool
can be used for query, update, and transaction processing,
which are the important services in a peer database system.

Figure 2: Architecture of a peer

In PDST, each service is implemented as a thread. The tool
provides the real-time clock simulation capabilities. The
real-time clock simulation, as the name suggests, involves
using a real world clock (system clock time obtained using
the Java function System.currentTimeMills) for simulating
timing [16].

PDST is a message-level event driven simulation frame-
work aimed at modeling peer database systems. It is event
based rather than time-driven. Therefore, the simulation
time is advanced by the occurrence of events instead of
advancing the simulation time in fixed increments that is
used in a time-driven simulation system. For example, a
query service starts when a peer receives a query from a
user or from another peer, and the service finishes when the
query is executed in all the peers in the network relevant to
the query. Before describing the framework of the tool, we
first describe the architecture of a peer that is created by
the tool for a peer database system. The architecture of a
peer is shown in Figure 2. A peer in the system consists of
the following components:

P2P User Interface: through this interface a user sub-
mits a service request (e.g. query, update, or transaction).
There are two options to submit a service request: GUI or
a text file. The file option allows a user to submit a batch
of requests for monitoring the behavior of a system with dif-
ferent loads (e.g. queries arrival rate, different update size,
number of concurrent transactions, etc.). Through the GUI,
user can pose one request at a time to verify the functional-
ities of a system.

User Module: the user modules are plugged-in by the
users according to the types of service the system needs to
process. For example, a service may be for processing a
query, an update, or a transaction. If the service needs to
be executed in the local database, the database connection
component is used. For processing the service in acquainted
peers, the service is handled by the Manager component.

Manager: each peer has a Manager that handles the exe-
cution of services. The Manager takes care of the service re-
quests that are received from the local as well as from remote
peers. The Manager interacts with other components that
are necessary for processing a service request. For example,
if a service needs to be executed locally, it communicates di-
rectly with the local database system through the appropri-
ate processing modules (e.g. query, update, or transaction).
The service processing modules are externally plugged-in by
the users according to the system requirements. If the ser-
vice needs to be executed remotely, the Manager interacts

with other components, such as, Translation, Acquaintance,
Communication, and Message components.

Acquaintance: the Acquaintance component provides
the acquaintance information to the Manager of the local
peer. The acquaintance information is used by the Man-
ager to translate a service request using mappings in terms
of the vocabularies of the acquainted peers. The Manager
interacts with the translation component for translating a
request and the communication component for forwarding a
request to the acquaintees of a peer.

Translation: this component translates a local request
into a set of remote requests that need to be executed in
the acquainted peers. The translation is performed using
the coordination rules or mapping tables that exist between
a local peer and its acquainted peers. The coordination
rules are used for schema-level mappings, and mapping ta-
bles are used for data-level mappings. For data-level map-
pings, Database Connection component is used to connect
the database. Users plug-in the Translation component in
the system that is to be used by a peer to translate a re-
quest.

Communication: this module is used to send and re-
ceive messages in the network. In PDST, each peer imple-
ments a FIFO queue for sending and receiving messages.
When a peer wants to send a message to an acquaintee, the
peer enqueue the message to the corresponding queue of the
acquaintee. A peer performs dequeue operation for receiv-
ing a message from the queue. For receiving message, a peer
listens the queue for the incoming message. If a message is
found, the appropriate action is performed. The Communi-
cation component uses the Message component to construct
a message for a request. Later in Section 3.1, we show the
message format. Once a message is formed, the Communica-
tion component sends the message to the acquaintees. Since
the tool implements queue for message exchanges, there is
no communication delay in the simulation time. On the
other hand, some delays are introduced because of database
access time.

Database Connection: this component is used by a
peer for accessing the local database system to execute a
service request. The tool supports different database sys-
tems (MySQL, PostgreSQL, Microsoft Access) connectivity.
For a particular database system, the user needs to specify
the database system in the environment setup phase. The
tool is incorporated with different JDBC driver packages.

Local DB and Mapping Tables: each peer has a local
database system and a set of mapping tables. The mapping
tables are used to resolve data-level heterogeneity between
peers. In the tool, we assume that each peer uses a relational
database system (RDBS).

3.1 General framework of PDST
The overall framework of PDST is shown in Figure 3. In

the following, we describe different phases to build a peer
database network using the framework of PDST.

Environment Initialization: with this phase, users
specifies different parameter values to setup a peer database
system. For example, number of peers, maximum number
of acquaintances per peer, number of relations per peer, etc.
The tool provides an interface to the users for setting a sys-
tem environment. The parameters that are used to build a
system using PDST are illustrated in Table 1

Figure 3: PDST general framework

Parameter Value

Number of peers 1 to 500
Maximum diameter of a network 10
Number of acquaintances per peer Min: 2; max: 5

Number of relations per peer Min: 1; max:3
Number of attributes per relation Min: 2; max: 4

Number of tuples Min: 10; max: 100
Domain of the attributes Integers from 1 to 1000

Number of mapping tables Min: 2; max: 8
per peer for each acquaintance

Number of data mappings Min: 5; max: 25
in a mapping table

Number of coordination rules Min: 1; max: 3

Table 1: Parameters to build a peer database system

Environment Generator: through this phase, differ-
ent resources are created for a system to be evaluated. The
peer module is used to create peers as defined in the pa-
rameter settings. In the system, each peer is implemented
as a distinct java thread with the functionalities illustrated
in Figure 2. The ids of peers are integer numbers starting
from 1. After creating peers, a database is created for each
peer. When databases are created, different parameters are
used. For example, number of relations, tuples per relation,
and attributes. The database module mainly creates the
schemas of a database. In the next phase, databases are
populated, and the mappings are generated. The acquain-
tance module creates the acquaintances for each peer. When
acquaintances are created, a logical peer database network
is created. The acquaintance information is stored in a file.
The number of acquaintances created for each peer is based
on the parameter values.

Data and Mapping Generator: the databases are pop-
ulated in this phase. More importantly, it creates coordina-
tion rules and mapping tables for each acquaintance. Inte-
ger is the domain of the attributes of each relation. Relation
names follow the following convention:

peerid relation(attrbute1, attribute2, · · ·).
For example, if a peer ”P1” has two relations then the rela-
tions are generated as follows:

P1 r1(A1, A2, A3); P1 r2(A4, A5, A6)

Consider that peer P1 has an acquaintance with peer P2.
An example of a coordination rule generated from the map-
ping module is shown below:

P1 :: P2 :: P1 r1(A1, A2, A3) : −P2 r1(A1, A2, A3)

The naming convention of mapping tables is
peerid m peerid. A peer may generate more than
one mapping table for a single acquaintee. For example, if
a peer P1 has two mapping tables for its acquaintee P2,
then the following mapping tables are generated:

P1 m1 P2; P1 m2 P2

Environment Load: once the generation of peers, ac-
quaintances, databases, and mappings are completed, this
phase loads all the peers in the memory to run. When a
peer runs in the system, a peer connects to its database and
loads all the resources in the memory. Peers then wait for
the events to process.

The simulation starts when a service request is initiated
by a peer and needs to be executed in the system. Before for-
warding a request to the acquaintees, the initiator constructs
a message which is composed of (i) peer ID (PID), the sender
of the message, (ii) a unique global identifier (msgID) of the
message. msgID is formed combining the identifier of the
initiator and a message sequence number. We assume that
each peer generates a unique sequence number in increas-
ing order for each message it originates. If a peer receives
a message with the same msgID as seen before, then the
request is rejected, (iii) the message itself, and (iv) type of
message. There are three types of message: (a) query (Q),
(b) response (RS), and (c) result (R). In order to create a
message, the user needs to call the createMsg method of
the message class with the required parameters. A message
is sent to the peers using the method sendMessage in the
message class. There are also other useful methods in the
message class.

Plug-in Module: in this phase, users are allowed to in-
clude their own modules to extend the tools according to the
requirements. For example, processing of queries, updates,
and transactions.

Input / Output: this phase allows users different inter-
faces for handling the tool. The tool provides GUI to setup a
system environment. Figure 4 shows the interface for creat-
ing a system environment. Through the interface, a user can
create peers, databases, acquaintances, and mappings. The
interface allows users to see the acquaintance graph created
for the system. The window in the right side of the main
screen in Figure 4 shows the generated acquaintances of a
peer. In order to run all the peers in the system, the user
needs to click on the ’Load Peers’ button. On the right side
of the main screen, it shows that the peers are running in
the system. In order to initiate a request (query, update,
or transaction) from a peer, the user selects a peer from the
peers’ list. When a peer is selected, a window is activated to
work with that peer. For example, Figure 5 shows the input
screen of peer ”1” for submitting transactions. The screen
also provides information to see the list of peers which re-
ceives the transactions and the results generated by peers.
Users can also see the translated requests (e.g. transactions)
for each acquainted peer. Note that each peer is a distinct
thread of a class ”peer.class”. In the following, we present
some of the important methods of the ”peer.class”.

Figure 4: Main screen of PDST

Figure 5: A user input screen for peer 1

getPeerName(): returns the name of the currently se-
lected peer.

getAcquaintances(): returns the names of all the ac-
quainted peers of a peer.

getDBConn(): returns the database connection object of
a peer.

listenPeerQueue(): continuously listen the queue for any
incoming message. This a separate thread running in each
peer. If any message is detected, the peer processes the
request.

sendMessage(): sends message to the acquaintees.

4. EVALUATION
The first objective of the evaluations is to show the time

required to build a peer database system with different size
of networks. The time includes creation of peers, databases,
acquaintances, and mappings. The second objective is to
evaluate the tool by modeling an existing approach of query,
update, or transaction processing. In this paper, we mod-
eled the transaction processing system proposed in [9]. For
all the evaluations, we use the tool in a single Windows XP
machine with Intel Pentium 4 CPU 3.40GHz and 1GB of
RAM. Since the tool is used in a single machine, there is

Parameter Value

Number of peers 100-500
Number of acquaintances per peer 3

Number of relations per peer 1
Number of attributes 4

Number of tuples 25
Number of mapping tables 4

per peer for each acquaintance
Number of data mappings 8

in a mapping table

Table 2: System parameters

Figure 6: Time to generate peers with resources

no communication delay in the simulation time. On the
other hand, some delays are introduced because of database
access time. A future goal is to evaluate the tool consider-
ing proper network factors, for example, taking into account
network communication delay and the amount of exchanged
messages and data with different database systems. In our
setting, we consider that each peer is connected to a MySQL
5.0 database, and all the peers have an equal average number
of acquaintances. We provide a summary of the configura-
tion parameters in Table 2. The results of creating different
peer database systems are shown in Figure 6. We observe
from the result that the time increases sharply when the
number of peers increases. Through the analysis of the eval-
uation, we notice that 90% of the time is required to create
databases and generate mappings.

We then use the tool to model a transaction processing
system. For the evaluation, we consider only the time factor
since we want to see how much time is required to process
a request in the system. We consider transactions with dif-
ferent size. The size refers to the number of operations in a
transaction. The transactions are chosen in such a way that
the transactions are executed in each peer. The results of
the experiment are shown in Figure 7. Consider a network
size of 500 peers. From the result, we observe that the ex-
ecution time of transactions with size 2 and 10 are 40.375
sec and 45.862 sec, respectively. The result shows that the
execution time does not increase rapidly with the size of
transactions. However, we notice from the result that there
is a sharp increase of execution time of transactions. The
result points that when a transaction has more write oper-
ations than read operations, then the execution time takes
more in the system.

5. RELATED WORK
Authors in [21] discuss the present situation with respect

to simulation usage in P2P research, and present the state of
the art of P2P simulations. We found that most of the simu-

Figure 7: Execution time of transactions

lators are dedicated for content distribution and file sharing
systems. In order to evaluate a peer database system, we
need different resources, for example, databases, mappings
between peers, and acquaintances. The existing tools do not
support or provide these facilities. Moreover, tools should
support database related actions (e.g. query, update, and
transaction). Our goal is to present a tool that can be used
to evaluate a peer database system which is unable with the
existing tools. We describe some of the P2P simulators in
the following.

NS-2 [17] is a popular network simulator that best suits
for simulating packet switched networks and small scale net-
works. Adding new modules is not straightforward, because
of it’s complex module structure [18].

The simulator [19] is specialized to file-sharing simula-
tions. It mainly models the content distributions, query ac-
tivity, download behavior etc. Simulations proceed in query
cycles representing the time period between issuing a query
and receiving a response. Similar to our approach, queries
are passed into a queue and handled on FIFO basis.

NeuroGrid [20] is single-threaded, Java-based simulator
designed for supporting comparative resource search simu-
lations between FreeNet, Gnutella, and NeuroGrid systems.
It is basically single thread and non-parallel.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a tool for modeling peer

database systems in a large P2P network where mappings
between peers are established either by coordination rules
or instance-level mappings. The tool supports the real
database functionalities, for example processing queries, up-
dates, and transactions. We have modeled the transaction
processing mechanism [9] using the tool and presented some
experimental results.

A future goal is to evaluate the tool considering proper
network factors, for example, taking into account network
contention and number of exchanged messages or data. An-
other goal is to investigate the query processing of the ap-
proaches presented in [5, 2, 12, 13] and show their compar-
ison results. Moreover, we intend to extend the framework
for supporting web interface, so that users can use the tool
from any where through the internet.

7. REFERENCES
[1] A. Kementsietsidis, M. Arenas, and R.J. Miller.

Mapping Data in Peer-to-Peer Systems: Semantics and
Algorithmic Issues. In SIGMOD, 2003.

[2] A. Kementsietsidis and M. Arenas. Data Sharing
Through Query Translation in Autonomous Sources. In

VLDB, pages 468-479, 2004.

[3] M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa,
R.J. Miller, and J. Mylopoulos. The Hyperion Project:
From Data Integration to Data Coordination. In
SIGMOD RECORD, 2003.

[4] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema
mediation in peer data management system. In ICDE,
2003.

[5] A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork, D.
Suciu, and I. Tatarinov. The piazza peer-data
management system. In IEEE Transactions on
Knowledge and Data Engineering, Vol. 16, no. 7, 2004.

[6] A. Y. Halevy. Answering Queries Using Views: A
Survey. In The VLDB Journal, vol. 10, no. 4, 2001.

[7] L. Serafini, F. Giunchiglia, J. Molopoulos, and P.
Bernstein. Local Relational Model:A Logocal
Formalization of Database Coordination. Technical
Report, University of Trento, 2003.

[8] M. Masud, I. Kiringa, and H. Ural. Update
Propagation and Data Synchronization in Instance
Mapped Peer Data Sharing Systems. In InterDB, 2007.

[9] M. Masud and I. Kiringa. Acquaintance Based
Consistency in an Instance-Mapped P2P Data Sharing
System During Transaction Processing. In CoopIS,
2007.

[10] M. Masud, I. Kiringa, and A. Kementsietsidis. Don’t
Mind Your Vocabulary: Data Sharing Across
Heterogeneous Peers. In CoopIS, 2005.

[11] D. Hildebrandt, L. Bischofs, and W. Hasselbring.
RealPeer-A Framework for Simulation-Based
Development of Peer-to-Peer Systems. In PDP, 2007.

[12] W. Siong Ng, B. Chin Ooi, K. Tan, and A. Zhou.
PeerDB:A P2P-based System for Distributed Data
Sharing. In ICDE , 2003.

[13] E. Franconi, G. Kuper, A. Lopatenko, and I.
Zaihrayeu. The coDB Robust Peer-to-Peer Database
System. In SEDB, 2004.

[14] M. Lenzerini. Data Integration: A Theoretical
Prespective. In PODS, 2001.

[15] W. Yang and N. Abu-Ghazaleh. GPS: a general
peer-to-peer simulator and its use for modeling
BitTorrent. In MASCOTS , 2005.

[16] R. S. Nair, J. A. Miller, and Z. Zhang. Java-based
query driven simulation environment. In WSC , 1996.

[17] NS-2. http://www.isi.edu/nsnam/ns/.

[18] N. Kotilainen, M. Vapa, T. Keltanen, A. Auvinen, and
J. Vuori. P2PRealm - peer-to-peer network simulator In
CAMAD, 2006.

[19] M. Schlosser and S. Kamvar. Simulating a P2P
File-Sharing Network In Workshop on Semantics in
Grid and P2P Networks, 2002.

[20] S. Joseph and T. Hoshiai Decentralized Meta-Data
Strategies: Effective Peer-to-Peer Search. In IEICE
Transaction on Communication, vol. E86-B, no. 6.,
2003

[21] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, I.
Wakeman, and D. Chalmers. The state of peer-to-peer sim-
ulators and simulations. In ACM SIGCOMM Comp. Comm.
Review, vol. 37, no. 2, April 2007.

