
A Windows Based Web Cache Simulator Tool

F.J. González-Cañete E. Casilari, A. Triviño-Cabrera
University of Málaga

ETSI Telecomunicación
29071- Málaga (Spain)

+34 952 13 27 55

 {fgc,ecasilari,atc}@uma.es

ABSTRACT
In this paper, we describe a Windows based Web cache simulator
tool. This tool is able to process the IRCache based traces files
and reproduce the behavior of a Web Proxy Cache. It can be
configured to simulate fifteen replacement policies and two
admission control policies. The cache size, the percentage of
warm-up and the cost function of some replacement policies can
also be configured. The simulations can be performed in a batch
process and the results are stored in text format files that can be
automatically analyzed using other tools like Matlab to obtain
performance graphs.

Categories and Subject Descriptors
J.2. [Computer Applications]: Physical Sciences and
Engineering, Telematics

General Terms
Measurement, Performance.

Keywords
Web cache, replacement policies, simulator, IRCache.

1. INTRODUCTION
When a new system is developed there are two ways of checking
if its functionalities are fully and correctly implemented. The first
of them is to build the system and start working with it and the
second is to simulate the system behavior using a simulator. In
some situations the first way is absolutely inadequate because it
can be costly to develop the real system and if problems are
detected in the production phase the system have to be redesigned
or refined. On the other hand the simulation alternative gives a
choice to reproduce the behavior of the system and it can even
reproduce situations that are difficult, costly or even impossible to
perform using the real system.

One of the environments where the simulations are the main tool
to measure the performance of a system is the Internet. In that
way, an entire network can be simulated using different types of
traffic, interruption, connectivity or even mobility models as can
be performed with network simulators such as ns-2 [1]. Although
the ns-2 simulator is one of the most popular network simulators
[2] it only simulates the behavior of a proxy cache in a basic form
as it simply implements an infinite cache without any replacement
policy or admission control features.

Due to the lack of an open source proxy cache simulator, some
researchers have developed their own simulators in order to test
the replacement policies or admission control policies they
propose for caching. DavisSim [3] is a simulator implemented
using C++ and based on the Winsconsin Web Cache Simulator
[4]. Both of them are UNIX/Linux based simulators. They utilizes
a pro-processed Web trace that contains the server identification,
the page identification, the size of the document requested, the
time to serve the document, the time of the last modification, time
of access and the user id. This simulator takes input files for the
parameters of the simulations and output the cache performance
parameters such as the cache hits and misses in a file. Another
simulator is the Multikey Web Cache Simulator [5] which
simulates the behavior of some key-based replacement policies in
a Web cache. This is also a Linux based simulator implemented in
C++ using a modular method in order to allow an easy way to
expand the capabilities of the simulator. The simulator accepts
Squid proxy logs [6] as traces to simulate.

All the previous works are meant for Linux systems. However,
there are many users of Windows operating systems who may
benefit from the utilization of a Web cache simulator. This paper
presents a Windows-based Web cache simulator that accepts
Squid proxy logs as input traces and also implements a great
variety of replacement policies and some admission control
policies. The parameters of the simulations can be introduced in a
visual way using a user-friendly interface. It also allows creating
batch files for simulations using a visual method.

The rest of the paper is organized as follows. Section 2
summarizes the cache simulator architecture and the modules it
contains, defining the behavior of the Filter Module and the
Cache Module. Section 3 comments the Cache Module as well as
the implemented replacements and admission control policies. It
also explains the metrics and statistics obtained from the
simulations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference name: SIMUTools, March 03 – 07, 2008, Marseille, France.
ISBN 978-963-9799-20-2

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
SIMUTOOLS 2008, March 03-07, Marseille, France
Copyright © 2008 ICST 978-963-9799-20-2
DOI 10.4108/ICST.SIMUTOOLS2008.2933

2. Cache simulator architecture
The cache simulator is divided into two modules. The first
module corresponds to the Filter module and the second module is
the cache simulator itself. The purpose of the Filter module is to
process the Squid trace files and adapt them to a more accurate
format for the simulator. The filtering architecture is shown in
Figure 1.

The Filter Module takes the Squid trace files as input and
performs a first filtering process (Filter 1) purging those requests
that have been generated dynamically by CGI (Common Gateway
Interface) because the documents returned by these kind of
requests are unique for each request and therefore they should not
be cached [7]. Because of this fact, the requests that contain the
strings ‘cgi’, ‘cgi-bin’ or ‘?’ have been discarded. Those requests
that contain the string ‘:3128’ have also been filtered as this is the
port that Squid utilises to interchange information between
collaborating caches. Finally only those requests with a cacheable
response code have been considered, that is, 200 (OK), 203
(Partial), 206 (Partial Content), 300 (Multiple Choices), 301
(Moved) and 302 (Redirects) and 304 (Not Modified). The second
filtering process (Filter 2) discards some of the parameters of the
requests included in the original Squid traces and generates an
output file with the access time, the latency of the transfer, the
size of the document, the identification of the document and its
content-type. The identification of the documents and the content-
types are numerically coded in order to achieve a faster operation
of the simulator.

The architecture of the simulator is shown in Figure 2. The
processed traces first enter the Admission Control process that
decides if the document passes the admission control policy
selected (if there is one selected) and hence the document enters
the Cache Process. The Cache Process executes the replacement
policy selected deciding which documents to evict from the cache
to make room for the new one if necessary. Finally, the
Measurement and Statistics Module collects information of the
above mentioned processes such as the number of requests,
documents accepted or rejected, documents evicted or hits in the
cache in order to calculate statistics about hit ratios, byte hit ratios
or other metrics which are employed to obtain performance
comparisons. Once the simulations are finished, the Measurement
and Statistics Module stores the results in a text file that can be
processed automatically.

3. The Cache Module
3.1 Replacement Policies implemented
The purpose of a replacement policy is to evict the documents
with the lowest probability of being referenced in the near future
to make room for the new ones. The Cache Module implements
thirteen replacement policies as well as two replacement policies
that divide the storage space depending on the size and the
content-type of the documents respectively. In this section we

Figure 1. Filter Module architecture

Figure 2. Cache Module Architecture

give details of the replacements policies actually implemented by
the simulator:

• FIFO: It is the simplest replacement policy. The first document
that enters the cache is the first to be evicted when storage space
is needed.

• LRU (Least Recently Used) replaces the document that was
referenced longer ago.

• LFU (Least Frequently Used): This algorithm evicts the
document that has been least referenced. If there are some
documents with the same reference count, LRU is used.

• LFF (Largest File First) evicts the documents with the largest
size.

• LFU-DA (LFU-Dynamic Aging) [8]: This algorithm uses a
variable that contains the “age” of the cache, i.e. the number of
references to the least frequently used document. This aging
method is used to avoid that documents that have been
referenced very often in the past but are not popular any more
will be maintained in cache and hence will not be evicted.
When a new document is inserted or the referenced document is
already in cache, the reference count of the document is added
to the aging variable.

• GD-SIZE (Greedy Dual-Size) [9]: It utilizes a cost function to
evaluate the documents. The value of a document is calculated
as shown in Eq.1 where cd is the transmission cost of document
d and sd is the size of d in bytes. The document evicted will be
the one with the lowest evaluation function value. Two cost
functions can be selected, the constant cost function (cd=1) and
the number of packets to transmit d.

() d

d

c
V d

s
= (Eq. 1)

• GDSF (Greedy-Dual Size with Frequency) [10]: It is a
modification of the Greedy-Dual-Size algorithm which also
considers the reference count of documents. The function which
weights each document is shown in Eq. 2, where fd is the
number of references to the document d.

() d
d

d

c
V d f

s
= (Eq. 2)

• GD* (Greedy-Dual*) [11]: This algorithm is a modification of
the GDSF algorithm taking into account the temporal
correlation of references using a parameter β in the value
function (Eq. 3). This parameter is a number between zero and

one that models the temporal correlation between two
successive accesses to the same document.

1

() d
d

d

c
V d f

s

β

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (Eq. 3)

• RANDOM: The documents to be evicted are randomly selected
using a uniform distribution, that is, all documents have the
same probability of being evicted.

• CLIMB: In this replacement a queue such as LRU is
maintained, but when there is a cache hit the document climbs a
position in the queue instead of being moved to the end of the
queue as occurs with LRU.

• CLIMB-C [12] is a randomized version of CLIMB. In this
algorithm, when a document d that is in the cache is requested
again, the probability of being climbed is presented in Eq. 4,
where the denominator represents the maximum cost of the N
documents that the cache contains.

{ }
1 2

() 1
max , , ...,

d

N

c
P d i N

c c c
∝ ≤ ≤ (Eq. 4)

• CLIMB-S [12] works like CLIMB-C but using the Eq. 5 as the
probability to climb a position in the queue when there is a
cache hit.

{ }
1 2

min , , ...,
() 1N

d

s s s
P d i N

s
∝ ≤ ≤ (Eq. 5)

• C-LRU [13] and PART [14] are two replacement policies that
classify the documents according to its size in various groups.
Each group of documents is managed with a LRU queue. This
simulator allows defining the groups of sizes and also allows
applying any of the abovementioned replacement policies and
not only LRU.

• As well as the previous C-LRU and PART, this simulator
implements a schema that classifies the documents according to
its content-type and it also allows applying any replacement
policy [15].

3.2 Admission Control Policies implemented
The function of an admission control policy is to decide if a
document has to be stored in the cache or if it is not worth storing
because, for example, it is probable that it will not be referenced
again or the size of the document will cause a great number of
evictions in the cache. The cache module implements only two
admission control policies that can be selected simultaneously:

• Threshold size: It allows defining a minimum and the maximum
size of the documents to enter the cache.

• Minimum number of references: This policy defines the
minimum number of times that a document has to be referenced
before it could be cached.

3.3 The Measurements and Statistics module
This module is continuously monitoring the Admission Control
and the Cache Module in order to obtain some useful data for
statistics. This data can also be shown on screen in simulation
time to visualize the evolution of the cache.

The Measurements and Statistics module checks the amount of
storage space that is occupied, the number of documents stored in
the cache, the number of evicted, modified and discarded
documents, considering that a document is discarded when it has
not even been stored in the cache because it is bigger than the
cache and the amount of documents modified. To distinguish the
modification of a document from the interruption of a transfer we
compare the difference between sizes of successive requests to the
same document. If the difference is less than 5% of the document
size, we consider that the document has been modified and it has
to be treated as a new document; otherwise a cancel is considered
[16].

This module also monitories the amount of requests and bytes
processed and served from the cache (cache hits) as well as the
total number of documents rejected by the Admission Control
module.

Based on the data collected, this module calculates the classical
metrics to measure the cache performance HR and BHR:

• HR (Hit Ratio): It is defined as the total number of requests that
cause a hit in the cache divided by the total number of requests
processed by the cache.

• BHR (Byte Hit Ratio): It is defined as the summation of the
document sizes that cause a hit in the cache divided by the size
of the documents processed by the cache.

Furthermore, this simulator also calculates another metrics
specifically designed to evaluate the performance of a cache with
admission control policy. Eq. 6 and 7 define the NUHR (Not
Unique Hit Ratio) and the NUBHR (Not Unique Byte Hit Ratio)
[17] where #Hits is the total number of requests that cause a hit in
the cache, #Tot_req is the number of requests that enter the cache
and #R_ok is the number of request that were correctly discarded
by the admission control policy, considering that a document has
been correctly discarded when it is not requested again in the
workload or it has been modified since the last time it was
requested, i.e. the document reference is unique or it is modified
before it is referenced again. Similarly, the terms of Eq. 7 are
related to the size of the requested documents.

#

_ # _

Hits
NUHR

Tot req R ok
=

−
 (Eq. 6)

_

_ _ # _ _

S Hits
NUBHR

S Tot req S R ok
=

−
 (Eq. 7)

To measure the performance of the admission control policy the
simulator calculates the ACHR (Access Control Hit Ratio) and
the ACBHR (Access Control Byte Hit Ratio) defined in Eq. 8 and
Eq. 9 respectively [17].

_ # _

_ # _

R ok Ac ok
ACHR

R Tot Ac Tot
= ⋅ (Eq. 8)

_ _ # _ _

_ _ # _ _

S R ok S Ac ok
ACBHR

S R Tot S Ac Tot
= ⋅ (Eq. 9)

Where #R_ok is the number of requests that were correctly
rejected, #R_Tot is the number of rejections, #Ac_ok is the
number of requests accepted that caused a hit in the cache and
#Ac_Tot is the number of requests accepted by the access control.
Similarly, the terms of Eq. 9 are related to the size of the requests.

When a simulation ends all the previous data and statistics are
saved in a text file for further processing although this
information can also be saved on each step of simulation to study
the evolution of the cache in time.

4. The simulator interface
The simulator interface is organized in five tabs: General
Configuration, Standard Configuration, Content-type
Configuration, Size-based Configuration and Simulation
Statistics. Some snapshots of the application can be seen at [18].

The General Configuration tab allows configuring the general
parameters not specific for any replacement or admission control
policy. This tab is utilized to select the trace files for filtering or
simulating as well as the batch files that contain the parameters
for the simulations. The percentage of the trace file employed to
‘warm-up’ the cache can also be selected.

The Standard Configuration tab is designed to configure the
general parameters of the simulations when a replacement policy
that utilizes only one queue is selected, i.e. not content-type or
size based replacement policies. The size of the cache, the
replacement policy and the admission policy as well as their
corresponding parameters can be selected. This tab is also useful
to create batch files simply pressing a button that stores the
current configuration into a file.

In the Content-Type Configuration tab the parameters such as the
content-types to consider and the size of each queue can be
selected. Furthermore the replacement policy and the admission
control for each queue can be assigned. Batch files can also be
created.

The Size-based Configuration tab manages the ranges of sizes
assigned to each queue, the size of the queues and the
replacement policy applied to each of them.

Finally, the Simulation Statistics tab shows in simulation time all
the information about the process as well as the statistics.

5. Implementation details
The simulator has been implemented using the Borland C++
Builder 2006 IDE and hence it widely utilizes the VCL (Visual
Common Library) library for the interface and the classes to
manage the queues.
The simplified class diagram of the application is shown in Fig. 3.
The Cache class contains one object that implements one of the
types of replacement policies, that is, SimpleCache that represents

ReplacementPolicy

LRU GDS CLIMB

GDSF GD*

Cache

AdmissionControl

Sizes Occurrences

1
*

1

1

AdmissionControlPolicy

1*

SimpleCache SizeCache Content-TypeCache

1

*

1

1

0..1

1

0..1

1

0..1

1

Figure 3. Simplified class diagram of the simulator

those replacement policies that utilizes an unique queue to store
the documents, the SizeCache class that represents the
replacement policy that divides the documents and stores them in
different queues according to their size and the Content-
TypeCache class that represents the replacement policy that stores
the documents in a different queue according to its content-type.
The SimpleCache class utilizes a ReplacementPolicy object to
implement the replacement policy selected. On the contrary the
SizeCache and Content-TypeCache classes make use of more than
one ReplacmentPolicy object because each queue can operate
with a different replacement policy.
The ReplacementPolicy class is an abstract class that implements
most of the methods necessary to manage the data structures of
the replacement policies. Table 1 summarizes the virtual methods
that have to be or can be overridden for the subclasses of the
ReplacementPolicy class.
The ReplacementPolicy class is a super class for the classes that
implement the replacement policies such as the LRU, GDS or
CLIMB classes. There is a class for each replacement policy
implemented although the GDS class is an abstract class that
implements a generalization of the GDS family (GDSize, GDSF
and GD*).
The Cache class also contains an AdmissionControl object that
manages the admission control policies assigned to the current
simulation. In that way more than one AdmissionControlPolicy
object can be assigned to the admission control. The
AdmissionControlPolicy class is an abstract class and is a super
class for the classes that implement each admission control
policies. At the moment the Sizes and Occurrences classes
implement the size based and number of occurrences based
admission control policies respectively. These subclasses have to
implement a method that defines if the document that has just
reached the cache passes the admission control policy or not.
As can be observed from the previous descriptions the modular
architecture of the application allows adding new functionalities
such as new replacement policies or new admission control
policies by just deriving from the base class and overriding the
necessary methods.

Table 1. Virtual methods of the ReplacementPolicy class

Method Description

void reorderNodes(Node*, int)=0 It implements what to do
when a cache hit occurs

bool isSortedPolicy()=0 It sets if the queue that
manages the cache is sorted

Node *insertNode(Node*, int &); It inserts a document in the
cache

void makeRoom(Node*,int &,
Node*);

It defines the operations to
evicts the documents

void insertSorted(Node*, int &); It inserts a document in a
sorted way

void valueInitNode(Node *); It assigns an initial value for
the document

6. Conclusions
In this work we have presented the functionalities, architecture
and implementation details of a Windows based Web cache
simulator that takes Squid traces as an input for simulating a great
variety of replacements policies proposed for the Web. The
simulator also implements an admission control module for
deciding if the documents must be stored in the cache or not. The
simulator also monitors the statistics of the simulations and
calculates some performance metrics.
The application has been designed to be user friendly. It presents
a set of tabs that groups the parameters necessary to configure the
simulations. Those parameters can even be saved in a file that will
be utilized for batch simulations.
Due to the object oriented structure developed using C++ this
simulator can be easily extended implementing new replacement
and admission control policies.

7. ACKNOWLEDGMENTS
We would like to thank Adela Isabel Fernández Anta for revising
the syntax and grammar of this paper.

This work was partially supported by the public Project
TEC2006-12211-C02-01.

8. REFERENCES
[1] http://www.isi.edu/nsnam/ns/
[2] Kurkowski, S., Camp, T., Colagrosso, M. 2005. MANET

Simulation Studies: The Incredibles. ACM’s Mobile
Computing and Communications Review, vol. 9, no. 4, pp.
50-61, 2005.

[3] http://pdclab.cs.ucdavis.edu/qosweb/DavisSim.html
[4] http://www.cs.wisc.edu/~cao/webcache-simulator.html
[5] Cardenas, L.G. Sahuquillo, J. Pont, A. Gil, J.A. 2005.

The multikey Web cache simulator: a platform for designing

proxy cache management techniques. Proceeding of the 12th
Euromicro Conference on Parallel, Distributed and Network-
based Processing (A Coruña, Spain, February 11-13, 2004),
390- 397.

[6] http://www.ircache.net
[7] Zhang, X. 2000. Cachability of Web Objects. Technical

Report 2000-19
[8] Arlitt, M., Williamson, C. 1997. Internet Web Servers:

Workload Characterization and Performance Implications,
IEEE/ACM Transactions on Networking

[9] Cao, P. 1997. Cost-Aware WWW Proxy Caching
Algorithms, Proceedings USENIX Symposium on Internet
Technologies and Systems

[10] Cherkasova, L. 1998. Improving WWW Proxies
Performance with Greedy-Dual-Size-Frequency Caching
Policy. Technical Report HP Labs HPL-98-69.

[11] Jin, S., Bestabros, A. 2001. GreedyDual* Web Caching
Algorithm: Exploiting the Two Sources of Temporal
Locality in Web Request Streams, International' Journal of
Computer Communications, Vol. 24, No. 2, pp. 174-183,
February, 2001.

[12] Starobinski, D., Tse, D. 2001. Probabilistic Methods for Web
Caching, Performance Evaluation, vol. 46, no. 2-3, pp. 125-
37, October 2001.

[13] Haverkort, B.R., Khayari, R.A., Sadre, R. 2003. A Class-
Based Least-Recently Used Caching Algorithm for World-
Wide Web Proxies. Proceedings Computer Performance
Evaluation / TOOLS 2003, pp. 273-290, 2003.

[14] Murta, C.D., Almeida, V., and Meira, Jr. W. 1998.
Analyzing Performance of Partitioned Caches for the WWW.
Proceedings of the Third International WWW Caching
Workshop (Manchester, Great Britain, June 1998).

[15] Khayari, R.A., Best M., Lehmann, A. 2005. Impact of
Document Types on the Performance of Caching Algorithms
in WWW Proxies: A Trace Driven Simulation Study.
Proceedings IEEE 19th International Conference on
Advanced Information Networking and Applications
(Tamkang University, Taiwan, March 2005).

[16] Arlitt, M. et al. 1999. Workload Characterization of a Web
Proxy in a Cable Modem Environment, Hewlet-Packard
Laboratories. Technical Report HPL-1999-48.

[17] González-Cañete, F.J., Triviño-Cabrera, A., Casilari, E.
2006. Two New Metrics to Evaluate the Performance of a
Web Cache with Admission Control. Proceedings 13th IEEE
Mediterranean Electrotechnical Conference (Benalmádena,
Spain, March 2006).

[18] http://pc23te.dte.uma.es/Simutools/index.html

