
Embedded System Protocol Design Flow based on SDL:
From Specification to Hardware/Software Implementation

Daniel Dietterle
IHP microelectronics GmbH, Wireless Communication Systems

PO Box 1466, D-15204 Frankfurt (Oder), Germany
dietterle@ihp-microelectronics.com

ABSTRACT
SDL (Specification and Description Language) is popular for
communication protocol design. SDL tools allow simulating
and verifying SDL models. In this paper, we show how SDL
models can be transformed into hardware/software imple-
mentations for embedded systems. Our design flow con-
tains a lightweight operating system integration layer and
a cosimulation framework that supports hardware/software
partitioning.

The design methodology has been applied to an imple-
mentation of the IEEE 802.15.3 MAC protocol. We present
results from a prototypical system including a protocol ac-
celerator.

Categories and Subject Descriptors
I.6.3 [Simulation and Modelling]: Applications

General Terms
Protocol engineering, embedded systems

Keywords
SDL, IEEE 802.15.3, protocol accelerator

1. INTRODUCTION
Advances in system-on-chip (SoC) design and wireless

communication technology enable the development of tiny,
battery-powered sensor nodes that can be worn on the
human body forming a wireless body area network (BAN).
This creates new opportunities for novel applications and
products, for instance long-term health monitoring [7],
[8]. Application and communication protocol designers are
faced with the need to deliver reliable systems within a
short development time to be successfully on the market.

This paper presents a design flow for complex embedded
system design that addresses

• reliability by the use of the formal language SDL,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools, March 03 - 07, 2008, Marseille, France
Copyright 2008 ACM ISBN 978-963-9799-20-2 ...$5.00.

• short development time by evolving the original, ab-
stract SDL model towards an efficient software imple-
mentation, and

• low-power consumption by the support for hardware /
software partitioning.

Our design flow shall give engineers guidelines and a
framework for efficient application or protocol design.
We advocate the use of application-specific hardware
accelerators for processing-intensive and time-critical tasks
when their software implementation would require high
clock frequencies and, consequently, would increase power
consumption.

The proposed design flow has been applied to the medium
access control (MAC) protocol design of a wireless commu-
nication platform. This platform shall provide wireless con-
nectivity for devices in a personal communication sphere and
support multimedia applications.

The capabilities of the platform are to be demonstrated
with a medical application. A number of battery-powered
sensor nodes measuring various bioparameters, such as heart
rate, temperature, or ECG are attached to the human body
and form a wireless network. The body area (sensor) net-
work forms the basis for long-term health monitoring of
chronically ill patients.

The signals measured by the sensor nodes are locally ana-
lyzed (preprocessed) and evaluated within the node or net-
work. Communication with a remote medical center is only
initiated in the case of emergency or upon request. An ap-
plication scenario and the hardware architecture are shown
in Fig. 1.

The heart of the communication platform is the LEON2
processor, that runs the protocol and application software.
LEON2 is a synthesisable VHDL model of a 32-bit processor
compliant with the SPARC V8 architecture [4]. A single-
chip implementation of the platform is pursued, integrating
digital baseband processing and the RF front-end on chip.

In 2003, the IEEE has standardized a medium access con-
trol (MAC) and physical layer specification for high data
rate wireless PANs, known as IEEE 802.15.3[1]. We see this
standard as a good candidate for future wireless applications
and an enabling technology for low-power, wireless multime-
dia communications for a number of reasons:

The IEEE 802.15.3 MAC protocol offers an isochronous
data service, supporting multimedia traffic as well as
industrial applications with requirements for guaranteed
transmission opportunities. To save energy, devices may go
into power-save mode. Synchronized power-save sets ensure

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.SIMUTOOLS 2008, March 03-07, Marseille, FranceCopyright © 2008 ICST 978-963-9799-20-2DOI 10.4108/ICST.SIMUTOOLS2008.2929



ECG

Accelerometer

Body Area Network
(BAN)

Lung
sound

Blood
pressure

Figure 1: Body area network and hardware architec-
ture of the wireless communication platform [19].

that all devices in the set wake up at the same time. The
used channel access scheme is time-division multiple access
(TDMA). This way, the protocol can be easily used with
ultra wide band (UWB) transceivers, that do not provide
a channel sensing capability. Contention access based on
channel sensing is optional.

The specified data rates in the standard range from 11
to 55 Mbit/s, however the same MAC protocol can be used
with much higher or lower data rates, as well. While high-
rate transceivers typically consume more power than low-
rate transceivers, still the overall amount of energy can be
less than for low-rate transmissions provided that the pack-
ets are long enough.

We have modeled the MAC protocol in SDL [2]. SDL
is a formal language that allows systems to be modeled,
simulated, and implemented. It is a popular language for
protocol modeling (cf. [9], [10], [11]). Formal verfication
can be employed to design reliable systems.

The remainder of this paper is organized as follows. We
start with a brief introduction to SDL. In Section 3, our pro-
tocol design flow—from an abstract SDL model until hard-
ware / software partitioning and hardware design—is pre-
sented. This is followed by results from protocol accelerator
design and software implementation. Finally, we present our
conclusions.

2. SPECIFICATION AND DESCRIPTION
LANGUAGE (SDL)

In a way, SDL can be considered as a programming
language with a graphical user interface that offers high-
abstraction level programming elements to the designer.
The SDL description of system behavior is based on
communicating extended finite state machines (CEFSM)
that are executed concurrently.

State machines are represented by SDL processes. Pro-
cesses communicate with each other and the system envi-
ronment by exchanging asynchronous signals that may carry
any number of parameters. SDL also provides timers that
can be configured to generate signals at defined points in
time. Each process in an SDL system contains a FIFO
(First-In-First-Out) input buffer (with infinite space) into
which the received signals and timer events are queued. This

(b)(a)

[ SigA ]

z := x + y;

SigB(z)

State_T

SigA(x, y)

State_S State symbol

Signal input

Task

Signal output

[ SigB ]

ProcA

ProcB

Figure 2: (a) SDL processes with signal route and
emphasised input queue. (b) Sample SDL transi-
tion.

is shown in Fig. 2 (a).
In Fig. 2 (b), a typical SDL transition is shown. Transi-

tions are triggered by receiving a signal from the signal input
queue of the process. During state transition, the SDL pro-
cess may perform computations, send any number of signals
to other processes, set/reset timers, call procedures, and, fi-
nally, settle in the next state. Only then, a new signal can
be consumed from the head of the input queue.

Telelogic TAU SDL Suite [3] is a tool that allows modeling,
simulating, validating, and implementing SDL systems. The
CAdvanced code generator translates the SDL model into C
code. This C code contains definitions of the required SDL
structures such as processes, signals, etc., but also the state
machine implementations of the SDL processes in the so-
called PAD (process activity description) function. In this
function, SDL transitions are triggered depending on the
current state and signal input.

The generated code is independent of the underlying op-
erating system (OS). It can be the basis for a system simu-
lation or implementation.

3. MAC PROTOCOL DESIGN FLOW
Our adopted MAC protocol design flow (see Fig. 3) includ-

ing hardware/software co-design is described in more detail
in the following sections. It can be applied not only to com-
munication protocol implementation, but to any embedded
systems application development as it puts special emphasis
on reliability and efficiency.

3.1 Protocol modeling in SDL
The starting point of our design flow was the

IEEE 802.15.3 MAC protocol specification [1].
In a wireless network operating according to the

IEEE 802.15.3 standard, there is one piconet coordinator
(PNC) and a number of associated devices. The PNC
broadcasts beacon frames at regular time intervals. These
beacons contain, among others, information about the time
of the next beacon and when other devices may access the
channel in the same superframe, i.e. in the time until the
next beacon.

A channel time allocation list, which is part of the bea-
con frame, announces the time slots that are reserved exclu-
sively for the devices. Additionally, the PNC may define a
contention access period (CAP) following immediately after



HW/SW Co−Design

Part 3: ...

System integration

OS integration

Modeling

IEEE 802.15

Hardware Design

Hardware

HardwareVHDL code

implementation (C / C++)

Protocol specification

Pure software

partition
Software

partition

SDL model Tight Integration
layer

System−on−chip (SoC)

platform

Figure 3: MAC protocol design flow

the beacon. In this CAP, all devices can access the chan-
nel using a random backoff procedure. Data communication
among the associated devices is peer-to-peer. An example
of a piconet and a beacon frame is shown in Fig. 4.

IEEE 802.15.3 MAC frames consist of a header followed
by an arbitrary length payload field. Furthermore, a 32-bit
frame check sequence (FCS) is calculated over the payload
and added to all transmitted frames. The CRC-32 algorithm
is used for this purpose.

In most cases, especially in the case of command frames,
the sender expects the receiver to acknowledge the correctly
received frame immediately, i.e. exactly 10 microseconds
after the end of the frame. If an acknowledgement frame is
not received, the sender will retransmit the frame.

We have modeled all the necessary protocol functionality
in SDL using Telelogic TAU SDL suite [3]. By extensively
simulating the model we could validate the correct behavior
of our model.

In our model, the protocol functionality has been divided

Data

duration
CAP
end time

Channel time
allocations:

Contention
access period

CTA
A−>B

CTA
B−>C

time

PNC

Dev D
Dev A

Dev B

IEEE 802.15.3
piconet

Dev C

Beacon #m Beacon #m+1

B−>CA−>B ... Beacon
payload

Channel
allocation

Beacon

Data

Superframe

Figure 4: IEEE 802.15.3 network topology and su-
perframe structure (example)

into a number of SDL processes, similar to an object-
oriented design approach. Each process is responsible
for a well-defined functionality. The SDL processes can
be grouped into three conceptual service layers and one
management plane, as shown in Fig. 5. Additionally, within
each layer we identified those processes that are only needed
for devices that are capable to act as PNC. This layering
approach and the separation of PNC-specific functionality
further enhances the clarity of the model and gives first
hints for the hardware/software partitioning.

The lowest service layer is called Transport Engine. It pro-
vides the ability to receive and transmit service data units
(SDUs) to the upper service layers. This means that any
upper-layer process does not have to deal with the exact
timing of transmission and reception, retransmission, frag-
mentation and reassembly, and so on. The timers in this
layer require an accuracy of 1 microsecond.

On top of the Transport Engine, the Core Services are
placed. The processes in this layer are responsible for main-
taining the piconet operation. The Synchronization process,
for example, observes the reception of beacons and takes
action if the beacon was lost in several consecutive super-
frames.

The highest service layer contains the management pro-
cesses. These are, for example, the StartPiconet, Scan, As-
socServer, or AssocClient processes. Their behavior is de-
fined in the IEEE 802.15.3 standard. Note, that the Core
Services and MLME Processes do not require timers with
an accuracy of 1 microsecond, but millisecond timers are
sufficient.

A more detailed description of our SDL model can be
found in [15].

3.2 Operating system integration
The validated SDL model is the basis for the MAC proto-

col implementation by an automatic transformation. The ef-
fort of re-implementing the protocol in C/C++ would be too
high and error-prone compared to an optimization approach
where inefficient SDL concepts in the model are replaced by



AssocClient

Scan

Transport
Engine

Core
Services

Processes
MLME

... ...

Management

CTAClient

...

Plane

MLME_Ctrl

MACPIB

PNC−specific functionality

... ...

Synchronization

AssocServer

StartPiconet

CTAServer

TxQueue

TxSchedule RxControl

RxSDUDelivery

BeaconGen

Figure 5: Functional layering of the SDL processes
of the MAC protocol model

Application layer

Inter−proc. comm.Scheduling

SDL system

Reflex activity Reflex activity

SDL Proc. 2SDL Proc. 1
Reflex activity

External

Reflex layer

Figure 6: Tight Integration approach.

equivalent functions with less overhead. Additionally, the
time to achieve a fully tested implementation is consider-
ably shortened.

The next step is to target the SDL model to an operating
system (OS), in our case the Reflex OS [13]. For this pur-
pose, we developed a so-called Tight Integration model for
Reflex. This replaces the SDL run-time environment with a
tailored, very efficient OS integration layer.

Reflex is a tiny, event-flow oriented OS for deeply embed-
ded systems [12]. Although quite similar to TinyOS [14]—
the operating system most often used for wireless sensor
nodes—we believe it is better tailored for our system be-
cause of its earliest-deadline-first process scheduling strat-
egy. Whereas TinyOS tasks run to completion before any
other task is scheduled, time-critical tasks (activities) will
interrupt lower-priority activities, in Reflex. Such a behav-
ior is difficult to achieve in TinyOS. We have ported Reflex
to the LEON2 processor.

The mapping of SDL concepts to Reflex concepts is
straightforward. In our approach, each SDL process is
mapped directly to a Reflex activity. Our OS integration
layer also contains support for SDL timers. Furthermore,
it is possible to completely get rid of dynamic memory
management (malloc/free) by statically allocating signal
pools, from which SDL signals are taken at run-time. The
Tight Integration model targeted for the operating system
Reflex is shown in Fig. 6.

The required memory space for the operating system Re-
flex, the integration layer, and a simple SDL system was
measured to be about 20 kbytes for a system targeted for

protocol
model

Abstract
protocol
model

Abstract

Wireless link model

SDL simulator Instruction set simulator

implementation
Protocol

model

Figure 7: Co-simulation framework [17]

the LEON2 processor. Further details on the Tight Integra-
tion model can be found in [16].

3.3 Hardware/software co-design
Some of the MAC protocol functionality underlies tight

timing constraints, for instance acknowledgment (ACK)
frame transmission has to start exactly 10 microseconds
after the end of a received frame. With a pure software
implementation this would require a processor clocked at
a very high frequency leading to high power consumption.
Therefore, some protocol functions need to be realized in
hardware. The functionality that is mapped to the hard-
ware partition will then be designed using the hardware
description language VHDL. This will be the focus of
Section 4.

To identify bottlenecks in the pure software implementa-
tion and to estimate the required clock frequency to meet
all timing constraints, we performed a profiling of the soft-
ware. For that purpose, the software was simulated using
the LEON2 instruction set simulator (ISS) TSIM [5]. TSIM
allows profiling of individual functions. This way, we can
identify functions that are most often called or that con-
sume most of the processing time.

In order to see whether the protocol implementation meets
its timing requirements, we couple the ISS with the SDL
simulator that simulates a body area network on an abstract
time basis (cf. Fig. 7).

The SDL simulation as well as the TSIM simulation both
have their own simulation time. In order to guarantee
semantically correct co-simulation runs, both simulations
must be synchronized. In the case of the ISS, time advances
at each processed instruction, while our (abstract) SDL
simulation does not consume time when transitions are
simulated. Only when there are no more active transitions,
the simulation time can advance to the next scheduled SDL
timer or external event. This means that the instruction
set simulation can process as many instructions until the
next SDL event is scheduled or the ISS emits an SDL signal
to the SDL simulator.

In our framework, the co-simulation is controlled by the
SDL simulator from Telelogic. The SDL simulator processes
transitions in the SDL model and queries the environment
for input signals by calling the function xInEnv(). It can
also output signals to the environment through the func-
tion xOutEnv(). Together with the functions xInitEnv() and
xCloseEnv() this is the interface that the tool vendor pro-
vides to interact with external software components.

The instruction set simulator TSIM is not only available
as a stand-alone application, but also as a library. We use
the library version in our approach and link this library to
the SDL simulator. It is possible to control the ISS by calling
functions provided by the library, for instance to initialize



the simulation, load an executable, proceed for a specified
duration, or query the current simulation time.

Environment put_signal()

get_signal()

tsim_exit()

tsim_init()

tsim_cmd()

SDL simulator TSIM library

I/O module

w
rit

e 
m

em

re
ad

 m
em

SDL
model

Part of the co−simulation framework

xInitEnv()

xCloseEnv()

xInEnv()

xOutEnv()

Figure 8: Relationships between the SDL simula-
tor, TSIM library, and the I/O module in the co-
simulation framework

At simulation start, the xInitEnv() function is called by
the SDL simulator. From this function, the ISS is initial-
ized and the application to be simulated by it is loaded.
The SDL simulator then simulates all active transitions at
timestamp 0. When there are no more transitions, it calls
the xInEnv() function to check whether there are any exter-
nal signals as inputs for the SDL model.

As a parameter of the xInEnv() function, the timestamp
of the next SDL timer that is going to expire is passed.
Since there are no active transitions and no other sources of
signals that could trigger a transition before the indicated
timestamp, it is safe to advance TSIM until it reaches this
point in time in its simulation. The call to continue TSIM
is made from within xInEnv().

However, it is possible that the external (i.e. TSIM simu-
lated) system sends a signal to the SDL system during that
simulation. In this case, TSIM stops immediately and con-
trol resumes in the xInEnv() function. Here, the current
TSIM simulation time is read and the abstract SDL simu-
lation time is advanced to reflect the same point in time.
If a signal was sent from the external system, this signal is
input into the SDL model — this is the purpose of calling
the xInEnv() function by the SDL simulator. Otherwise, the
SDL time will have reached the expiration time of the next
timer and a new transition becomes active.

When all active transitions have been simulated — with-
out advancing the abstract SDL time — xInEnv() is called
again. Consequently, the ISS will be resumed. With this ap-
proach, the SDL simulation time cannnot advance ahead of
the time of the instruction set simulator, which might lead
to a signal sent from the ISS to the SDL simulation too late.

It is also possible that signals are sent to the TSIM sys-
tem from the SDL simulation in the course of processing
SDL transitions. For that purpose, a signal queue has been
implemented that stores these signals and can be read from
the application simulated in the ISS. Whenever a signal is
written into that queue, an interrupt request is created so
that the application — after it has been resumed from xI-
nEnv() — will first read these signals and process them, in
turn.

The communication interface between TSIM and the SDL
simulator has been implemented as an additional I/O mod-

xInitEnv():
Initialize TSIM
Load application into TSIM

xCloseEnv():
Exit TSIM

xInEnv(Time For Next Event):
TSIM time = Get current TSIM time
If TSIM time < Time For Next Event Then

Continue TSIM until Time For Next Event
SDL system time = Get current TSIM time

Else
SDL system time = Time For Next Event

End if
If there is a signal from TSIM application

Copy signal from I/O module into
new SDL signal SignalIn

Send SignalIn into SDL model
End if

xOutEnv(SignalOut):
Put a copy of SignalOut into signal queue

in I/O module

Figure 9: Pseudo code implementation of the envi-
ronment functions

ule to TSIM. It is mapped into the LEON2 memory space
and can thus be accessed from the application simulated by
TSIM. This I/O module is also linked to the SDL simulation
and provides functions to write into the before-mentioned
signal queue and to check whether the external system sent
a signal into the SDL simulation.

Figure 8 schematically shows the relationships between
the SDL simulator, TSIM library, and the I/O module. The
pseudo code implementation of the four environment func-
tions is given in Figure 9. An example simulation run for an
SDL system that sets a timer periodically every 5 seconds
and sends a signal SigA to the external system upon expi-
ration of the timer is illustrated in Figure 10. The external
system responds to the received signal with the signal SigB
exactly one second after it received SigA.

Furthermore, with TSIM it is also possible to model the
behavior of hardware components that are connected to the
LEON2 processor via the on-chip bus. This enables the sim-
ulation of the system with protocol tasks mapped to hard-
ware. To achieve this, the corresponding functions are re-
moved from the software model and put into a hardware
component. This allows us to study the new timing behav-
ior of the protocol implementation and optimize the hard-
ware/software partitioning until all timing constraints have
been met and the required clock frequency is acceptable.

As an outcome of the hardware/software partitioning we
have identified the frame reception and transmission pro-
cedure, superframe timing control, immediate acknowledg-
ment handling, and parts of the transmission queue to be
designed in hardware. In other words, all the low-level, time-
critical and processing-intensive tasks of the channel access
mechanism have been mapped to the hardware partition.
This corresponds well to the lowest service layer, Transport
Engine, in our SDL model (see Fig. 5). The remaining pro-



tsim_cmd("load app.elf")

get_time() (returns 5 s)

get_signal() (returns NULL)

put_signal(SigA)

write mem

Stop at 6 s
get_time() (returns 6 s)

get_signal() (returns SigB)

Run until 5 s

Set interrupt

read mem Interrupt handler

xInitEnv()

Simulate at time 0
Set timer to 5

xInEnv(5)

Set current time to 5

Simulate at time 5

Set timer to 10

xInEnv(10)

xOutEnv(SigA)

Set current time to 6

Send signal SigB

Simulate at time 6

tsim_init()

tsim_cmd("cont 5,000,000 us")

tsim_cmd("cont 10,000,000 us")

I/O module TSIM librarySDL simulator

Figure 10: Example co-simulation run

tocol functionality is handled by the LEON2 processor.

3.4 Hardware design
The protocol functionality that has been mapped to hard-

ware in the previous step has been designed in VHDL. An
SDL-to-VHDL compiler for rapid prototyping of SDL sys-
tems has been reported by Bringmann [23]; we have, how-
ever, decided to manually design the algorithms in VHDL
for efficiency reasons. The use of hardware accelerators as an
addition to a general-purpose processor has been reported
previously in the literature (cf. [21], [22]) for wireless MAC
protocol implementations.

As we are targeting system-on-chip (SoC) implementa-
tions, the protocol accelerator becomes a block of our SoC
hardware platform, attached to the on-chip AMBA high
performance bus (AHB). Our hardware platform based on
the LEON2 processor including the protocol accelerator is
shown in Fig. 1.

Additionally, the protocol accelerator has got an interface
to the physical layer implementation, such that the payload
of received and transmitted frames passes through the ac-
celerator and can be processed on the fly. As the hardware
accelerator was designed to be a bus master, it can access
the memory to store or read frame data independently of
the processor.

Figure 11 shows the main components of the protocol ac-
celerator. The tasks performed by each of the main compo-
nents are listed below:

• In receive direction, to retrieve frame data from the
physical layer byte by byte, perform filtering and CRC
check, and to store the data at a given memory loca-
tion by means of direct memory access (components
Rx controller, CRC, and DMA).

• In transmit direction, to retrieve frame data from a
memory location, calculate and append the check sum,

Memory
Controller

interface
Master

interface
Slave

SchedulerTransmission
queue

Interrupts DMA Protocol
Accelerator

CRC

Rx controller

CRC

Tx controllerBeacon
parser

Physical Layer

Timers

System bus
(AMBA AHB)

LEON2
processor

Figure 11: Hardware architecture of the protocol
accelerator (direct memory access data path high-
lighted).

and to push the data to the physical layer (components
Tx controller, CRC, and DMA).

• To signal a successful reception or transmission of a
frame to the processor by an interrupt (component In-
terrupts).

• To analyze received and transmitted beacon frames
and extract information on channel time allocations
(component Beacon parser).

• To manage a queue of frames that are to be transmit-
ted and to select an appropriate frame for transmission
(component Transmission queue).

• At the start of a time slot or following a frame trans-
mission, to query a new frame from the queue and, in
the case that the frame must be acknowledged by the
receiver, wait for the acknowledgment frame (compo-
nents Scheduler and Timers).

• To perform the backoff procedure in the contention
access period (components Scheduler and Timers).

• To send an acknowledgment at the right time upon
reception of a frame that needs to be acknowledged
(components Scheduler, Timers, and Tx controller).

3.5 Integration and test
The final step in the design flow as shown in Fig. 3 is the

integration of the hardware and software implementations
and a test of the complete system.

The hardware accelerator registers are accessible through
memory mapped I/O, a special memory region is reserved
for the accelerator. Additionally, interrupts are used to sig-
nal events from the protocol accelerator to the processor.
More details on the protocol accelerator design and its in-
terface to software are described in [18].



Table 1: FPGA resources used by the MAC protocol
system.

Resources LEON2 system Difference

Original With accel.

4 input LUTs 11,582 24,034 12,452

Occupied slices 6,828 14,365 7,537

Block RAMs 20 22 2

Equiv. gate count 1,427,060 1,681,651 254,591

We have fabricated the LEON2 processor system includ-
ing the protocol accelerator in a 0.25 µm CMOS technol-
ogy. Prior to the tape out of this chip, we have tested the
complete digital system on two FPGA boards connected by
wires.

4. DESIGN RESULTS
First, we have implemented the LEON2 system and pro-

tocol accelerator on a Xilinx Virtex-II FPGA. This FPGA
is the core of the GR-CPCI-XC2V hardware development
board [6]. The development board also provides RAM, ex-
ternal interfaces, and is clocked at 40 MHz. We have suc-
cessfully tested the complete MAC protocol implementation,
i.e. the protocol software running on the LEON2 processor
and the protocol accelerator, by connecting two such boards
with wires. This emulates a network of two devices. The
wires couple the boards below the MAC layer, data symbols
are transferred serially at a rate of 20 Mbit/s.

Table 1 shows the usage of FPGA resources of the same
LEON2-based system with and without the protocol ac-
celerator. No effort has been made so far to optimize the
hardware design, these are results from a prototypical im-
plementation. Our synthesis results for a 0.25 µm CMOS
technology show that the protocol accelerator occupies an
area of 1.8 mm2. The estimated power consumption of the
complete chip is 15 mW/MHz [20].

In the software part, dynamic memory allocation has been
completely avoided. There are statically allocated pools,
from which SDL signals are taken. By limiting the num-
ber of signals sent into SDL model from the environment—
the application program or protocol accelerator interrupt
handlers—an upper bound for the number of signals that
can be allocated by the SDL processes could be determined
and the sizes of the signal pools have been chosen accord-
ingly.

The overall memory requirements for the software imple-
mentation are roughly 160 kbytes in program memory (text
segment) and 50 kbytes of RAM (data and bss segments).
These relatively high numbers are caused by the complex
protocol behavior, including functions necessary for acting
as PNC, and the 32-bit target processor. Although some
effort has been spent on reducing the memory consumption,
there is still plenty of room for optimization. This has not
been the major focus so far, rather to develop a first working
system. The share of the operating system and SDL tight
integration layer is less than 20 kbytes of program memory.

5. CONCLUSION

We have presented a methodology for the design of com-
plex embedded applications and communication protocols.
An SDL model, which can be simulated and formally ver-
ified, is the first step in the design flow. We use this ini-
tial model throughout the design process; it is subject to
optimizations, integration with an operating system, hard-
ware/software partitioning, and, finally, serves as software
implementation.

We have developed a cosimulation framework that sup-
ports hardware/software partitioning by coupling an SDL
simulation with an instruction set simulator. The effects
of mapping software tasks to hardware can be measured.
Application-specific hardware accelerators relax the timing
constraints and take processing-intensive tasks from the pro-
cessor.

The proposed methodology has been applied to the
design of an IEEE 802.15.3 wireless MAC protocol hard-
ware/software system. It has been influenced by practical
experiences made during this development process. The
successful test of this complex system lets it appear to be
suitable for the design of other wireless, embedded system
applications that need to be reliable and low-power.

6. ACKNOWLEDGMENT
This work was partly funded by the Federal Ministry

of Economics and Technology (BMWi) of Germany under
grant no. 01 MT 306.

7. REFERENCES
[1] IEEE Standard 802, “Part 15.3: Wireless Medium

Access Control (MAC) and Physical Layer (PHY)
Specifications for High Rate Wireless Personal Area
Networks,” 2003.

[2] ITU-T, “ITU-T Recommendation Z.100. SDL:
Specification and Description Language,” 1999.

[3] Telelogic AB. (2004). Telelogic Tau SDL Suite [Online]
Available: http://www.telelogic.com/products/tau/sdl

[4] Gaisler Research AB. (2006). LEON2 Processor
[Online]. Available: http://www.gaisler.com

[5] Gaisler Research AB, “TSIM Simulator User’s
Manual,” 2006.

[6] Pender Electronic Design GmbH, “GR-CPCI-XC2V
Development Board User Manual,” 2005.

[7] E. Jovanov, A. Milenkovic, C. Otto, and
P. C. de Groen, “A wireless body area network of
intelligent motion sensors for computer assisted
physical rehabilitation,” in Journal of
Neuroengineering and Rehabilitation, 2(1):6, 2005.

[8] R. Bults, K. Wac, A. Van Halteren, D. Konstantas,
V. Jones, and I. Widya, “Body Area Networks for
Ambulant Patient Monitoring Over Next Generation
Public Wireless Networks,” in Proc. 3rd IST Mobile
and Wireless Communications Summit, 2004.

[9] C. Drosos, M. Zayadine, and D. Metafas, “Embedded
real-time communication protocol development using
SDL for ARM microprocessor,” in Dedicated Systems
Magazine, Q1 2001, pp 37–43.

[10] M. Hännikäinen, J. Knuutila, T. Hämäläinen, and
J. Saarinen, “Using SDL for Implementing a Wireless
Medium Access Control Protocol,” in IEEE
International Symposium on Multimedia Software
Engineering (MSE 2000), 2000, pp 229–236.



[11] E. Grass, K. Tittelbach-Helmrich, U. Jagdhold,
A. Troya, G. Lippert, O. Krüger, J. Lehmann,
K. Maharatna, K. Dombrowski, N. Fiebig,
R. Kraemer, and P. Mähönen, “On the Single-Chip
Implementation of a Hiperlan/2 and IEEE 802.11a
Capable Modem,” in IEEE Personal Communications,
vol. 8, no. 6, December 2001, pp. 48–57.

[12] K. Walther, R. Hemmerling, and J. Nolte, “Generic
Trigger Variables and Event Flow Wrappers in
Reflex,” in ECOOP — Workshop on Programming
Languages and Operating Systems, 2004.

[13] J. Nolte, “Reflex - Realtime Event FLow EXecutive,”
Available from http://www-bs.informatik.tu-
cottbus.de/38.html?&L=2,
2006.

[14] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister, “System Architecture Directions for
Networked Sensors,” in Architectural Support for
Programming Languages and Operating Systems, 2000,
pp. 93–104.

[15] D. Dietterle, I. Bababanskaja, K. Dombrowski, and
R. Kraemer, “High-Level Behavioral SDL Model for
the IEEE 802.15.3 MAC Protocol,” in Proc. of the 2nd
International Conference on Wired/Wireless Internet
Communications (WWIC), P. Langendörfer, M. Liu,
I. Matta, and V. Tsaoussidis Ed. Lecture Notes in
Computer Science, Vol. 2957. Springer-Verlag, Berlin
Heidelberg New York, 2004, pp. 165–176.

[16] G. Wagenknecht, D. Dietterle, J.-P. Ebert, and
R. Kraemer, “Transforming Protocol Specifications for
Wireless Sensor Networks into Efficient Embedded
System Implementations,” in Proc. Third European
Workshop on Wireless Sensor Networks (EWSN
2006), Lecture Notes in Computer Science, Vol. 3868.
Springer-Verlag, Berlin Heidelberg New York, 2006,
pp. 228–243.

[17] D. Dietterle, J.-P. Ebert, G. Wagenknecht, and
R. Kraemer, “A Wireless Communication Platform for
Long-Term Health Monitoring,” in Proc. PerCom
Workshops 2006, 2006, pp. 474–478.

[18] D. Dietterle, J.-P. Ebert, and R. Kraemer, “A
hardware accelerated implementation of the
IEEE 802.15.3 MAC protocol,” 13th European
Wireless Conference, submitted for publication.

[19] IHP GmbH. (2006). BASUMA - Body Area System
for Ubiquitous Multimedia Applications [Online].
Available: http://www.basuma.de

[20] Z. Stamenković, D. Dietterle, G. Panić, W. Bocer,
G. Schoof, J.-P. Ebert, “MAC Processor for BASUMA
Wireless Body Area Network,” in J. G. Delgado-Frias
(ed.), Proc. 5th IASTED International Conference on
Circuits, Signals and Systems, 2007.

[21] T. H. Meng, B. McFarland, D. Su, and J. Thomson,
“Design and implementation of an all-CMOS 802.11a
wireless LAN chipset,” IEEE Commun. Mag., vol. 41,
no. 8, Aug. 2003, pp. 160–168.

[22] M. Haroud, L. Blazević, and A. Biere, “HW
accelerated ultra wide band MAC protocol using SDL
and SystemC,” in Proc. IEEE Radio and Wireless
Conference (RAWCON’04), IEEE, 2004.

[23] O. Bringmann, A. Muth, F. Slomka, W. Rosenstiel,
G. Färber, and R. Hofmann, “Mixed Abstraction Level

Hardware Synthesis from SDL for Rapid Prototyping,”
in Proc. 10th IEEE International Workshop on Rapid
System Prototyping (RSPŠ1999), 1999, pp. 114–119.




